]>
Commit | Line | Data |
---|---|---|
b0d623f7 | 1 | /*- |
39236c6e | 2 | * Copyright (c) 1999-2012 Apple Inc. |
b0d623f7 A |
3 | * All rights reserved. |
4 | * | |
5 | * Redistribution and use in source and binary forms, with or without | |
6 | * modification, are permitted provided that the following conditions | |
7 | * are met: | |
8 | * 1. Redistributions of source code must retain the above copyright | |
9 | * notice, this list of conditions and the following disclaimer. | |
10 | * 2. Redistributions in binary form must reproduce the above copyright | |
11 | * notice, this list of conditions and the following disclaimer in the | |
12 | * documentation and/or other materials provided with the distribution. | |
13 | * 3. Neither the name of Apple Inc. ("Apple") nor the names of | |
14 | * its contributors may be used to endorse or promote products derived | |
15 | * from this software without specific prior written permission. | |
16 | * | |
17 | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND | |
18 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
19 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
20 | * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR | |
21 | * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
22 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
23 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
24 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | |
25 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING | |
26 | * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
27 | * POSSIBILITY OF SUCH DAMAGE. | |
28 | * | |
29 | */ | |
30 | /* | |
31 | * NOTICE: This file was modified by McAfee Research in 2004 to introduce | |
32 | * support for mandatory and extensible security protections. This notice | |
33 | * is included in support of clause 2.2 (b) of the Apple Public License, | |
34 | * Version 2.0. | |
35 | */ | |
36 | ||
37 | #include <sys/param.h> | |
38 | #include <sys/fcntl.h> | |
39 | #include <sys/kernel.h> | |
40 | #include <sys/lock.h> | |
41 | #include <sys/namei.h> | |
42 | #include <sys/proc_internal.h> | |
43 | #include <sys/kauth.h> | |
44 | #include <sys/queue.h> | |
45 | #include <sys/systm.h> | |
46 | #include <sys/time.h> | |
47 | #include <sys/ucred.h> | |
48 | #include <sys/uio.h> | |
49 | #include <sys/unistd.h> | |
50 | #include <sys/file_internal.h> | |
51 | #include <sys/vnode_internal.h> | |
52 | #include <sys/user.h> | |
53 | #include <sys/syscall.h> | |
54 | #include <sys/malloc.h> | |
55 | #include <sys/un.h> | |
56 | #include <sys/sysent.h> | |
57 | #include <sys/sysproto.h> | |
58 | #include <sys/vfs_context.h> | |
59 | #include <sys/domain.h> | |
60 | #include <sys/protosw.h> | |
61 | #include <sys/socketvar.h> | |
62 | ||
63 | #include <bsm/audit.h> | |
64 | #include <bsm/audit_internal.h> | |
65 | #include <bsm/audit_kevents.h> | |
66 | ||
67 | #include <security/audit/audit.h> | |
