]>
Commit | Line | Data |
---|---|---|
5ba3f43e A |
1 | /*- |
2 | *********************************************************************** | |
3 | * * | |
4 | * Copyright (c) David L. Mills 1993-2001 * | |
5 | * * | |
6 | * Permission to use, copy, modify, and distribute this software and * | |
7 | * its documentation for any purpose and without fee is hereby * | |
8 | * granted, provided that the above copyright notice appears in all * | |
9 | * copies and that both the copyright notice and this permission * | |
10 | * notice appear in supporting documentation, and that the name * | |
11 | * University of Delaware not be used in advertising or publicity * | |
12 | * pertaining to distribution of the software without specific, * | |
13 | * written prior permission. The University of Delaware makes no * | |
14 | * representations about the suitability this software for any * | |
15 | * purpose. It is provided "as is" without express or implied * | |
16 | * warranty. * | |
17 | * * | |
18 | **********************************************************************/ | |
19 | ||
20 | ||
21 | /* | |
22 | * Adapted from the original sources for FreeBSD and timecounters by: | |
23 | * Poul-Henning Kamp <phk@FreeBSD.org>. | |
24 | * | |
25 | * The 32bit version of the "LP" macros seems a bit past its "sell by" | |
26 | * date so I have retained only the 64bit version and included it directly | |
27 | * in this file. | |
28 | * | |
29 | * Only minor changes done to interface with the timecounters over in | |
30 | * sys/kern/kern_clock.c. Some of the comments below may be (even more) | |
31 | * confusing and/or plain wrong in that context. | |
32 | */ | |
33 | ||
34 | /* | |
35 | * Copyright (c) 2017 Apple Computer, Inc. All rights reserved. | |
36 | * | |
37 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
38 | * | |
39 | * This file contains Original Code and/or Modifications of Original Code | |
40 | * as defined in and that are subject to the Apple Public Source License | |
41 | * Version 2.0 (the 'License'). You may not use this file except in | |
42 | * compliance with the License. The rights granted to you under the License | |
43 | * may not be used to create, or enable the creation or redistribution of, | |
44 | * unlawful or unlicensed copies of an Apple operating system, or to | |
45 | * circumvent, violate, or enable the circumvention or violation of, any | |
46 | * terms of an Apple operating system software license agreement. | |
47 | * | |
48 | * Please obtain a copy of the License at | |
49 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
50 | * | |
51 | * The Original Code and all software distributed under the License are | |
52 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
53 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
54 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
55 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
56 | * Please see the License for the specific language governing rights and | |
57 | * limitations under the License. | |
58 | * | |
59 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
60 | */ | |
61 | ||
62 | #include <sys/cdefs.h> | |
63 | #include <sys/param.h> | |
64 | #include <sys/systm.h> | |
65 | #include <sys/eventhandler.h> | |
66 | #include <sys/kernel.h> | |
67 | #include <sys/priv.h> | |
68 | #include <sys/proc.h> | |
69 | #include <sys/lock.h> | |
70 | #include <sys/time.h> | |
71 | #include <sys/timex.h> | |
72 | #include <kern/clock.h> | |
73 | #include <sys/sysctl.h> | |
74 | #include <sys/sysproto.h> | |
75 | #include <sys/kauth.h> | |
76 | #include <kern/thread_call.h> | |
77 | #include <kern/timer_call.h> | |
78 | #include <machine/machine_routines.h> | |
79 | #if CONFIG_MACF | |
80 | #include <security/mac_framework.h> | |
81 | #endif | |
82 | #include <IOKit/IOBSD.h> | |
cc8bc92a | 83 | #include <os/log.h> |
5ba3f43e A |
84 | |
85 | typedef int64_t l_fp; | |
0a7de745 A |
86 | #define L_ADD(v, u) ((v) += (u)) |
87 | #define L_SUB(v, u) ((v) -= (u)) | |
88 | #define L_ADDHI(v, a) ((v) += (int64_t)(a) << 32) | |
89 | #define L_NEG(v) ((v) = -(v)) | |
5ba3f43e A |
