]>
Commit | Line | Data |
---|---|---|
b0d623f7 A |
1 | /* |
2 | * Copyright (c) 2008 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | #include <string.h> | |
29 | #include <mach-o/loader.h> | |
30 | #include <sys/types.h> | |
31 | ||
6d2010ae A |
32 | #if KERNEL |
33 | #ifdef MACH_ASSERT | |
34 | #undef MACH_ASSERT | |
35 | #endif | |
36 | #define MACH_ASSERT 1 | |
37 | #include <kern/assert.h> | |
38 | #else | |
39 | #include <assert.h> | |
40 | #endif | |
41 | ||
b0d623f7 A |
42 | #define DEBUG_ASSERT_COMPONENT_NAME_STRING "kxld" |
43 | #include <AssertMacros.h> | |
44 | ||
b7266188 | 45 | #include "kxld_demangle.h" |
6d2010ae A |
46 | #include "kxld_dict.h" |
47 | #include "kxld_object.h" | |
b0d623f7 A |
48 | #include "kxld_reloc.h" |
49 | #include "kxld_sect.h" | |
b0d623f7 A |
50 | #include "kxld_sym.h" |
51 | #include "kxld_symtab.h" | |
52 | #include "kxld_util.h" | |
53 | #include "kxld_vtable.h" | |
54 | ||
55 | #define VTABLE_ENTRY_SIZE_32 4 | |
56 | #define VTABLE_HEADER_LEN_32 2 | |
57 | #define VTABLE_HEADER_SIZE_32 (VTABLE_HEADER_LEN_32 * VTABLE_ENTRY_SIZE_32) | |
58 | ||
59 | #define VTABLE_ENTRY_SIZE_64 8 | |
60 | #define VTABLE_HEADER_LEN_64 2 | |
61 | #define VTABLE_HEADER_SIZE_64 (VTABLE_HEADER_LEN_64 * VTABLE_ENTRY_SIZE_64) | |
62 | ||
6d2010ae A |
63 | static void get_vtable_base_sizes(boolean_t is_32_bit, u_int *vtable_entry_size, |
64 | u_int *vtable_header_size); | |
b0d623f7 | 65 | |
6d2010ae A |
66 | static kern_return_t init_by_relocs(KXLDVTable *vtable, const KXLDSym *vtable_sym, |
67 | const KXLDSect *sect, const KXLDRelocator *relocator); | |
b0d623f7 | 68 | |
6d2010ae A |
69 | static kern_return_t init_by_entries_and_relocs(KXLDVTable *vtable, |
70 | const KXLDSym *vtable_sym, const KXLDRelocator *relocator, | |
71 | const KXLDArray *relocs, const KXLDDict *defined_cxx_symbols); | |
b0d623f7 | 72 | |
6d2010ae A |
73 | static kern_return_t init_by_entries(KXLDVTable *vtable, |
74 | const KXLDRelocator *relocator, const KXLDDict *defined_cxx_symbols); | |
b0d623f7 A |
75 | |
76 | /******************************************************************************* | |
77 | *******************************************************************************/ | |
6d2010ae A |
78 | kern_return_t |
79 | kxld_vtable_init(KXLDVTable *vtable, const KXLDSym *vtable_sym, | |
80 | const KXLDObject *object, const KXLDDict *defined_cxx_symbols) | |
b0d623f7 A |
81 | { |
82 | kern_return_t rval = KERN_FAILURE; | |
6d2010ae A |
83 | const KXLDArray *extrelocs = NULL; |
84 | const KXLDRelocator *relocator = NULL; | |
85 | const KXLDSect *vtable_sect = NULL; | |
b7266188 A |
86 | char *demangled_name = NULL; |
87 | size_t demangled_length = 0; | |
b0d623f7 A |
88 | |
89 | check(vtable); | |
6d2010ae A |
90 | check(vtable_sym); |
91 | check(object); | |
b0d623f7 | 92 | |
6d2010ae | 93 | relocator = kxld_object_get_relocator(object); |
b0d623f7 | 94 | |
6d2010ae A |
95 | vtable_sect = kxld_object_get_section_by_index(object, |
96 | vtable_sym->sectnum); | |
97 | require_action(vtable_sect, finish, rval=KERN_FAILURE); | |
b0d623f7 | 98 | |
6d2010ae A |
99 | vtable->name = vtable_sym->name; |
100 | vtable->vtable = vtable_sect->data + | |
101 | kxld_sym_get_section_offset(vtable_sym, vtable_sect); | |
b0d623f7 | 102 | |
6d2010ae A |
103 | if (kxld_object_is_linked(object)) { |
104 | rval = init_by_entries(vtable, relocator, defined_cxx_symbols); | |
105 | require_noerr(rval, finish); | |
b0d623f7 | 106 | |
6d2010ae A |
107 | vtable->is_patched = TRUE; |