68 | #include <security/audit/audit_bsd.h> | |
69 | #include <security/audit/audit_private.h> | |
70 | ||
71 | #include <mach/host_priv.h> | |
72 | #include <mach/host_special_ports.h> | |
73 | #include <mach/audit_triggers_server.h> | |
74 | ||
75 | #include <kern/host.h> | |
76 | #include <kern/kalloc.h> | |
77 | #include <kern/zalloc.h> | |
b0d623f7 A |
78 | #include <kern/sched_prim.h> |
79 | ||
80 | #if CONFIG_MACF | |
81 | #include <bsm/audit_record.h> | |
82 | #include <security/mac.h> | |
83 | #include <security/mac_framework.h> | |
84 | #include <security/mac_policy.h> | |
85 | extern zone_t audit_mac_label_zone; | |
86 | #endif | |
87 | ||
88 | #include <net/route.h> | |
89 | ||
90 | #include <netinet/in.h> | |
91 | #include <netinet/in_pcb.h> | |
92 | ||
93 | #if CONFIG_AUDIT | |
94 | /* | |
95 | * Calls to manipulate elements of the audit record structure from system | |
96 | * call code. Macro wrappers will prevent this functions from being entered | |
97 | * if auditing is disabled, avoiding the function call cost. We check the | |
98 | * thread audit record pointer anyway, as the audit condition could change, | |
99 | * and pre-selection may not have allocated an audit record for this event. | |
100 | * | |
101 | * XXXAUDIT: Should we assert, in each case, that this field of the record | |
102 | * hasn't already been filled in? | |
103 | */ | |
104 | void | |
105 | audit_arg_addr(struct kaudit_record *ar, user_addr_t addr) | |
106 | { | |
107 | struct proc *p = current_proc(); | |
108 | ||
109 | ar->k_ar.ar_arg_addr = addr; | |
110 | ||
111 | /* | |
112 | * If the process is 64-bit then flag the address as such. | |
113 | */ | |
114 | if (proc_is64bit(p)) | |
115 | ARG_SET_VALID(ar, ARG_ADDR64); | |
116 | else | |
117 | ARG_SET_VALID(ar, ARG_ADDR32); | |
118 | } | |
119 | ||
120 | void | |
121 | audit_arg_exit(struct kaudit_record *ar, int status, int retval) | |
122 | { | |
123 | ||
124 | ar->k_ar.ar_arg_exitstatus = status; | |
125 | ar->k_ar.ar_arg_exitretval = retval; | |
126 | ARG_SET_VALID(ar, ARG_EXIT); | |
127 | } | |
128 | ||
129 | void | |
130 | audit_arg_len(struct kaudit_record *ar, user_size_t len) | |
131 | { | |
132 | ||
133 | ar->k_ar.ar_arg_len = len; | |
134 | ARG_SET_VALID(ar, ARG_LEN); | |
135 | } | |
136 | ||
137 | void | |
138 | audit_arg_fd(struct kaudit_record *ar, int fd) | |
139 | { | |
140 | ||
141 | ar->k_ar.ar_arg_fd = fd; | |
142 | ARG_SET_VALID(ar, ARG_FD); | |
143 | } | |
144 | ||
145 | void | |
146 | audit_arg_fflags(struct kaudit_record *ar, int fflags) | |
147 | { | |
148 | ||
149 | ar->k_ar.ar_arg_fflags = fflags; | |
150 | ARG_SET_VALID(ar, ARG_FFLAGS); | |
151 | } | |
152 | ||
153 | void | |
154 | audit_arg_gid(struct kaudit_record *ar, gid_t gid) | |
155 | { | |
156 | ||
157 | ar->k_ar.ar_arg_gid = gid; | |
158 | ARG_SET_VALID(ar, ARG_GID); | |
159 | } | |
160 | ||
161 | void | |
162 | audit_arg_uid(struct kaudit_record *ar, uid_t uid) | |