90 | #define L_RSHIFT(v, n) \ |
91 | do { \ | |
0a7de745 A |
92 | if ((v) < 0) \ |
93 | (v) = -(-(v) >> (n)); \ | |
94 | else \ | |
95 | (v) = (v) >> (n); \ | |
5ba3f43e | 96 | } while (0) |
0a7de745 A |
97 | #define L_MPY(v, a) ((v) *= (a)) |
98 | #define L_CLR(v) ((v) = 0) | |
99 | #define L_ISNEG(v) ((v) < 0) | |
5ba3f43e A |
100 | #define L_LINT(v, a) \ |
101 | do { \ | |
0a7de745 A |
102 | if ((a) > 0) \ |
103 | ((v) = (int64_t)(a) << 32); \ | |
104 | else \ | |
105 | ((v) = -((int64_t)(-(a)) << 32)); \ | |
5ba3f43e | 106 | } while (0) |
0a7de745 | 107 | #define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32) |
5ba3f43e A |
108 | |
109 | /* | |
110 | * Generic NTP kernel interface | |
111 | * | |
112 | * These routines constitute the Network Time Protocol (NTP) interfaces | |
113 | * for user and daemon application programs. The ntp_gettime() routine | |
114 | * provides the time, maximum error (synch distance) and estimated error | |
115 | * (dispersion) to client user application programs. The ntp_adjtime() | |
116 | * routine is used by the NTP daemon to adjust the calendar clock to an | |
117 | * externally derived time. The time offset and related variables set by | |
118 | * this routine are used by other routines in this module to adjust the | |
119 | * phase and frequency of the clock discipline loop which controls the | |
120 | * system clock. | |
121 | * | |
122 | * When the kernel time is reckoned directly in nanoseconds (NTP_NANO | |
123 | * defined), the time at each tick interrupt is derived directly from | |
124 | * the kernel time variable. When the kernel time is reckoned in | |
125 | * microseconds, (NTP_NANO undefined), the time is derived from the | |
126 | * kernel time variable together with a variable representing the | |
127 | * leftover nanoseconds at the last tick interrupt. In either case, the | |
128 | * current nanosecond time is reckoned from these values plus an | |
129 | * interpolated value derived by the clock routines in another | |
130 | * architecture-specific module. The interpolation can use either a | |
131 | * dedicated counter or a processor cycle counter (PCC) implemented in | |
132 | * some architectures. | |
133 | * | |
134 | */ | |
135 | /* | |
136 | * Phase/frequency-lock loop (PLL/FLL) definitions | |
137 | * | |
138 | * The nanosecond clock discipline uses two variable types, time | |
139 | * variables and frequency variables. Both types are represented as 64- | |
140 | * bit fixed-point quantities with the decimal point between two 32-bit | |
141 | * halves. On a 32-bit machine, each half is represented as a single | |
142 | * word and mathematical operations are done using multiple-precision | |
143 | * arithmetic. On a 64-bit machine, ordinary computer arithmetic is | |
144 | * used. | |
145 | * | |
146 | * A time variable is a signed 64-bit fixed-point number in ns and | |
147 | * fraction. It represents the remaining time offset to be amortized | |
148 | * over succeeding tick interrupts. The maximum time offset is about | |
149 | * 0.5 s and the resolution is about 2.3e-10 ns. | |
150 | * | |
151 | * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 | |
152 | * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 | |
153 | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
154 | * |s s s| ns | | |
155 | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
156 | * | fraction | | |
157 | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
158 | * | |
159 | * A frequency variable is a signed 64-bit fixed-point number in ns/s | |
160 | * and fraction. It represents the ns and fraction to be added to the | |
161 | * kernel time variable at each second. The maximum frequency offset is | |
162 | * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s. | |
163 | * | |
164 | * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 | |
165 | * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 | |
166 | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
167 | * |s s s s s s s s s s s s s| ns/s | | |
168 | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
169 | * | fraction | | |