108 | } else { | |
109 | if (kxld_object_is_final_image(object)) { | |
110 | extrelocs = kxld_object_get_extrelocs(object); | |
111 | require_action(extrelocs, finish, | |
112 | rval=KERN_FAILURE; | |
113 | kxld_log(kKxldLogPatching, kKxldLogErr, | |
114 | kKxldLogMalformedVTable, | |
115 | kxld_demangle(vtable->name, | |
116 | &demangled_name, &demangled_length))); | |
b0d623f7 | 117 | |
6d2010ae A |
118 | rval = init_by_entries_and_relocs(vtable, vtable_sym, |
119 | relocator, extrelocs, defined_cxx_symbols); | |
120 | require_noerr(rval, finish); | |
121 | } else { | |
122 | require_action(kxld_sect_get_num_relocs(vtable_sect) > 0, finish, | |
123 | rval=KERN_FAILURE; | |
124 | kxld_log(kKxldLogPatching, kKxldLogErr, | |
125 | kKxldLogMalformedVTable, | |
126 | kxld_demangle(vtable->name, | |
127 | &demangled_name, &demangled_length))); | |
b0d623f7 | 128 | |
6d2010ae A |
129 | rval = init_by_relocs(vtable, vtable_sym, vtable_sect, relocator); |
130 | require_noerr(rval, finish); | |
131 | } | |
132 | ||
133 | vtable->is_patched = FALSE; | |
134 | } | |
b0d623f7 A |
135 | |
136 | rval = KERN_SUCCESS; | |
b0d623f7 | 137 | finish: |
b7266188 | 138 | if (demangled_name) kxld_free(demangled_name, demangled_length); |
b0d623f7 A |
139 | |
140 | return rval; | |
141 | } | |
142 | ||
b0d623f7 A |
143 | /******************************************************************************* |
144 | *******************************************************************************/ | |
6d2010ae A |
145 | static void |
146 | get_vtable_base_sizes(boolean_t is_32_bit, u_int *vtable_entry_size, | |
147 | u_int *vtable_header_size) | |
b0d623f7 | 148 | { |
6d2010ae A |
149 | check(vtable_entry_size); |
150 | check(vtable_header_size); | |
b0d623f7 | 151 | |
6d2010ae A |
152 | if (is_32_bit) { |
153 | *vtable_entry_size = VTABLE_ENTRY_SIZE_32; | |
154 | *vtable_header_size = VTABLE_HEADER_SIZE_32; | |
155 | } else { | |
156 | *vtable_entry_size = VTABLE_ENTRY_SIZE_64; | |
157 | *vtable_header_size = VTABLE_HEADER_SIZE_64; | |
b0d623f7 | 158 | } |
b0d623f7 A |
159 | } |
160 | ||
161 | /******************************************************************************* | |
162 | * Initializes a vtable object by matching up relocation entries to the vtable's | |
163 | * entries and finding the corresponding symbols. | |
164 | *******************************************************************************/ | |
165 | static kern_return_t | |
6d2010ae A |
166 | init_by_relocs(KXLDVTable *vtable, const KXLDSym *vtable_sym, |
167 | const KXLDSect *sect, const KXLDRelocator *relocator) | |
b0d623f7 A |
168 | { |
169 | kern_return_t rval = KERN_FAILURE; | |
170 | KXLDReloc *reloc = NULL; | |
171 | KXLDVTableEntry *entry = NULL; | |
6d2010ae | 172 | KXLDSym *sym = NULL; |
b0d623f7 A |
173 | kxld_addr_t vtable_base_offset = 0; |
174 | kxld_addr_t entry_offset = 0; | |
175 | u_int i = 0; | |
176 | u_int nentries = 0; | |
177 | u_int vtable_entry_size = 0; | |
6d2010ae | 178 | u_int vtable_header_size = 0; |
b0d623f7 A |
179 | u_int base_reloc_index = 0; |
180 | u_int reloc_index = 0; | |
181 | ||
182 | check(vtable); | |
6d2010ae | 183 | check(vtable_sym); |
b0d623f7 | 184 | check(sect); |
b0d623f7 A |
185 | check(relocator); |
186 | ||
187 | /* Find the first entry past the vtable padding */ | |
188 | ||
6d2010ae A |
189 | (void) get_vtable_base_sizes(relocator->is_32_bit, |
190 | &vtable_entry_size, &vtable_header_size); | |
b0d623f7 | 191 | |
6d2010ae A |
