]> git.saurik.com Git - apple/xnu.git/blame - osfmk/ppc/rtclock.c
xnu-1228.3.13.tar.gz
[apple/xnu.git] / osfmk / ppc / rtclock.c
CommitLineData
1c79356b 1/*
2d21ac55 2 * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved.
1c79356b 3 *
2d21ac55 4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
1c79356b 5 *
2d21ac55
A
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
8f6c56a5 14 *
2d21ac55
A
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
8f6c56a5
A
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
2d21ac55
A
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
8f6c56a5 25 *
2d21ac55 26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
1c79356b
A
27 */
28/*
29 * @OSF_COPYRIGHT@
30 */
31/*
32 * @APPLE_FREE_COPYRIGHT@
33 */
34/*
35 * File: rtclock.c
36 * Purpose: Routines for handling the machine dependent
37 * real-time clock.
38 */
39
40#include <mach/mach_types.h>
41
42#include <kern/clock.h>
43#include <kern/thread.h>
0c530ab8 44#include <kern/processor.h>
1c79356b
A
45#include <kern/macro_help.h>
46#include <kern/spl.h>
2d21ac55 47#include <kern/pms.h>
1c79356b 48
55e303ae 49#include <machine/commpage.h>
ab86ba33 50#include <machine/machine_routines.h>
a3d08fcd 51#include <ppc/exception.h>
1c79356b 52#include <ppc/proc_reg.h>
3a60a9f5 53#include <ppc/rtclock.h>
1c79356b 54
1c79356b
A
55#include <sys/kdebug.h>
56
0c530ab8 57int rtclock_config(void);
6601e61a 58
0c530ab8 59int rtclock_init(void);
1c79356b 60
91447636 61#define NSEC_PER_HZ (NSEC_PER_SEC / 100)
1c79356b 62
55e303ae 63static uint32_t rtclock_sec_divisor;
1c79356b 64
55e303ae 65static mach_timebase_info_data_t rtclock_timebase_const;
1c79356b 66
55e303ae
A
67static boolean_t rtclock_timebase_initialized;
68
0c530ab8
A
69/* XXX this should really be in a header somewhere */
70extern clock_timer_func_t rtclock_timer_expire;
1c79356b 71
55e303ae
A
72decl_simple_lock_data(static,rtclock_lock)
73
1c79356b
A
74/*
75 * Macros to lock/unlock real-time clock device.
76 */
77#define LOCK_RTC(s) \
78MACRO_BEGIN \
79 (s) = splclock(); \
55e303ae 80 simple_lock(&rtclock_lock); \
1c79356b
A
81MACRO_END
82
83#define UNLOCK_RTC(s) \
84MACRO_BEGIN \
55e303ae 85 simple_unlock(&rtclock_lock); \
1c79356b
A
86 splx(s); \
87MACRO_END
88
89static void
90timebase_callback(
91 struct timebase_freq_t *freq)
92{
55e303ae 93 uint32_t numer, denom;
1c79356b
A
94 spl_t s;
95
55e303ae
A
96 if ( freq->timebase_den < 1 || freq->timebase_den > 4 ||
97 freq->timebase_num < freq->timebase_den )
2d21ac55 98 panic("rtclock timebase_callback: invalid constant %lu / %lu",
55e303ae 99 freq->timebase_num, freq->timebase_den);
1c79356b 100
55e303ae
A
101 denom = freq->timebase_num;
102 numer = freq->timebase_den * NSEC_PER_SEC;
1c79356b
A
103
104 LOCK_RTC(s);
55e303ae 105 if (!rtclock_timebase_initialized) {
0c530ab8 106 commpage_set_timestamp(0,0,0);
55e303ae
A
107
108 rtclock_timebase_const.numer = numer;
109 rtclock_timebase_const.denom = denom;
110 rtclock_sec_divisor = freq->timebase_num / freq->timebase_den;
111
ab86ba33 112 ml_init_lock_timeout();
55e303ae
A
113 }
114 else {
115 UNLOCK_RTC(s);
91447636 116 printf("rtclock timebase_callback: late old %d / %d new %d / %d\n",
55e303ae
A
117 rtclock_timebase_const.numer, rtclock_timebase_const.denom,
118 numer, denom);
119 return;
120 }
1c79356b 121 UNLOCK_RTC(s);
55e303ae
A
122
123 clock_timebase_init();
1c79356b
A
124}
125
126/*
0c530ab8 127 * Configure the system clock device.
1c79356b
A
128 */
129int
0c530ab8 130rtclock_config(void)
1c79356b 131{
91447636 132 simple_lock_init(&rtclock_lock, 0);
1c79356b
A
133
134 PE_register_timebase_callback(timebase_callback);
135
136 return (1);
137}
138
139/*
140 * Initialize the system clock device.