170 | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
171 | */ | |
172 | ||
0a7de745 A |
173 | #define SHIFT_PLL 4 |
174 | #define SHIFT_FLL 2 | |
5ba3f43e A |
175 | |
176 | static int time_state = TIME_OK; | |
177 | int time_status = STA_UNSYNC; | |
178 | static long time_tai; | |
179 | static long time_constant; | |
180 | static long time_precision = 1; | |
181 | static long time_maxerror = MAXPHASE / 1000; | |
182 | static unsigned long last_time_maxerror_update; | |
183 | long time_esterror = MAXPHASE / 1000; | |
184 | static long time_reftime; | |
185 | static l_fp time_offset; | |
186 | static l_fp time_freq; | |
187 | static int64_t time_adjtime; | |
188 | static int updated; | |
189 | ||
190 | static lck_spin_t * ntp_lock; | |
191 | static lck_grp_t * ntp_lock_grp; | |
192 | static lck_attr_t * ntp_lock_attr; | |
0a7de745 | 193 | static lck_grp_attr_t *ntp_lock_grp_attr; |
5ba3f43e | 194 | |
0a7de745 A |
195 | #define NTP_LOCK(enable) \ |
196 | enable = ml_set_interrupts_enabled(FALSE); \ | |
197 | lck_spin_lock(ntp_lock); | |
5ba3f43e | 198 | |
0a7de745 A |
199 | #define NTP_UNLOCK(enable) \ |
200 | lck_spin_unlock(ntp_lock);\ | |
201 | ml_set_interrupts_enabled(enable); | |
5ba3f43e | 202 | |
0a7de745 | 203 | #define NTP_ASSERT_LOCKED() LCK_SPIN_ASSERT(ntp_lock, LCK_ASSERT_OWNED) |
5ba3f43e A |
204 | |
205 | static timer_call_data_t ntp_loop_update; | |
206 | static uint64_t ntp_loop_deadline; | |
207 | static uint32_t ntp_loop_active; | |
208 | static uint32_t ntp_loop_period; | |
209 | #define NTP_LOOP_PERIOD_INTERVAL (NSEC_PER_SEC) /*1 second interval*/ | |
210 | ||
211 | void ntp_init(void); | |
212 | static void hardupdate(long offset); | |
213 | static void ntp_gettime1(struct ntptimeval *ntvp); | |
214 | static bool ntp_is_time_error(int tsl); | |
215 | ||
216 | static void ntp_loop_update_call(void); | |
217 | static void refresh_ntp_loop(void); | |
218 | static void start_ntp_loop(void); | |
219 | ||
cc8bc92a A |
220 | #if DEVELOPMENT || DEBUG |
221 | uint32_t g_should_log_clock_adjustments = 0; | |
222 | SYSCTL_INT(_kern, OID_AUTO, log_clock_adjustments, CTLFLAG_RW | CTLFLAG_LOCKED, &g_should_log_clock_adjustments, 0, "enable kernel clock adjustment logging"); | |
223 | #endif | |
224 | ||
5ba3f43e A |
225 | static bool |
226 | ntp_is_time_error(int tsl) | |
227 | { | |
0a7de745 A |
228 | if (tsl & (STA_UNSYNC | STA_CLOCKERR)) { |
229 | return true; | |
230 | } | |
5ba3f43e | 231 | |
0a7de745 | 232 | return false; |
5ba3f43e A |
233 | } |
234 | ||
235 | static void | |
236 | ntp_gettime1(struct ntptimeval *ntvp) | |
237 | { | |
238 | struct timespec atv; | |
239 | ||
240 | NTP_ASSERT_LOCKED(); | |
241 | ||
242 | nanotime(&atv); | |
243 | ntvp->time.tv_sec = atv.tv_sec; | |
244 | ntvp->time.tv_nsec = atv.tv_nsec; | |
245 | if ((unsigned long)atv.tv_sec > last_time_maxerror_update) { | |
0a7de745 | 246 | time_maxerror += (MAXFREQ / 1000) * (atv.tv_sec - last_time_maxerror_update); |
5ba3f43e A |
247 | last_time_maxerror_update = atv.tv_sec; |
248 | } | |
249 | ntvp->maxerror = time_maxerror; | |
250 | ntvp->esterror = time_esterror; | |
251 | ntvp->tai = time_tai; | |
252 | ntvp->time_state = time_state; | |
253 | ||
0a7de745 | 254 | if (ntp_is_time_error(time_status)) { |
5ba3f43e | 255 | ntvp->time_state = TIME_ERROR; |
0a7de745 | 256 | } |
5ba3f43e A |
257 | } |
258 | ||
259 | int | |
260 | ntp_gettime(struct proc *p, struct ntp_gettime_args *uap, __unused int32_t *retval) | |
261 | { | |
262 | struct ntptimeval ntv; | |
263 | int error; | |
264 | boolean_t enable; | |
265 | ||
266 | NTP_LOCK(enable); | |
267 | ntp_gettime1(&ntv); | |
268 | NTP_UNLOCK(enable); | |
269 | ||
270 | if (IS_64BIT_PROCESS(p)) { | |
527f9951 | 271 | struct user64_ntptimeval user_ntv = {}; |
5ba3f43e A |
272 | user_ntv.time.tv_sec = ntv.time.tv_sec; |
273 | user_ntv.time.tv_nsec = ntv.time.tv_nsec; | |
274 | user_ntv.maxerror = ntv.maxerror; | |
275 | user_ntv.esterror = ntv.esterror; | |
276 | user_ntv.tai = ntv.tai; | |
277 | user_ntv.time_state = ntv.time_state; | |
278 | error = copyout(&user_ntv, uap->ntvp, sizeof(user_ntv)); | |