163 | { | |
164 | ||
165 | ar->k_ar.ar_arg_uid = uid; | |
166 | ARG_SET_VALID(ar, ARG_UID); | |
167 | } | |
168 | ||
169 | void | |
170 | audit_arg_egid(struct kaudit_record *ar, gid_t egid) | |
171 | { | |
172 | ||
173 | ar->k_ar.ar_arg_egid = egid; | |
174 | ARG_SET_VALID(ar, ARG_EGID); | |
175 | } | |
176 | ||
177 | void | |
178 | audit_arg_euid(struct kaudit_record *ar, uid_t euid) | |
179 | { | |
180 | ||
181 | ar->k_ar.ar_arg_euid = euid; | |
182 | ARG_SET_VALID(ar, ARG_EUID); | |
183 | } | |
184 | ||
185 | void | |
186 | audit_arg_rgid(struct kaudit_record *ar, gid_t rgid) | |
187 | { | |
188 | ||
189 | ar->k_ar.ar_arg_rgid = rgid; | |
190 | ARG_SET_VALID(ar, ARG_RGID); | |
191 | } | |
192 | ||
193 | void | |
194 | audit_arg_ruid(struct kaudit_record *ar, uid_t ruid) | |
195 | { | |
196 | ||
197 | ar->k_ar.ar_arg_ruid = ruid; | |
198 | ARG_SET_VALID(ar, ARG_RUID); | |
199 | } | |
200 | ||
201 | void | |
202 | audit_arg_sgid(struct kaudit_record *ar, gid_t sgid) | |
203 | { | |
204 | ||
205 | ar->k_ar.ar_arg_sgid = sgid; | |
206 | ARG_SET_VALID(ar, ARG_SGID); | |
207 | } | |
208 | ||
209 | void | |
210 | audit_arg_suid(struct kaudit_record *ar, uid_t suid) | |
211 | { | |
212 | ||
213 | ar->k_ar.ar_arg_suid = suid; | |
214 | ARG_SET_VALID(ar, ARG_SUID); | |
215 | } | |
216 | ||
217 | void | |
218 | audit_arg_groupset(struct kaudit_record *ar, gid_t *gidset, u_int gidset_size) | |
219 | { | |
220 | u_int i; | |
221 | ||
222 | for (i = 0; i < gidset_size; i++) | |
223 | ar->k_ar.ar_arg_groups.gidset[i] = gidset[i]; | |
224 | ar->k_ar.ar_arg_groups.gidset_size = gidset_size; | |
225 | ARG_SET_VALID(ar, ARG_GROUPSET); | |
226 | } | |
227 | ||
228 | void | |
229 | audit_arg_login(struct kaudit_record *ar, char *login) | |
230 | { | |
231 | ||
232 | strlcpy(ar->k_ar.ar_arg_login, login, MAXLOGNAME); | |
233 | ARG_SET_VALID(ar, ARG_LOGIN); | |
234 | } | |
235 | ||
236 | void | |
237 | audit_arg_ctlname(struct kaudit_record *ar, int *name, int namelen) | |
238 | { | |
239 | ||
240 | bcopy(name, &ar->k_ar.ar_arg_ctlname, namelen * sizeof(int)); | |
241 | ar->k_ar.ar_arg_len = namelen; | |
242 | ARG_SET_VALID(ar, ARG_CTLNAME | ARG_LEN); | |
243 | } | |
244 | ||
245 | void | |
246 | audit_arg_mask(struct kaudit_record *ar, int mask) | |
247 | { | |
248 | ||
249 | ar->k_ar.ar_arg_mask = mask; | |
250 | ARG_SET_VALID(ar, ARG_MASK); | |
251 | } | |
252 | ||
253 | void | |
254 | audit_arg_mode(struct kaudit_record *ar, mode_t mode) | |
255 | { | |
256 | ||
257 | ar->k_ar.ar_arg_mode = mode; | |
258 | ARG_SET_VALID(ar, ARG_MODE); | |
259 | } | |
260 | ||
261 | void | |
262 | audit_arg_value32(struct kaudit_record *ar, uint32_t value32) | |
263 | { | |
264 | ||
265 | ar->k_ar.ar_arg_value32 = value32; | |
266 | ARG_SET_VALID(ar, ARG_VALUE32); | |
267 | } | |
268 | ||
269 | void | |
270 | audit_arg_value64(struct kaudit_record *ar, uint64_t value64) | |
271 | { | |
272 | ||