192 | vtable_base_offset = kxld_sym_get_section_offset(vtable_sym, sect) + |
193 | vtable_header_size; | |
194 | ||
b0d623f7 A |
195 | /* Find the relocation entry at the start of the vtable */ |
196 | ||
197 | rval = kxld_reloc_get_reloc_index_by_offset(§->relocs, | |
198 | vtable_base_offset, &base_reloc_index); | |
199 | require_noerr(rval, finish); | |
200 | ||
201 | /* Count the number of consecutive relocation entries to find the number of | |
202 | * vtable entries. For some reason, the __TEXT,__const relocations are | |
203 | * sorted in descending order, so we have to walk backwards. Also, make | |
204 | * sure we don't run off the end of the section's relocs. | |
205 | */ | |
206 | ||
207 | reloc_index = base_reloc_index; | |
208 | entry_offset = vtable_base_offset; | |
209 | reloc = kxld_array_get_item(§->relocs, reloc_index); | |
210 | while (reloc->address == entry_offset) { | |
211 | ++nentries; | |
212 | if (!reloc_index) break; | |
213 | ||
214 | --reloc_index; | |
215 | ||
216 | reloc = kxld_array_get_item(§->relocs, reloc_index); | |
217 | entry_offset += vtable_entry_size; | |
218 | } | |
219 | ||
220 | /* Allocate the symbol index */ | |
221 | ||
222 | rval = kxld_array_init(&vtable->entries, sizeof(KXLDVTableEntry), nentries); | |
223 | require_noerr(rval, finish); | |
224 | ||
225 | /* Find the symbols for each vtable entry */ | |
226 | ||
227 | for (i = 0; i < vtable->entries.nitems; ++i) { | |
228 | reloc = kxld_array_get_item(§->relocs, base_reloc_index - i); | |
229 | entry = kxld_array_get_item(&vtable->entries, i); | |
230 | ||
231 | /* If we can't find a symbol, it means it is a locally-defined, | |
232 | * non-external symbol that has been stripped. We don't patch over | |
233 | * locally-defined symbols, so we leave the symbol as NULL and just | |
234 | * skip it. We won't be able to patch subclasses with this symbol, | |
235 | * but there isn't much we can do about that. | |
236 | */ | |
6d2010ae | 237 | sym = kxld_reloc_get_symbol(relocator, reloc, sect->data); |
b0d623f7 | 238 | |
6d2010ae | 239 | entry->unpatched.sym = sym; |
b0d623f7 A |
240 | entry->unpatched.reloc = reloc; |
241 | } | |
242 | ||
243 | rval = KERN_SUCCESS; | |
244 | finish: | |
245 | return rval; | |
246 | } | |
247 | ||
b0d623f7 A |
248 | /******************************************************************************* |
249 | * Initializes a vtable object by reading the symbol values out of the vtable | |
250 | * entries and performing reverse symbol lookups on those values. | |
251 | *******************************************************************************/ | |
252 | static kern_return_t | |
6d2010ae A |
253 | init_by_entries(KXLDVTable *vtable, const KXLDRelocator *relocator, |
254 | const KXLDDict *defined_cxx_symbols) | |
b0d623f7 A |
255 | { |
256 | kern_return_t rval = KERN_FAILURE; | |
257 | KXLDVTableEntry *tmpentry = NULL; | |
258 | KXLDSym *sym = NULL; | |
b0d623f7 | 259 | kxld_addr_t entry_value = 0; |
6d2010ae | 260 | u_long entry_offset; |
b0d623f7 A |
261 | u_int vtable_entry_size = 0; |
262 | u_int vtable_header_size = 0; | |
263 | u_int nentries = 0; | |
264 | u_int i = 0; | |
265 | ||
6d2010ae A |
266 | check(vtable); |
267 | check(relocator); | |
b0d623f7 | 268 | |
6d2010ae A |
269 | (void) get_vtable_base_sizes(relocator->is_32_bit, |
270 | &vtable_entry_size, &vtable_header_size); | |
b0d623f7 A |
271 | |
272 | /* Count the number of entries (the vtable is null-terminated) */ | |
273 | ||
6d2010ae A |