279 | } else { | |
527f9951 | 280 | struct user32_ntptimeval user_ntv = {}; |
5ba3f43e A |
281 | user_ntv.time.tv_sec = ntv.time.tv_sec; |
282 | user_ntv.time.tv_nsec = ntv.time.tv_nsec; | |
283 | user_ntv.maxerror = ntv.maxerror; | |
284 | user_ntv.esterror = ntv.esterror; | |
285 | user_ntv.tai = ntv.tai; | |
286 | user_ntv.time_state = ntv.time_state; | |
287 | error = copyout(&user_ntv, uap->ntvp, sizeof(user_ntv)); | |
288 | } | |
289 | ||
0a7de745 | 290 | if (error) { |
5ba3f43e | 291 | return error; |
0a7de745 | 292 | } |
5ba3f43e A |
293 | |
294 | return ntv.time_state; | |
295 | } | |
296 | ||
297 | int | |
d9a64523 | 298 | ntp_adjtime(struct proc *p, struct ntp_adjtime_args *uap, int32_t *retval) |
5ba3f43e | 299 | { |
d9a64523 | 300 | struct timex ntv = {}; |
5ba3f43e | 301 | long freq; |
d9a64523 | 302 | unsigned int modes; |
5ba3f43e A |
303 | int error, ret = 0; |
304 | clock_sec_t sec; | |
305 | clock_usec_t microsecs; | |
306 | boolean_t enable; | |
307 | ||
308 | if (IS_64BIT_PROCESS(p)) { | |
309 | struct user64_timex user_ntv; | |
310 | error = copyin(uap->tp, &user_ntv, sizeof(user_ntv)); | |
311 | ntv.modes = user_ntv.modes; | |
312 | ntv.offset = user_ntv.offset; | |
313 | ntv.freq = user_ntv.freq; | |
314 | ntv.maxerror = user_ntv.maxerror; | |
315 | ntv.esterror = user_ntv.esterror; | |
316 | ntv.status = user_ntv.status; | |
317 | ntv.constant = user_ntv.constant; | |
318 | ntv.precision = user_ntv.precision; | |
319 | ntv.tolerance = user_ntv.tolerance; | |
5ba3f43e A |
320 | } else { |
321 | struct user32_timex user_ntv; | |
322 | error = copyin(uap->tp, &user_ntv, sizeof(user_ntv)); | |
323 | ntv.modes = user_ntv.modes; | |
324 | ntv.offset = user_ntv.offset; | |
325 | ntv.freq = user_ntv.freq; | |
326 | ntv.maxerror = user_ntv.maxerror; | |
327 | ntv.esterror = user_ntv.esterror; | |
328 | ntv.status = user_ntv.status; | |
329 | ntv.constant = user_ntv.constant; | |
330 | ntv.precision = user_ntv.precision; | |
331 | ntv.tolerance = user_ntv.tolerance; | |
332 | } | |
0a7de745 A |
333 | if (error) { |
334 | return error; | |
335 | } | |
5ba3f43e | 336 | |
cb323159 | 337 | #if DEVELOPMENT || DEBUG |
cc8bc92a | 338 | if (g_should_log_clock_adjustments) { |
d9a64523 | 339 | os_log(OS_LOG_DEFAULT, "%s: BEFORE modes %u offset %ld freq %ld status %d constant %ld time_adjtime %lld\n", |
0a7de745 | 340 | __func__, ntv.modes, ntv.offset, ntv.freq, ntv.status, ntv.constant, time_adjtime); |
cc8bc92a A |
341 | } |
342 | #endif | |
5ba3f43e A |
343 | /* |
344 | * Update selected clock variables - only the superuser can | |
345 | * change anything. Note that there is no error checking here on | |
346 | * the assumption the superuser should know what it is doing. | |
347 | * Note that either the time constant or TAI offset are loaded | |
348 | * from the ntv.constant member, depending on the mode bits. If | |
349 | * the STA_PLL bit in the status word is cleared, the state and | |
350 | * status words are reset to the initial values at boot. | |
351 | */ | |
352 | modes = ntv.modes; | |
353 | if (modes) { | |
354 | /* Check that this task is entitled to set the time or it is root */ | |
355 | if (!IOTaskHasEntitlement(current_task(), SETTIME_ENTITLEMENT)) { | |
356 | #if CONFIG_MACF | |
357 | error = mac_system_check_settime(kauth_cred_get()); | |
0a7de745 A |
358 | if (error) { |
359 | return error; | |
360 | } | |
5ba3f43e | 361 | #endif |
0a7de745 A |
362 | if ((error = priv_check_cred(kauth_cred_get(), PRIV_ADJTIME, 0))) { |
363 | return error; | |
364 | } | |
5ba3f43e A |
365 | } |
366 | } | |
367 | ||
368 | NTP_LOCK(enable); | |
369 | ||
370 | if (modes & MOD_MAXERROR) { | |
371 | clock_gettimeofday(&sec, µsecs); | |
372 | time_maxerror = ntv.maxerror; | |
373 | last_time_maxerror_update = sec; | |
374 | } | |
0a7de745 | 375 | if (modes & MOD_ESTERROR) { |
5ba3f43e | 376 | time_esterror = ntv.esterror; |
0a7de745 | 377 | } |
5ba3f43e A |
378 | if (modes & MOD_STATUS) { |
379 | if (time_status & STA_PLL && !(ntv.status & STA_PLL)) { | |
380 | time_state = TIME_OK; | |
381 | time_status = STA_UNSYNC; | |
382 | } | |