273 | ar->k_ar.ar_arg_value64 = value64; | |
274 | ARG_SET_VALID(ar, ARG_VALUE64); | |
275 | } | |
276 | ||
277 | void | |
278 | audit_arg_owner(struct kaudit_record *ar, uid_t uid, gid_t gid) | |
279 | { | |
280 | ||
281 | ar->k_ar.ar_arg_uid = uid; | |
282 | ar->k_ar.ar_arg_gid = gid; | |
283 | ARG_SET_VALID(ar, ARG_UID | ARG_GID); | |
284 | } | |
285 | ||
286 | void | |
287 | audit_arg_pid(struct kaudit_record *ar, pid_t pid) | |
288 | { | |
289 | ||
290 | ar->k_ar.ar_arg_pid = pid; | |
291 | ARG_SET_VALID(ar, ARG_PID); | |
292 | } | |
293 | ||
294 | void | |
295 | audit_arg_process(struct kaudit_record *ar, proc_t p) | |
296 | { | |
297 | kauth_cred_t my_cred; | |
298 | ||
299 | KASSERT(p != NULL, ("audit_arg_process: p == NULL")); | |
300 | ||
301 | if ( p == NULL) | |
302 | return; | |
303 | ||
304 | my_cred = kauth_cred_proc_ref(p); | |
305 | ar->k_ar.ar_arg_auid = my_cred->cr_audit.as_aia_p->ai_auid; | |
306 | ar->k_ar.ar_arg_asid = my_cred->cr_audit.as_aia_p->ai_asid; | |
307 | bcopy(&my_cred->cr_audit.as_aia_p->ai_termid, | |
308 | &ar->k_ar.ar_arg_termid_addr, sizeof(au_tid_addr_t)); | |
6d2010ae A |
309 | ar->k_ar.ar_arg_euid = kauth_cred_getuid(my_cred); |
310 | ar->k_ar.ar_arg_egid = kauth_cred_getgid(my_cred); | |
311 | ar->k_ar.ar_arg_ruid = kauth_cred_getruid(my_cred); | |
312 | ar->k_ar.ar_arg_rgid = kauth_cred_getrgid(my_cred); | |
b0d623f7 A |
313 | kauth_cred_unref(&my_cred); |
314 | ar->k_ar.ar_arg_pid = p->p_pid; | |
315 | ARG_SET_VALID(ar, ARG_AUID | ARG_EUID | ARG_EGID | ARG_RUID | | |
316 | ARG_RGID | ARG_ASID | ARG_TERMID_ADDR | ARG_PID | ARG_PROCESS); | |
317 | } | |
318 | ||
319 | void | |
320 | audit_arg_signum(struct kaudit_record *ar, u_int signum) | |
321 | { | |
322 | ||
323 | ar->k_ar.ar_arg_signum = signum; | |
324 | ARG_SET_VALID(ar, ARG_SIGNUM); | |
325 | } | |
326 | ||
327 | void | |
328 | audit_arg_socket(struct kaudit_record *ar, int sodomain, int sotype, | |
329 | int soprotocol) | |
330 | { | |
331 | ||
332 | ar->k_ar.ar_arg_sockinfo.sai_domain = sodomain; | |
333 | ar->k_ar.ar_arg_sockinfo.sai_type = sotype; | |
334 | ar->k_ar.ar_arg_sockinfo.sai_protocol = soprotocol; | |
335 | ARG_SET_VALID(ar, ARG_SOCKINFO); | |
336 | } | |
337 | ||
338 | /* | |
339 | * Note that the current working directory vp must be supplied at the audit | |
340 | * call site to permit per thread current working directories, and that it | |
341 | * must take a upath starting with '/' into account for chroot if the path | |
342 | * is absolute. This results in the real (non-chroot) path being recorded | |
343 | * in the audit record. | |
344 | */ | |
345 | void | |
346 | audit_arg_sockaddr(struct kaudit_record *ar, struct vnode *cwd_vp, | |
347 | struct sockaddr *sa) | |
348 | { | |
349 | int slen; | |
350 | struct sockaddr_un *sun; | |
351 | char path[SOCK_MAXADDRLEN - offsetof(struct sockaddr_un, sun_path) + 1]; | |
352 | ||
353 | KASSERT(sa != NULL, ("audit_arg_sockaddr: sa == NULL")); | |