274 | entry_offset = vtable_header_size; |
275 | while (1) { | |
276 | entry_value = kxld_relocator_get_pointer_at_addr(relocator, | |
277 | vtable->vtable, entry_offset); | |
278 | if (!entry_value) break; | |
279 | ||
280 | entry_offset += vtable_entry_size; | |
b0d623f7 | 281 | ++nentries; |
b0d623f7 | 282 | } |
6d2010ae | 283 | |
b0d623f7 A |
284 | /* Allocate the symbol index */ |
285 | ||
286 | rval = kxld_array_init(&vtable->entries, sizeof(KXLDVTableEntry), nentries); | |
287 | require_noerr(rval, finish); | |
288 | ||
289 | /* Look up the symbols for each entry */ | |
290 | ||
6d2010ae A |
291 | for (i = 0, entry_offset = vtable_header_size; |
292 | i < vtable->entries.nitems; | |
293 | ++i, entry_offset += vtable_entry_size) | |
294 | { | |
295 | entry_value = kxld_relocator_get_pointer_at_addr(relocator, | |
296 | vtable->vtable, entry_offset); | |
b0d623f7 | 297 | |
b0d623f7 A |
298 | /* If we can't find the symbol, it means that the virtual function was |
299 | * defined inline. There's not much I can do about this; it just means | |
300 | * I can't patch this function. | |
301 | */ | |
302 | tmpentry = kxld_array_get_item(&vtable->entries, i); | |
6d2010ae | 303 | sym = kxld_dict_find(defined_cxx_symbols, &entry_value); |
b0d623f7 A |
304 | |
305 | if (sym) { | |
306 | tmpentry->patched.name = sym->name; | |
307 | tmpentry->patched.addr = sym->link_addr; | |
308 | } else { | |
309 | tmpentry->patched.name = NULL; | |
310 | tmpentry->patched.addr = 0; | |
311 | } | |
312 | } | |
313 | ||
314 | rval = KERN_SUCCESS; | |
b0d623f7 A |
315 | finish: |
316 | return rval; | |
317 | } | |
318 | ||
319 | /******************************************************************************* | |
320 | * Initializes vtables by performing a reverse lookup on symbol values when | |
321 | * they exist in the vtable entry, and by looking through a matching relocation | |
322 | * entry when the vtable entry is NULL. | |
323 | * | |
324 | * Final linked images require this hybrid vtable initialization approach | |
325 | * because they are already internally resolved. This means that the vtables | |
326 | * contain valid entries to local symbols, but still have relocation entries for | |
327 | * external symbols. | |
328 | *******************************************************************************/ | |
329 | static kern_return_t | |
6d2010ae A |
330 | init_by_entries_and_relocs(KXLDVTable *vtable, const KXLDSym *vtable_sym, |
331 | const KXLDRelocator *relocator, const KXLDArray *relocs, | |
332 | const KXLDDict *defined_cxx_symbols) | |
b0d623f7 A |
333 | { |
334 | kern_return_t rval = KERN_FAILURE; | |
335 | KXLDReloc *reloc = NULL; | |
336 | KXLDVTableEntry *tmpentry = NULL; | |
6d2010ae | 337 | KXLDSym *sym = NULL; |
b0d623f7 A |
338 | u_int vtable_entry_size = 0; |
339 | u_int vtable_header_size = 0; | |
b0d623f7 | 340 | kxld_addr_t entry_value = 0; |
6d2010ae | 341 | u_long entry_offset = 0; |
b0d623f7 A |
342 | u_int nentries = 0; |
343 | u_int i = 0; | |
b7266188 A |
344 | char *demangled_name1 = NULL; |
345 | size_t demangled_length1 = 0; | |
b0d623f7 A |
346 | |
347 | check(vtable); | |
6d2010ae A |
348 | check(vtable_sym); |
349 | check(relocator); | |
b0d623f7 A |
350 | check(relocs); |
351 | ||
352 | /* Find the first entry and its offset past the vtable padding */ | |
353 | ||
6d2010ae A |
354 | (void) get_vtable_base_sizes(relocator->is_32_bit, |
355 | &vtable_entry_size, &vtable_header_size); | |
b0d623f7 A |
356 | |
357 | /* In a final linked image, a vtable slot is valid if it is nonzero | |