383 | time_status &= STA_RONLY; | |
384 | time_status |= ntv.status & ~STA_RONLY; | |
385 | /* | |
386 | * Nor PPS or leaps seconds are supported. | |
387 | * Filter out unsupported bits. | |
388 | */ | |
389 | time_status &= STA_SUPPORTED; | |
390 | } | |
391 | if (modes & MOD_TIMECONST) { | |
0a7de745 | 392 | if (ntv.constant < 0) { |
5ba3f43e | 393 | time_constant = 0; |
0a7de745 | 394 | } else if (ntv.constant > MAXTC) { |
5ba3f43e | 395 | time_constant = MAXTC; |
0a7de745 | 396 | } else { |
5ba3f43e | 397 | time_constant = ntv.constant; |
0a7de745 | 398 | } |
5ba3f43e A |
399 | } |
400 | if (modes & MOD_TAI) { | |
0a7de745 | 401 | if (ntv.constant > 0) { |
5ba3f43e | 402 | time_tai = ntv.constant; |
0a7de745 | 403 | } |
5ba3f43e | 404 | } |
0a7de745 | 405 | if (modes & MOD_NANO) { |
5ba3f43e | 406 | time_status |= STA_NANO; |
0a7de745 A |
407 | } |
408 | if (modes & MOD_MICRO) { | |
5ba3f43e | 409 | time_status &= ~STA_NANO; |
0a7de745 A |
410 | } |
411 | if (modes & MOD_CLKB) { | |
5ba3f43e | 412 | time_status |= STA_CLK; |
0a7de745 A |
413 | } |
414 | if (modes & MOD_CLKA) { | |
5ba3f43e | 415 | time_status &= ~STA_CLK; |
0a7de745 | 416 | } |
5ba3f43e A |
417 | if (modes & MOD_FREQUENCY) { |
418 | freq = (ntv.freq * 1000LL) >> 16; | |
0a7de745 | 419 | if (freq > MAXFREQ) { |
5ba3f43e | 420 | L_LINT(time_freq, MAXFREQ); |
0a7de745 | 421 | } else if (freq < -MAXFREQ) { |
5ba3f43e | 422 | L_LINT(time_freq, -MAXFREQ); |
0a7de745 | 423 | } else { |
5ba3f43e A |
424 | /* |
425 | * ntv.freq is [PPM * 2^16] = [us/s * 2^16] | |
426 | * time_freq is [ns/s * 2^32] | |
427 | */ | |
428 | time_freq = ntv.freq * 1000LL * 65536LL; | |
429 | } | |
430 | } | |
431 | if (modes & MOD_OFFSET) { | |
0a7de745 | 432 | if (time_status & STA_NANO) { |
5ba3f43e | 433 | hardupdate(ntv.offset); |
0a7de745 | 434 | } else { |
5ba3f43e | 435 | hardupdate(ntv.offset * 1000); |
0a7de745 | 436 | } |
5ba3f43e A |
437 | } |
438 | ||
439 | ret = ntp_is_time_error(time_status) ? TIME_ERROR : time_state; | |
440 | ||
cb323159 | 441 | #if DEVELOPMENT || DEBUG |
cc8bc92a | 442 | if (g_should_log_clock_adjustments) { |
d9a64523 | 443 | os_log(OS_LOG_DEFAULT, "%s: AFTER modes %u offset %lld freq %lld status %d constant %ld time_adjtime %lld\n", |
0a7de745 | 444 | __func__, modes, time_offset, time_freq, time_status, time_constant, time_adjtime); |
cc8bc92a A |
445 | } |
446 | #endif | |
447 | ||
5ba3f43e A |
448 | /* |
449 | * Retrieve all clock variables. Note that the TAI offset is | |
450 | * returned only by ntp_gettime(); | |
451 | */ | |
452 | if (IS_64BIT_PROCESS(p)) { | |
527f9951 | 453 | struct user64_timex user_ntv = {}; |
5ba3f43e | 454 | |
d9a64523 | 455 | user_ntv.modes = modes; |
0a7de745 | 456 | if (time_status & STA_NANO) { |
5ba3f43e | 457 | user_ntv.offset = L_GINT(time_offset); |
0a7de745 | 458 | } else { |
5ba3f43e | 459 | user_ntv.offset = L_GINT(time_offset) / 1000; |
0a7de745 | 460 | } |
5ba3f43e A |
461 | user_ntv.freq = L_GINT((time_freq / 1000LL) << 16); |
462 | user_ntv.maxerror = time_maxerror; | |
463 | user_ntv.esterror = time_esterror; | |
464 | user_ntv.status = time_status; | |
465 | user_ntv.constant = time_constant; | |
0a7de745 | 466 | if (time_status & STA_NANO) { |
5ba3f43e | 467 | user_ntv.precision = time_precision; |
0a7de745 | 468 | } else { |
5ba3f43e | 469 | user_ntv.precision = time_precision / 1000; |
0a7de745 | 470 | } |
5ba3f43e A |
471 | user_ntv.tolerance = MAXFREQ * SCALE_PPM; |
472 | ||
473 | /* unlock before copyout */ | |
474 | NTP_UNLOCK(enable); | |
475 | ||
476 | error = copyout(&user_ntv, uap->tp, sizeof(user_ntv)); | |
0a7de745 | 477 | } else { |
527f9951 | 478 | struct user32_timex user_ntv = {}; |
5ba3f43e | 479 | |
d9a64523 | 480 | user_ntv.modes = modes; |
0a7de745 | 481 | if (time_status & STA_NANO) { |
5ba3f43e | 482 | user_ntv.offset = L_GINT(time_offset); |
0a7de745 | 483 | } else { |
5ba3f43e | 484 | user_ntv.offset = L_GINT(time_offset) / 1000; |
0a7de745 | 485 | } |
5ba3f43e A |
486 | user_ntv.freq = L_GINT((time_freq / 1000LL) << 16); |
487 | user_ntv.maxerror = time_maxerror; | |
488 | user_ntv.esterror = time_esterror; | |