354 | ||
355 | if (cwd_vp == NULL || sa == NULL) | |
356 | return; | |
357 | ||
358 | bcopy(sa, &ar->k_ar.ar_arg_sockaddr, sa->sa_len); | |
359 | switch (sa->sa_family) { | |
360 | case AF_INET: | |
361 | ARG_SET_VALID(ar, ARG_SADDRINET); | |
362 | break; | |
363 | ||
364 | case AF_INET6: | |
365 | ARG_SET_VALID(ar, ARG_SADDRINET6); | |
366 | break; | |
367 | ||
368 | case AF_UNIX: | |
369 | sun = (struct sockaddr_un *)sa; | |
370 | slen = sun->sun_len - offsetof(struct sockaddr_un, sun_path); | |
371 | ||
372 | if (slen >= 0) { | |
373 | /* | |
374 | * Make sure the path is NULL-terminated | |
375 | */ | |
376 | if (sun->sun_path[slen] != 0) { | |
377 | bcopy(sun->sun_path, path, slen); | |
378 | path[slen] = 0; | |
379 | audit_arg_upath(ar, cwd_vp, path, ARG_UPATH1); | |
380 | } else { | |
381 | audit_arg_upath(ar, cwd_vp, sun->sun_path, | |
382 | ARG_UPATH1); | |
383 | } | |
384 | } | |
385 | ARG_SET_VALID(ar, ARG_SADDRUNIX); | |
386 | break; | |
387 | /* XXXAUDIT: default:? */ | |
388 | } | |
389 | } | |
390 | ||
391 | void | |
392 | audit_arg_auid(struct kaudit_record *ar, uid_t auid) | |
393 | { | |
394 | ||
395 | ar->k_ar.ar_arg_auid = auid; | |
396 | ARG_SET_VALID(ar, ARG_AUID); | |
397 | } | |
398 | ||
399 | void | |
400 | audit_arg_auditinfo(struct kaudit_record *ar, struct auditinfo *au_info) | |
401 | { | |
402 | ||
403 | ar->k_ar.ar_arg_auid = au_info->ai_auid; | |
404 | ar->k_ar.ar_arg_asid = au_info->ai_asid; | |
405 | ar->k_ar.ar_arg_amask.am_success = au_info->ai_mask.am_success; | |
406 | ar->k_ar.ar_arg_amask.am_failure = au_info->ai_mask.am_failure; | |
407 | ar->k_ar.ar_arg_termid.port = au_info->ai_termid.port; | |
408 | ar->k_ar.ar_arg_termid.machine = au_info->ai_termid.machine; | |
409 | ARG_SET_VALID(ar, ARG_AUID | ARG_ASID | ARG_AMASK | ARG_TERMID); | |
410 | } | |
411 | ||
412 | void | |
413 | audit_arg_auditinfo_addr(struct kaudit_record *ar, | |
414 | struct auditinfo_addr *au_info) | |
415 | { | |
416 | ||
417 | ar->k_ar.ar_arg_auid = au_info->ai_auid; | |
418 | ar->k_ar.ar_arg_asid = au_info->ai_asid; | |
419 | ar->k_ar.ar_arg_amask.am_success = au_info->ai_mask.am_success; | |
420 | ar->k_ar.ar_arg_amask.am_failure = au_info->ai_mask.am_failure; | |
421 | ar->k_ar.ar_arg_termid_addr.at_type = au_info->ai_termid.at_type; | |
422 | ar->k_ar.ar_arg_termid_addr.at_port = au_info->ai_termid.at_port; | |
423 | ar->k_ar.ar_arg_termid_addr.at_addr[0] = au_info->ai_termid.at_addr[0]; | |
424 | ar->k_ar.ar_arg_termid_addr.at_addr[1] = au_info->ai_termid.at_addr[1]; | |
425 | ar->k_ar.ar_arg_termid_addr.at_addr[2] = au_info->ai_termid.at_addr[2]; | |
426 | ar->k_ar.ar_arg_termid_addr.at_addr[3] = au_info->ai_termid.at_addr[3]; | |
427 | ARG_SET_VALID(ar, ARG_AUID | ARG_ASID | ARG_AMASK | ARG_TERMID_ADDR); | |
428 | } | |
429 | ||
430 | void | |
431 | audit_arg_text(struct kaudit_record *ar, char *text) | |
432 | { | |
433 | ||