6d2010ae | 358 | * (meaning the userspace linker has already resolved it) or if it has |
b0d623f7 A |
359 | * a relocation entry. We'll know the end of the vtable when we find a |
360 | * slot that meets neither of these conditions. | |
361 | */ | |
6d2010ae | 362 | entry_offset = vtable_header_size; |
b0d623f7 | 363 | while (1) { |
6d2010ae A |
364 | entry_value = kxld_relocator_get_pointer_at_addr(relocator, |
365 | vtable->vtable, entry_offset); | |
b0d623f7 | 366 | if (!entry_value) { |
6d2010ae A |
367 | reloc = kxld_reloc_get_reloc_by_offset(relocs, |
368 | vtable_sym->base_addr + entry_offset); | |
b0d623f7 A |
369 | if (!reloc) break; |
370 | } | |
371 | ||
372 | ++nentries; | |
b0d623f7 A |
373 | entry_offset += vtable_entry_size; |
374 | } | |
375 | ||
376 | /* Allocate the symbol index */ | |
377 | ||
378 | rval = kxld_array_init(&vtable->entries, sizeof(KXLDVTableEntry), nentries); | |
379 | require_noerr(rval, finish); | |
380 | ||
381 | /* Find the symbols for each vtable entry */ | |
382 | ||
6d2010ae A |
383 | for (i = 0, entry_offset = vtable_header_size; |
384 | i < vtable->entries.nitems; | |
385 | ++i, entry_offset += vtable_entry_size) | |
386 | { | |
387 | entry_value = kxld_relocator_get_pointer_at_addr(relocator, | |
388 | vtable->vtable, entry_offset); | |
b0d623f7 A |
389 | |
390 | /* If we can't find a symbol, it means it is a locally-defined, | |
391 | * non-external symbol that has been stripped. We don't patch over | |
392 | * locally-defined symbols, so we leave the symbol as NULL and just | |
393 | * skip it. We won't be able to patch subclasses with this symbol, | |
394 | * but there isn't much we can do about that. | |
395 | */ | |
396 | if (entry_value) { | |
b0d623f7 | 397 | reloc = NULL; |
6d2010ae | 398 | sym = kxld_dict_find(defined_cxx_symbols, &entry_value); |
b0d623f7 | 399 | } else { |
6d2010ae A |
400 | reloc = kxld_reloc_get_reloc_by_offset(relocs, |
401 | vtable_sym->base_addr + entry_offset); | |
b0d623f7 A |
402 | require_action(reloc, finish, |
403 | rval=KERN_FAILURE; | |
404 | kxld_log(kKxldLogPatching, kKxldLogErr, | |
b7266188 A |
405 | kKxldLogMalformedVTable, |
406 | kxld_demangle(vtable->name, &demangled_name1, | |
407 | &demangled_length1))); | |
b0d623f7 | 408 | |
6d2010ae | 409 | sym = kxld_reloc_get_symbol(relocator, reloc, /* data */ NULL); |
b0d623f7 | 410 | } |
6d2010ae | 411 | |
b0d623f7 A |
412 | tmpentry = kxld_array_get_item(&vtable->entries, i); |
413 | tmpentry->unpatched.reloc = reloc; | |
6d2010ae | 414 | tmpentry->unpatched.sym = sym; |
b0d623f7 A |
415 | } |
416 | ||
417 | rval = KERN_SUCCESS; | |
b0d623f7 A |
418 | finish: |
419 | return rval; | |
420 | } | |
421 | ||
422 | /******************************************************************************* | |
423 | *******************************************************************************/ | |
424 | void | |
425 | kxld_vtable_clear(KXLDVTable *vtable) | |
426 | { | |
427 | check(vtable); | |
428 | ||
429 | vtable->vtable = NULL; | |
430 | vtable->name = NULL; | |
431 | vtable->is_patched = FALSE; | |
432 | kxld_array_clear(&vtable->entries); | |
433 | } | |
434 | ||
435 | /******************************************************************************* | |
436 | *******************************************************************************/ | |
437 | void | |
438 | kxld_vtable_deinit(KXLDVTable *vtable) | |
439 | { | |
440 | check(vtable); | |
441 | ||
442 | kxld_array_deinit(&vtable->entries); | |