489 | user_ntv.status = time_status; | |
490 | user_ntv.constant = time_constant; | |
0a7de745 | 491 | if (time_status & STA_NANO) { |
5ba3f43e | 492 | user_ntv.precision = time_precision; |
0a7de745 | 493 | } else { |
5ba3f43e | 494 | user_ntv.precision = time_precision / 1000; |
0a7de745 | 495 | } |
5ba3f43e A |
496 | user_ntv.tolerance = MAXFREQ * SCALE_PPM; |
497 | ||
498 | /* unlock before copyout */ | |
499 | NTP_UNLOCK(enable); | |
500 | ||
501 | error = copyout(&user_ntv, uap->tp, sizeof(user_ntv)); | |
502 | } | |
503 | ||
0a7de745 | 504 | if (modes) { |
5ba3f43e | 505 | start_ntp_loop(); |
0a7de745 | 506 | } |
5ba3f43e | 507 | |
0a7de745 | 508 | if (error == 0) { |
5ba3f43e | 509 | *retval = ret; |
0a7de745 | 510 | } |
5ba3f43e | 511 | |
0a7de745 | 512 | return error; |
5ba3f43e A |
513 | } |
514 | ||
515 | int64_t | |
0a7de745 A |
516 | ntp_get_freq(void) |
517 | { | |
5ba3f43e A |
518 | return time_freq; |
519 | } | |
520 | ||
521 | /* | |
522 | * Compute the adjustment to add to the next second. | |
523 | */ | |
524 | void | |
525 | ntp_update_second(int64_t *adjustment, clock_sec_t secs) | |
526 | { | |
527 | int tickrate; | |
528 | l_fp time_adj; | |
529 | l_fp ftemp, old_time_adjtime, old_offset; | |
530 | ||
531 | NTP_ASSERT_LOCKED(); | |
532 | ||
533 | if (secs > last_time_maxerror_update) { | |
0a7de745 | 534 | time_maxerror += (MAXFREQ / 1000) * (secs - last_time_maxerror_update); |
5ba3f43e A |
535 | last_time_maxerror_update = secs; |
536 | } | |
537 | ||
538 | old_offset = time_offset; | |
539 | old_time_adjtime = time_adjtime; | |
540 | ||
541 | ftemp = time_offset; | |
542 | L_RSHIFT(ftemp, SHIFT_PLL + time_constant); | |
543 | time_adj = ftemp; | |
544 | L_SUB(time_offset, ftemp); | |
545 | L_ADD(time_adj, time_freq); | |
546 | ||
547 | /* | |
548 | * Apply any correction from adjtime. If more than one second | |
549 | * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM) | |
550 | * until the last second is slewed the final < 500 usecs. | |
551 | */ | |
552 | if (time_adjtime != 0) { | |
0a7de745 | 553 | if (time_adjtime > 1000000) { |
5ba3f43e | 554 | tickrate = 5000; |
0a7de745 | 555 | } else if (time_adjtime < -1000000) { |
5ba3f43e | 556 | tickrate = -5000; |
0a7de745 | 557 | } else if (time_adjtime > 500) { |
5ba3f43e | 558 | tickrate = 500; |
0a7de745 | 559 | } else if (time_adjtime < -500) { |
5ba3f43e | 560 | tickrate = -500; |
0a7de745 | 561 | } else { |
5ba3f43e | 562 | tickrate = time_adjtime; |
0a7de745 | 563 | } |
5ba3f43e A |
564 | time_adjtime -= tickrate; |
565 | L_LINT(ftemp, tickrate * 1000); | |
566 | L_ADD(time_adj, ftemp); | |
567 | } | |
568 | ||
569 | if (old_time_adjtime || ((time_offset || old_offset) && (time_offset != old_offset))) { | |
570 | updated = 1; | |
0a7de745 | 571 | } else { |
5ba3f43e A |
572 | updated = 0; |
573 | } | |
574 | ||
cb323159 | 575 | #if DEVELOPMENT || DEBUG |
cc8bc92a | 576 | if (g_should_log_clock_adjustments) { |
0a7de745 A |
577 | int64_t nano = (time_adj > 0)? time_adj >> 32 : -((-time_adj) >> 32); |
578 | int64_t frac = (time_adj > 0)? ((uint32_t) time_adj) : -((uint32_t) (-time_adj)); | |
cc8bc92a A |
579 | |
580 | os_log(OS_LOG_DEFAULT, "%s:AFTER offset %lld (%lld) freq %lld status %d " | |
0a7de745 A |
581 | "constant %ld time_adjtime %lld nano %lld frac %lld adj %lld\n", |
582 | __func__, time_offset, (time_offset > 0)? time_offset >> 32 : -((-time_offset) >> 32), | |
583 | time_freq, time_status, time_constant, time_adjtime, nano, frac, time_adj); | |
cc8bc92a A |
584 | } |
585 | #endif | |
586 | ||
5ba3f43e A |
587 | *adjustment = time_adj; |
588 | } | |
589 | ||
590 | /* | |
591 | * hardupdate() - local clock update | |
592 | * | |
593 | * This routine is called by ntp_adjtime() when an offset is provided | |
594 | * to update the local clock phase and frequency. | |
595 | * The implementation is of an adaptive-parameter, hybrid | |
596 | * phase/frequency-lock loop (PLL/FLL). The routine computes new | |
597 | * time and frequency offset estimates for each call. | |
598 | * Presumably, calls to ntp_adjtime() occur only when the caller | |