434 | KASSERT(text != NULL, ("audit_arg_text: text == NULL")); | |
435 | ||
436 | /* Invalidate the text string */ | |
437 | ar->k_ar.ar_valid_arg &= (ARG_ALL ^ ARG_TEXT); | |
438 | if (text == NULL) | |
439 | return; | |
440 | ||
441 | if (ar->k_ar.ar_arg_text == NULL) | |
442 | ar->k_ar.ar_arg_text = malloc(MAXPATHLEN, M_AUDITTEXT, | |
443 | M_WAITOK); | |
444 | ||
445 | strncpy(ar->k_ar.ar_arg_text, text, MAXPATHLEN); | |
446 | ARG_SET_VALID(ar, ARG_TEXT); | |
447 | } | |
448 | ||
449 | void | |
450 | audit_arg_opaque(struct kaudit_record *ar, void *data, size_t size) | |
451 | { | |
452 | ||
453 | KASSERT(data != NULL, ("audit_arg_opaque: data == NULL")); | |
454 | KASSERT(size <= UINT16_MAX, ("audit_arg_opaque: size > UINT16_MAX")); | |
455 | ||
456 | if (data == NULL || size > UINT16_MAX) | |
457 | return; | |
458 | ||
459 | if (ar->k_ar.ar_arg_opaque == NULL) | |
460 | ar->k_ar.ar_arg_opaque = malloc(size, M_AUDITDATA, M_WAITOK); | |
461 | else | |
462 | return; | |
463 | ||
464 | memcpy(ar->k_ar.ar_arg_opaque, data, size); | |
465 | ar->k_ar.ar_arg_opq_size = (u_int16_t) size; | |
466 | ARG_SET_VALID(ar, ARG_OPAQUE); | |
467 | } | |
468 | ||
469 | void | |
470 | audit_arg_data(struct kaudit_record *ar, void *data, size_t size, size_t number) | |
471 | { | |
472 | size_t sz; | |
473 | ||
474 | KASSERT(data != NULL, ("audit_arg_data: data == NULL")); | |
475 | KASSERT(size >= AUR_BYTE_SIZE && size <= AUR_INT64_SIZE, | |
476 | ("audit_arg_data: size < AUR_BYTE_SIZE or size > AUR_INT64_SIZE")); | |
477 | KASSERT(number <= UINT8_MAX, | |
478 | ("audit_arg_data: number > UINT8_MAX")); | |
479 | ||
480 | if (data == NULL || size < AUR_BYTE_SIZE || size > AUR_INT64_SIZE || | |
481 | number > UINT8_MAX) | |
482 | return; | |
483 | ||
484 | sz = size * number; | |
485 | ||
486 | if (ar->k_ar.ar_arg_data == NULL) | |
487 | ar->k_ar.ar_arg_data = malloc(sz, M_AUDITDATA, M_WAITOK); | |
488 | else | |
489 | return; | |
490 | ||
491 | memcpy(ar->k_ar.ar_arg_data, data, sz); | |
492 | ||
493 | switch(size) { | |
494 | case AUR_BYTE_SIZE: | |
495 | ar->k_ar.ar_arg_data_type = AUR_BYTE; | |
496 | break; | |
497 | ||
498 | case AUR_SHORT_SIZE: | |
499 | ar->k_ar.ar_arg_data_type = AUR_SHORT; | |
500 | break; | |
501 | ||
502 | case AUR_INT32_SIZE: | |
503 | ar->k_ar.ar_arg_data_type = AUR_INT32; | |
504 | break; | |
505 | ||
506 | case AUR_INT64_SIZE: | |
507 | ar->k_ar.ar_arg_data_type = AUR_INT64; | |
508 | break; | |
509 | ||
510 | default: | |
511 | free(ar->k_ar.ar_arg_data, M_AUDITDATA); | |
512 | ar->k_ar.ar_arg_data = NULL; | |
513 | return; | |
514 | } | |
515 | ||
516 | ar->k_ar.ar_arg_data_count = (u_char)number; | |
517 | ||
518 | ARG_SET_VALID(ar, ARG_DATA); | |
519 | } | |
520 | ||
521 | void | |
522 | audit_arg_cmd(struct kaudit_record *ar, int cmd) | |
523 | { | |
524 | ||
525 | ar->k_ar.ar_arg_cmd = cmd; | |
526 | ARG_SET_VALID(ar, ARG_CMD); | |
527 | } | |
528 | ||
529 | void | |