443 | bzero(vtable, sizeof(*vtable)); | |
444 | } | |
445 | ||
6d2010ae A |
446 | /******************************************************************************* |
447 | *******************************************************************************/ | |
448 | KXLDVTableEntry * | |
449 | kxld_vtable_get_entry_for_offset(const KXLDVTable *vtable, u_long offset, | |
450 | boolean_t is_32_bit) | |
451 | { | |
452 | KXLDVTableEntry *rval = NULL; | |
453 | u_int vtable_entry_size = 0; | |
454 | u_int vtable_header_size = 0; | |
455 | u_int vtable_entry_idx = 0; | |
456 | ||
457 | (void) get_vtable_base_sizes(is_32_bit, | |
458 | &vtable_entry_size, &vtable_header_size); | |
459 | ||
460 | if (offset % vtable_entry_size) { | |
461 | goto finish; | |
462 | } | |
463 | ||
464 | vtable_entry_idx = (u_int) ((offset - vtable_header_size) / vtable_entry_size); | |
465 | rval = kxld_array_get_item(&vtable->entries, vtable_entry_idx); | |
466 | finish: | |
467 | return rval; | |
468 | } | |
469 | ||
b0d623f7 A |
470 | /******************************************************************************* |
471 | * Patching vtables allows us to preserve binary compatibility across releases. | |
472 | *******************************************************************************/ | |
473 | kern_return_t | |
474 | kxld_vtable_patch(KXLDVTable *vtable, const KXLDVTable *super_vtable, | |
6d2010ae | 475 | KXLDObject *object) |
b0d623f7 A |
476 | { |
477 | kern_return_t rval = KERN_FAILURE; | |
6d2010ae A |
478 | const KXLDSymtab *symtab = NULL; |
479 | const KXLDSym *sym = NULL; | |
b0d623f7 A |
480 | KXLDVTableEntry *child_entry = NULL; |
481 | KXLDVTableEntry *parent_entry = NULL; | |
b0d623f7 A |
482 | u_int symindex = 0; |
483 | u_int i = 0; | |
b7266188 A |
484 | char *demangled_name1 = NULL; |
485 | char *demangled_name2 = NULL; | |
486 | char *demangled_name3 = NULL; | |
487 | size_t demangled_length1 = 0; | |
488 | size_t demangled_length2 = 0; | |
489 | size_t demangled_length3 = 0; | |
6d2010ae | 490 | boolean_t failure = FALSE; |
b0d623f7 A |
491 | |
492 | check(vtable); | |
493 | check(super_vtable); | |
494 | ||
6d2010ae A |
495 | symtab = kxld_object_get_symtab(object); |
496 | ||
b0d623f7 | 497 | require_action(!vtable->is_patched, finish, rval=KERN_SUCCESS); |
316670eb | 498 | require_action(super_vtable->is_patched, finish, rval=KERN_FAILURE); |
b0d623f7 A |
499 | require_action(vtable->entries.nitems >= super_vtable->entries.nitems, finish, |
500 | rval=KERN_FAILURE; | |
b7266188 A |
501 | kxld_log(kKxldLogPatching, kKxldLogErr, kKxldLogMalformedVTable, |
502 | kxld_demangle(vtable->name, &demangled_name1, &demangled_length1))); | |
b0d623f7 A |
503 | |
504 | for (i = 0; i < super_vtable->entries.nitems; ++i) { | |
505 | child_entry = kxld_array_get_item(&vtable->entries, i); | |
506 | parent_entry = kxld_array_get_item(&super_vtable->entries, i); | |
507 | ||
508 | /* The child entry can be NULL when a locally-defined, non-external | |
509 | * symbol is stripped. We wouldn't patch this entry anyway, so we | |
510 | * just skip it. | |
511 | */ | |
512 | ||
513 | if (!child_entry->unpatched.sym) continue; | |
514 | ||
515 | /* It's possible for the patched parent entry not to have a symbol | |
516 | * (e.g. when the definition is inlined). We can't patch this entry no | |
517 | * matter what, so we'll just skip it and die later if it's a problem | |
518 | * (which is not likely). | |
519 | */ | |
520 | ||
521 | if (!parent_entry->patched.name) continue; | |