599 | * believes the local clock is valid within some bound (+-128 ms with | |
600 | * NTP). | |
601 | * | |
602 | * For uncompensated quartz crystal oscillators and nominal update | |
603 | * intervals less than 256 s, operation should be in phase-lock mode, | |
604 | * where the loop is disciplined to phase. For update intervals greater | |
605 | * than 1024 s, operation should be in frequency-lock mode, where the | |
606 | * loop is disciplined to frequency. Between 256 s and 1024 s, the mode | |
607 | * is selected by the STA_MODE status bit. | |
608 | */ | |
609 | static void | |
610 | hardupdate(offset) | |
0a7de745 | 611 | long offset; |
5ba3f43e A |
612 | { |
613 | long mtemp = 0; | |
614 | long time_monitor; | |
615 | clock_sec_t time_uptime; | |
616 | l_fp ftemp; | |
617 | ||
618 | NTP_ASSERT_LOCKED(); | |
619 | ||
0a7de745 | 620 | if (!(time_status & STA_PLL)) { |
5ba3f43e | 621 | return; |
0a7de745 | 622 | } |
5ba3f43e | 623 | |
0a7de745 | 624 | if (offset > MAXPHASE) { |
5ba3f43e | 625 | time_monitor = MAXPHASE; |
0a7de745 | 626 | } else if (offset < -MAXPHASE) { |
5ba3f43e | 627 | time_monitor = -MAXPHASE; |
0a7de745 | 628 | } else { |
5ba3f43e | 629 | time_monitor = offset; |
0a7de745 | 630 | } |
5ba3f43e A |
631 | L_LINT(time_offset, time_monitor); |
632 | ||
633 | clock_get_calendar_uptime(&time_uptime); | |
634 | ||
635 | if (time_status & STA_FREQHOLD || time_reftime == 0) { | |
636 | time_reftime = time_uptime; | |
637 | } | |
638 | ||
639 | mtemp = time_uptime - time_reftime; | |
640 | L_LINT(ftemp, time_monitor); | |
641 | L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1); | |
642 | L_MPY(ftemp, mtemp); | |
643 | L_ADD(time_freq, ftemp); | |
644 | time_status &= ~STA_MODE; | |
645 | if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > | |
646 | MAXSEC)) { | |
647 | L_LINT(ftemp, (time_monitor << 4) / mtemp); | |
648 | L_RSHIFT(ftemp, SHIFT_FLL + 4); | |
649 | L_ADD(time_freq, ftemp); | |
650 | time_status |= STA_MODE; | |
651 | } | |
652 | time_reftime = time_uptime; | |
653 | ||
0a7de745 | 654 | if (L_GINT(time_freq) > MAXFREQ) { |
5ba3f43e | 655 | L_LINT(time_freq, MAXFREQ); |
0a7de745 | 656 | } else if (L_GINT(time_freq) < -MAXFREQ) { |
5ba3f43e | 657 | L_LINT(time_freq, -MAXFREQ); |
0a7de745 | 658 | } |
5ba3f43e A |
659 | } |
660 | ||
661 | ||
662 | static int | |
663 | kern_adjtime(struct timeval *delta) | |
664 | { | |
665 | struct timeval atv; | |
666 | int64_t ltr, ltw; | |
667 | boolean_t enable; | |
668 | ||
0a7de745 A |
669 | if (delta == NULL) { |
670 | return EINVAL; | |
671 | } | |
5ba3f43e A |
672 | |
673 | ltw = (int64_t)delta->tv_sec * (int64_t)USEC_PER_SEC + delta->tv_usec; | |
674 | ||
675 | NTP_LOCK(enable); | |
676 | ltr = time_adjtime; | |
677 | time_adjtime = ltw; | |
cb323159 | 678 | #if DEVELOPMENT || DEBUG |
cc8bc92a A |
679 | if (g_should_log_clock_adjustments) { |
680 | os_log(OS_LOG_DEFAULT, "%s:AFTER offset %lld freq %lld status %d constant %ld time_adjtime %lld\n", | |
0a7de745 | 681 | __func__, time_offset, time_freq, time_status, time_constant, time_adjtime); |
cc8bc92a A |
682 | } |
683 | #endif | |
5ba3f43e A |
684 | NTP_UNLOCK(enable); |
685 | ||
686 | atv.tv_sec = ltr / (int64_t)USEC_PER_SEC; | |
687 | atv.tv_usec = ltr % (int64_t)USEC_PER_SEC; | |
688 | if (atv.tv_usec < 0) { | |
689 | atv.tv_usec += (suseconds_t)USEC_PER_SEC; | |
690 | atv.tv_sec--; | |
691 | } | |
692 | ||
693 | *delta = atv; | |
694 | ||
695 | start_ntp_loop(); | |
696 | ||
0a7de745 | 697 | return 0; |
5ba3f43e A |
698 | } |
699 | ||
700 | int | |
701 | adjtime(struct proc *p, struct adjtime_args *uap, __unused int32_t *retval) | |
702 | { | |
5ba3f43e A |
703 | struct timeval atv; |
704 | int error; | |
705 | ||
706 | /* Check that this task is entitled to set the time or it is root */ | |
707 | if (!IOTaskHasEntitlement(current_task(), SETTIME_ENTITLEMENT)) { | |
5ba3f43e A |
708 | #if CONFIG_MACF |
709 | error = mac_system_check_settime(kauth_cred_get()); | |
0a7de745 A |
710 | if (error) { |
711 | return error; | |
712 | } | |
5ba3f43e | 713 | #endif |
0a7de745 A |
714 | if ((error = priv_check_cred(kauth_cred_get(), PRIV_ADJTIME, 0))) { |