530 | audit_arg_svipc_cmd(struct kaudit_record *ar, int cmd) | |
531 | { | |
532 | ||
533 | ar->k_ar.ar_arg_svipc_cmd = cmd; | |
534 | ARG_SET_VALID(ar, ARG_SVIPC_CMD); | |
535 | } | |
536 | ||
537 | void | |
538 | audit_arg_svipc_perm(struct kaudit_record *ar, struct ipc_perm *perm) | |
539 | { | |
540 | ||
541 | bcopy(perm, &ar->k_ar.ar_arg_svipc_perm, | |
542 | sizeof(ar->k_ar.ar_arg_svipc_perm)); | |
543 | ARG_SET_VALID(ar, ARG_SVIPC_PERM); | |
544 | } | |
545 | ||
546 | void | |
547 | audit_arg_svipc_id(struct kaudit_record *ar, int id) | |
548 | { | |
549 | ||
550 | ar->k_ar.ar_arg_svipc_id = id; | |
551 | ARG_SET_VALID(ar, ARG_SVIPC_ID); | |
552 | } | |
553 | ||
554 | void | |
555 | audit_arg_svipc_addr(struct kaudit_record *ar, user_addr_t addr) | |
556 | { | |
557 | ||
558 | ar->k_ar.ar_arg_svipc_addr = addr; | |
559 | ARG_SET_VALID(ar, ARG_SVIPC_ADDR); | |
560 | } | |
561 | ||
562 | void | |
563 | audit_arg_posix_ipc_perm(struct kaudit_record *ar, uid_t uid, gid_t gid, | |
564 | mode_t mode) | |
565 | { | |
566 | ||
567 | ar->k_ar.ar_arg_pipc_perm.pipc_uid = uid; | |
568 | ar->k_ar.ar_arg_pipc_perm.pipc_gid = gid; | |
569 | ar->k_ar.ar_arg_pipc_perm.pipc_mode = mode; | |
570 | ARG_SET_VALID(ar, ARG_POSIX_IPC_PERM); | |
571 | } | |
572 | ||
573 | void | |
574 | audit_arg_auditon(struct kaudit_record *ar, union auditon_udata *udata) | |
575 | { | |
576 | ||
577 | bcopy((void *)udata, &ar->k_ar.ar_arg_auditon, | |
578 | sizeof(ar->k_ar.ar_arg_auditon)); | |
579 | ARG_SET_VALID(ar, ARG_AUDITON); | |
580 | } | |
581 | ||
582 | /* | |
583 | * Audit information about a file, either the file's vnode info, or its | |
584 | * socket address info. | |
585 | */ | |
586 | void | |
587 | audit_arg_file(struct kaudit_record *ar, __unused proc_t p, | |
588 | struct fileproc *fp) | |
589 | { | |
590 | struct socket *so; | |
591 | struct inpcb *pcb; | |
592 | struct sockaddr_in *sin; | |
593 | struct sockaddr_in6 *sin6; | |
594 | ||
39236c6e | 595 | switch (FILEGLOB_DTYPE(fp->f_fglob)) { |
b0d623f7 A |
596 | case DTYPE_VNODE: |
597 | /* case DTYPE_FIFO: */ | |
598 | audit_arg_vnpath_withref(ar, | |
599 | (struct vnode *)fp->f_fglob->fg_data, ARG_VNODE1); | |
600 | break; | |
601 | ||
602 | case DTYPE_SOCKET: | |
603 | so = (struct socket *)fp->f_fglob->fg_data; | |
39236c6e | 604 | if (SOCK_CHECK_DOM(so, PF_INET)) { |
b0d623f7 A |
605 | if (so->so_pcb == NULL) |
606 | break; | |
607 | ar->k_ar.ar_arg_sockinfo.sai_type = | |
608 | so->so_type; | |
39236c6e A |
609 | ar->k_ar.ar_arg_sockinfo.sai_domain = SOCK_DOM(so); |
610 | ar->k_ar.ar_arg_sockinfo.sai_protocol = SOCK_PROTO(so); | |
b0d623f7 A |
611 | pcb = (struct inpcb *)so->so_pcb; |
612 | sin = (struct sockaddr_in *) | |
613 | &ar->k_ar.ar_arg_sockinfo.sai_faddr; | |
614 | sin->sin_addr.s_addr = pcb->inp_faddr.s_addr; | |
615 | sin->sin_port = pcb->inp_fport; | |
616 | sin = (struct sockaddr_in *) | |
617 | &ar->k_ar.ar_arg_sockinfo.sai_laddr; | |