141 */
142int
0c530ab8 143rtclock_init(void)
1c79356b 144{
0c530ab8 145 etimer_resync_deadlines(); /* Start the timers going */
1c79356b
A
146
147 return (1);
148}
149
55e303ae
A
150void
151clock_get_system_microtime(
152 uint32_t *secs,
153 uint32_t *microsecs)
1c79356b 154{
55e303ae
A
155 uint64_t now, t64;
156 uint32_t divisor;
1c79356b 157
55e303ae 158 now = mach_absolute_time();
1c79356b 159
55e303ae
A
160 *secs = t64 = now / (divisor = rtclock_sec_divisor);
161 now -= (t64 * divisor);
162 *microsecs = (now * USEC_PER_SEC) / divisor;
163}
1c79356b 164
55e303ae
A
165void
166clock_get_system_nanotime(
167 uint32_t *secs,
168 uint32_t *nanosecs)
169{
170 uint64_t now, t64;
171 uint32_t divisor;
1c79356b 172
55e303ae 173 now = mach_absolute_time();
1c79356b 174
55e303ae
A
175 *secs = t64 = now / (divisor = rtclock_sec_divisor);
176 now -= (t64 * divisor);
177 *nanosecs = (now * NSEC_PER_SEC) / divisor;
1c79356b
A
178}
179
6601e61a 180void
0c530ab8
A
181clock_gettimeofday_set_commpage(
182 uint64_t abstime,
183 uint64_t epoch,
184 uint64_t offset,
185 uint32_t *secs,
186 uint32_t *microsecs)
6601e61a 187{
0c530ab8 188 uint64_t t64, now = abstime;
6601e61a
A
189
190 simple_lock(&rtclock_lock);
191
0c530ab8 192 now += offset;
6601e61a 193
0c530ab8
A
194 *secs = t64 = now / rtclock_sec_divisor;
195 now -= (t64 * rtclock_sec_divisor);
196 *microsecs = (now * USEC_PER_SEC) / rtclock_sec_divisor;
6601e61a 197
0c530ab8 198 *secs += epoch;
6601e61a 199
0c530ab8 200 commpage_set_timestamp(abstime - now, *secs, rtclock_sec_divisor);
91447636 201
91447636 202 simple_unlock(&rtclock_lock);
91447636
A
203}
204
1c79356b
A
205void
206clock_timebase_info(
207 mach_timebase_info_t info)
208{
55e303ae 209 spl_t s;
1c79356b
A
210
211 LOCK_RTC(s);
6601e61a 212 *info = rtclock_timebase_const;
0c530ab8 213 rtclock_timebase_initialized = TRUE;
1c79356b
A
214 UNLOCK_RTC(s);
215}
216
1c79356b
A
217void
218clock_set_timer_func(
219 clock_timer_func_t func)
220{
221 spl_t s;
222
223 LOCK_RTC(s);
55e303ae
A
224 if (rtclock_timer_expire == NULL)
225 rtclock_timer_expire = func;
1c79356b
A
226 UNLOCK_RTC(s);
227}
228
1c79356b 229void
0c530ab8
A
230clock_interval_to_absolutetime_interval(
231 uint32_t interval,
232 uint32_t scale_factor,
55e303ae 233 uint64_t *result)
1c79356b 234{
0c530ab8
A
235 uint64_t nanosecs = (uint64_t)interval * scale_factor;
236 uint64_t t64;
237 uint32_t divisor;
91447636 238
0c530ab8
A
239 *result = (t64 = nanosecs / NSEC_PER_SEC) *
240 (divisor = rtclock_sec_divisor);
241 nanosecs -= (t64 * NSEC_PER_SEC);
242 *result += (nanosecs * divisor) / NSEC_PER_SEC;
91447636
A
243}
244
245void
246absolutetime_to_microtime(
247 uint64_t abstime,
248 uint32_t *secs,
249 uint32_t *microsecs)
250{
251 uint64_t t64;
55e303ae 252 uint32_t divisor;
1c79356b 253
91447636
A
254 *secs = t64 = abstime / (divisor = rtclock_sec_divisor);
255 abstime -= (t64 * divisor);
256 *microsecs = (abstime * USEC_PER_SEC) / divisor;
1c79356b
A
257}
258
259void
0c530ab8
A
260absolutetime_to_nanotime(
261 uint64_t abstime,
262 uint32_t *secs,
263 uint32_t *nanosecs)
21362eb3 264{
0c530ab8
A
265 uint64_t t64;
266 uint32_t divisor;
21362eb3 267
0c530ab8
A
268 *secs = t64 = abstime / (divisor = rtclock_sec_divisor);
269 abstime -= (t64 * divisor);
270 *nanosecs = (abstime * NSEC_PER_SEC) / divisor;
6601e61a
A
271}
272
273void
0c530ab8
A
274nanotime_to_absolutetime(
275 uint32_t secs,
276 uint32_t nanosecs,
6601e61a
A
277 uint64_t *result)
278{
0c530ab8 279 uint32_t divisor = rtclock_sec_divisor;
6601e61a 280
0c530ab8
A
281 *result = ((uint64_t)secs * divisor) +
282 ((uint64_t)nanosecs * divisor) / NSEC_PER_SEC;
1c79356b
A
283}
284
285void
286absolutetime_to_nanoseconds(
0b4e3aa0
A
287 uint64_t abstime,
288 uint64_t *result)
1c79356b 289{
55e303ae
A
290 uint64_t t64;
291 uint32_t divisor;
1c79356b 292
55e303ae
A
293 *result = (t64 = abstime / (divisor = rtclock_sec_divisor)) * NSEC_PER_SEC;
294 abstime -= (t64 * divisor);
295 *result += (abstime * NSEC_PER_SEC) / divisor;
1c79356b
A
296}
297
298void
299nanoseconds_to_absolutetime(
55e303ae 300 uint64_t nanosecs,
0b4e3aa0 301 uint64_t *result)
1c79356b 302{
55e303ae
A
303 uint64_t t64;
304 uint32_t divisor;
1c79356b 305
55e303ae
A
306 *result = (t64 = nanosecs / NSEC_PER_SEC) *
307 (divisor = rtclock_sec_divisor);
308 nanosecs -= (t64 * NSEC_PER_SEC);
309 *result += (nanosecs * divisor) / NSEC_PER_SEC;
1c79356b
A
310}
311
1c79356b 312void
91447636 313machine_delay_until(
0b4e3aa0 314 uint64_t deadline)
1c79356b 315{
0b4e3aa0 316 uint64_t now;
1c79356b
A
317
318 do {
55e303ae 319 now = mach_absolute_time();
0b4e3aa0 320 } while (now < deadline);
1c79356b 321}