715 | return error; | |
716 | } | |
5ba3f43e A |
717 | } |
718 | ||
719 | if (IS_64BIT_PROCESS(p)) { | |
720 | struct user64_timeval user_atv; | |
721 | error = copyin(uap->delta, &user_atv, sizeof(user_atv)); | |
722 | atv.tv_sec = user_atv.tv_sec; | |
723 | atv.tv_usec = user_atv.tv_usec; | |
724 | } else { | |
725 | struct user32_timeval user_atv; | |
726 | error = copyin(uap->delta, &user_atv, sizeof(user_atv)); | |
727 | atv.tv_sec = user_atv.tv_sec; | |
728 | atv.tv_usec = user_atv.tv_usec; | |
729 | } | |
0a7de745 A |
730 | if (error) { |
731 | return error; | |
732 | } | |
5ba3f43e A |
733 | |
734 | kern_adjtime(&atv); | |
735 | ||
736 | if (uap->olddelta) { | |
737 | if (IS_64BIT_PROCESS(p)) { | |
527f9951 | 738 | struct user64_timeval user_atv = {}; |
5ba3f43e A |
739 | user_atv.tv_sec = atv.tv_sec; |
740 | user_atv.tv_usec = atv.tv_usec; | |
741 | error = copyout(&user_atv, uap->olddelta, sizeof(user_atv)); | |
742 | } else { | |
527f9951 | 743 | struct user32_timeval user_atv = {}; |
5ba3f43e A |
744 | user_atv.tv_sec = atv.tv_sec; |
745 | user_atv.tv_usec = atv.tv_usec; | |
746 | error = copyout(&user_atv, uap->olddelta, sizeof(user_atv)); | |
747 | } | |
748 | } | |
749 | ||
0a7de745 | 750 | return error; |
5ba3f43e A |
751 | } |
752 | ||
753 | static void | |
754 | ntp_loop_update_call(void) | |
755 | { | |
756 | boolean_t enable; | |
757 | ||
758 | NTP_LOCK(enable); | |
759 | ||
760 | /* | |
761 | * Update the scale factor used by clock_calend. | |
762 | * NOTE: clock_update_calendar will call ntp_update_second to compute the next adjustment. | |
763 | */ | |
764 | clock_update_calendar(); | |
765 | ||
766 | refresh_ntp_loop(); | |
767 | ||
768 | NTP_UNLOCK(enable); | |
769 | } | |
770 | ||
771 | static void | |
772 | refresh_ntp_loop(void) | |
773 | { | |
5ba3f43e A |
774 | NTP_ASSERT_LOCKED(); |
775 | if (--ntp_loop_active == 0) { | |
776 | /* | |
777 | * Activate the timer only if the next second adjustment might change. | |
778 | * ntp_update_second checks it and sets updated accordingly. | |
779 | */ | |
780 | if (updated) { | |
781 | clock_deadline_for_periodic_event(ntp_loop_period, mach_absolute_time(), &ntp_loop_deadline); | |
782 | ||
0a7de745 A |
783 | if (!timer_call_enter(&ntp_loop_update, ntp_loop_deadline, TIMER_CALL_SYS_CRITICAL)) { |
784 | ntp_loop_active++; | |
785 | } | |
5ba3f43e A |
786 | } |
787 | } | |
5ba3f43e A |
788 | } |
789 | ||
790 | /* | |
791 | * This function triggers a timer that each second will calculate the adjustment to | |
792 | * provide to clock_calendar to scale the time (used by gettimeofday-family syscalls). | |
793 | * The periodic timer will stop when the adjustment will reach a stable value. | |
794 | */ | |
795 | static void | |
796 | start_ntp_loop(void) | |
797 | { | |
798 | boolean_t enable; | |
799 | ||
800 | NTP_LOCK(enable); | |
801 | ||
802 | ntp_loop_deadline = mach_absolute_time() + ntp_loop_period; | |
803 | ||
804 | if (!timer_call_enter(&ntp_loop_update, ntp_loop_deadline, TIMER_CALL_SYS_CRITICAL)) { | |
0a7de745 | 805 | ntp_loop_active++; |
5ba3f43e A |
806 | } |
807 | ||
808 | NTP_UNLOCK(enable); | |
809 | } | |
810 | ||
811 | ||
812 | static void | |
813 | init_ntp_loop(void) | |
814 | { | |
0a7de745 | 815 | uint64_t abstime; |
5ba3f43e A |
816 | |
817 | ntp_loop_active = 0; | |
818 | nanoseconds_to_absolutetime(NTP_LOOP_PERIOD_INTERVAL, &abstime); | |
819 | ntp_loop_period = (uint32_t)abstime; | |
820 | timer_call_setup(&ntp_loop_update, (timer_call_func_t)ntp_loop_update_call, NULL); | |
821 | } | |
822 | ||
823 | void | |
824 | ntp_init(void) | |
825 | { | |
5ba3f43e A |
826 | L_CLR(time_offset); |
827 | L_CLR(time_freq); | |
828 | ||
829 | ntp_lock_grp_attr = lck_grp_attr_alloc_init(); | |
830 | ntp_lock_grp = lck_grp_alloc_init("ntp_lock", ntp_lock_grp_attr); | |
831 | ntp_lock_attr = lck_attr_alloc_init(); | |
832 | ntp_lock = lck_spin_alloc_init(ntp_lock_grp, ntp_lock_attr); | |
833 | ||
834 | updated = 0; | |
835 | ||
836 | init_ntp_loop(); | |
837 | } | |
838 | ||
839 | SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL); |