6d2010ae | 522 | |
b0d623f7 A |
523 | /* 1) If the symbol is defined locally, do not patch */ |
524 | ||
525 | if (kxld_sym_is_defined_locally(child_entry->unpatched.sym)) continue; | |
526 | ||
527 | /* 2) If the child is a pure virtual function, do not patch. | |
528 | * In general, we want to proceed with patching when the symbol is | |
529 | * externally defined because pad slots fall into this category. | |
530 | * The pure virtual function symbol is special case, as the pure | |
531 | * virtual property itself overrides the parent's implementation. | |
532 | */ | |
533 | ||
534 | if (kxld_sym_is_pure_virtual(child_entry->unpatched.sym)) continue; | |
535 | ||
536 | /* 3) If the symbols are the same, do not patch */ | |
537 | ||
538 | if (streq(child_entry->unpatched.sym->name, | |
539 | parent_entry->patched.name)) | |
540 | { | |
541 | continue; | |
542 | } | |
543 | ||
544 | /* 4) If the parent vtable entry is a pad slot, and the child does not | |
545 | * match it, then the child was built against a newer version of the | |
546 | * libraries, so it is binary-incompatible. | |
547 | */ | |
548 | ||
549 | require_action(!kxld_sym_name_is_padslot(parent_entry->patched.name), | |
550 | finish, rval=KERN_FAILURE; | |
551 | kxld_log(kKxldLogPatching, kKxldLogErr, | |
b7266188 A |
552 | kKxldLogParentOutOfDate, |
553 | kxld_demangle(super_vtable->name, &demangled_name1, | |
554 | &demangled_length1), | |
555 | kxld_demangle(vtable->name, &demangled_name2, | |
556 | &demangled_length2))); | |
b0d623f7 A |
557 | |
558 | #if KXLD_USER_OR_STRICT_PATCHING | |
559 | /* 5) If we are doing strict patching, we prevent kexts from declaring | |
560 | * virtual functions and not implementing them. We can tell if a | |
561 | * virtual function is declared but not implemented because we resolve | |
562 | * symbols before patching; an unimplemented function will still be | |
563 | * undefined at this point. We then look at whether the symbol has | |
564 | * the same class prefix as the vtable. If it does, the symbol was | |
565 | * declared as part of the class and not inherited, which means we | |
566 | * should not patch it. | |
567 | */ | |
568 | ||
6d2010ae A |
569 | if (kxld_object_target_supports_strict_patching(object) && |
570 | !kxld_sym_is_defined(child_entry->unpatched.sym)) | |
b0d623f7 A |
571 | { |
572 | char class_name[KXLD_MAX_NAME_LEN]; | |
573 | char function_prefix[KXLD_MAX_NAME_LEN]; | |
574 | u_long function_prefix_len = 0; | |
575 | ||
576 | rval = kxld_sym_get_class_name_from_vtable_name(vtable->name, | |
577 | class_name, sizeof(class_name)); | |
578 | require_noerr(rval, finish); | |
579 | ||
580 | function_prefix_len = | |
581 | kxld_sym_get_function_prefix_from_class_name(class_name, | |
582 | function_prefix, sizeof(function_prefix)); | |
583 | require(function_prefix_len, finish); | |
584 | ||
585 | if (!strncmp(child_entry->unpatched.sym->name, | |
586 | function_prefix, function_prefix_len)) | |
587 | { | |
6d2010ae A |
588 | failure = TRUE; |
589 | kxld_log(kKxldLogPatching, kKxldLogErr, | |
590 | "The %s is unpatchable because its class declares the " | |
591 | "method '%s' without providing an implementation.", | |
592 | kxld_demangle(vtable->name, | |
593 | &demangled_name1, &demangled_length1), | |
594 | kxld_demangle(child_entry->unpatched.sym->name, | |
595 | &demangled_name2, &demangled_length2)); | |
b0d623f7 A |
596 | continue; |
597 | } | |
598 | } | |
599 | #endif /* KXLD_USER_OR_STRICT_PATCHING */ | |
600 | ||
601 | /* 6) The child symbol is unresolved and different from its parent, so | |
602 | * we need to patch it up. We do this by modifying the relocation | |
603 | * entry of the vtable entry to point to the symbol of the parent | |
604 | * vtable entry. If that symbol does not exist (i.e. we got the data | |
605 | * from a link state object's vtable representation), then we create a | |
606 | * new symbol in the symbol table and point the relocation entry to | |
607 | * that. | |
608 | */ | |
609 | ||
6d2010ae A |
610 | sym = kxld_symtab_get_locally_defined_symbol_by_name(symtab, |
611 | parent_entry->patched.name); | |
b0d623f7 | 612 | if (!sym) { |
6d2010ae | 613 | rval = kxld_object_add_symbol(object, parent_entry->patched.name, |
b0d623f7 A |
614 | parent_entry->patched.addr, &sym); |
615 | require_noerr(rval, finish); | |
616 | } | |
617 | require_action(sym, finish, rval=KERN_FAILURE); | |
618 | ||
619 | rval = kxld_symtab_get_sym_index(symtab, sym, &symindex); | |
620 | require_noerr(rval, finish); | |
621 | ||
622 | rval = kxld_reloc_update_symindex(child_entry->unpatched.reloc, symindex); | |
623 | require_noerr(rval, finish); | |
b0d623f7 | 624 | kxld_log(kKxldLogPatching, kKxldLogDetail, |
b7266188 A |
625 | "In vtable '%s', patching '%s' with '%s'.", |
626 | kxld_demangle(vtable->name, &demangled_name1, &demangled_length1), | |
627 | kxld_demangle(child_entry->unpatched.sym->name, | |
628 | &demangled_name2, &demangled_length2), | |
629 | kxld_demangle(sym->name, &demangled_name3, &demangled_length3)); | |
b0d623f7 | 630 | |
6d2010ae A |
631 | rval = kxld_object_patch_symbol(object, child_entry->unpatched.sym); |
632 | require_noerr(rval, finish); | |
633 | ||
b0d623f7 | 634 | child_entry->unpatched.sym = sym; |
6d2010ae A |
635 | |
636 | /* | |
637 | * The C++ ABI requires that functions be aligned on a 2-byte boundary: | |
638 | * http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers | |
639 | * If the LSB of any virtual function's link address is 1, then the | |
640 | * compiler has violated that part of the ABI, and we're going to panic | |
641 | * in _ptmf2ptf() (in OSMetaClass.h). Better to panic here with some | |
642 | * context. | |
643 | */ | |
644 | assert(kxld_sym_is_pure_virtual(sym) || !(sym->link_addr & 1)); | |
b0d623f7 A |
645 | } |
646 | ||
6d2010ae A |
647 | require_action(!failure, finish, rval=KERN_FAILURE); |
648 | ||
b0d623f7 A |
649 | /* Change the vtable representation from the unpatched layout to the |
650 | * patched layout. | |
651 | */ | |
6d2010ae | 652 | |
b0d623f7 A |
653 | for (i = 0; i < vtable->entries.nitems; ++i) { |
654 | char *name; | |
655 | kxld_addr_t addr; | |
656 | ||
657 | child_entry = kxld_array_get_item(&vtable->entries, i); | |
658 | if (child_entry->unpatched.sym) { | |
659 | name = child_entry->unpatched.sym->name; | |
660 | addr = child_entry->unpatched.sym->link_addr; | |
661 | } else { | |
662 | name = NULL; | |
663 | addr = 0; | |
664 | } | |
665 | ||
666 | child_entry->patched.name = name; | |
667 | child_entry->patched.addr = addr; | |
668 | } | |
669 | ||
670 | vtable->is_patched = TRUE; | |
671 | rval = KERN_SUCCESS; | |
672 | ||
673 | finish: | |
b7266188 A |
674 | if (demangled_name1) kxld_free(demangled_name1, demangled_length1); |
675 | if (demangled_name2) kxld_free(demangled_name2, demangled_length2); | |
676 | if (demangled_name3) kxld_free(demangled_name3, demangled_length3); | |
677 | ||
b0d623f7 A |
678 | return rval; |
679 | } | |
680 |