618 | sin->sin_addr.s_addr = pcb->inp_laddr.s_addr; | |
619 | sin->sin_port = pcb->inp_lport; | |
620 | ARG_SET_VALID(ar, ARG_SOCKINFO); | |
621 | } | |
39236c6e | 622 | if (SOCK_CHECK_DOM(so, PF_INET6)) { |
b0d623f7 A |
623 | if (so->so_pcb == NULL) |
624 | break; | |
625 | ar->k_ar.ar_arg_sockinfo.sai_type = | |
626 | so->so_type; | |
39236c6e A |
627 | ar->k_ar.ar_arg_sockinfo.sai_domain = SOCK_DOM(so); |
628 | ar->k_ar.ar_arg_sockinfo.sai_protocol = SOCK_PROTO(so); | |
b0d623f7 A |
629 | pcb = (struct inpcb *)so->so_pcb; |
630 | sin6 = (struct sockaddr_in6 *) | |
631 | &ar->k_ar.ar_arg_sockinfo.sai_faddr; | |
632 | sin6->sin6_addr = pcb->in6p_faddr; | |
633 | sin6->sin6_port = pcb->in6p_fport; | |
634 | sin6 = (struct sockaddr_in6 *) | |
635 | &ar->k_ar.ar_arg_sockinfo.sai_laddr; | |
636 | sin6->sin6_addr = pcb->in6p_laddr; | |
637 | sin6->sin6_port = pcb->in6p_lport; | |
638 | ARG_SET_VALID(ar, ARG_SOCKINFO); | |
639 | } | |
640 | break; | |
641 | ||
642 | default: | |
643 | /* XXXAUDIT: else? */ | |
644 | break; | |
645 | } | |
646 | } | |
647 | ||
648 | /* | |
649 | * Store a path as given by the user process for auditing into the audit | |
650 | * record stored on the user thread. This function will allocate the memory | |
651 | * to store the path info if not already available. This memory will be | |
652 | * freed when the audit record is freed. | |
653 | * | |
654 | * Note that the current working directory vp must be supplied at the audit call | |
655 | * site to permit per thread current working directories, and that it must take | |
656 | * a upath starting with '/' into account for chroot if the path is absolute. | |
657 | * This results in the real (non-chroot) path being recorded in the audit | |
658 | * record. | |
659 | * | |
660 | * XXXAUDIT: Possibly assert that the memory isn't already allocated? | |
661 | */ | |
662 | void | |
663 | audit_arg_upath(struct kaudit_record *ar, struct vnode *cwd_vp, char *upath, u_int64_t flag) | |
664 | { | |
665 | char **pathp; | |
666 | ||
667 | KASSERT(upath != NULL, ("audit_arg_upath: upath == NULL")); | |
668 | KASSERT((flag == ARG_UPATH1) || (flag == ARG_UPATH2), | |
669 | ("audit_arg_upath: flag %llu", (unsigned long long)flag)); | |
670 | KASSERT((flag != ARG_UPATH1) || (flag != ARG_UPATH2), | |
671 | ("audit_arg_upath: flag %llu", (unsigned long long)flag)); | |
672 | ||
673 | if (flag == ARG_UPATH1) | |
674 | pathp = &ar->k_ar.ar_arg_upath1; | |
675 | else | |
676 | pathp = &ar->k_ar.ar_arg_upath2; | |
677 | ||
678 | if (*pathp == NULL) | |
679 | *pathp = malloc(MAXPATHLEN, M_AUDITPATH, M_WAITOK); | |
680 | else | |
681 | return; | |
682 | ||
683 | if (audit_canon_path(cwd_vp, upath, *pathp) == 0) | |
684 | ARG_SET_VALID(ar, flag); | |
685 | else { | |
686 | free(*pathp, M_AUDITPATH); | |
687 | *pathp = NULL; | |
688 | } | |
689 | } | |
690 | ||
691 | /* | |
692 | * Function to save the path and vnode attr information into the audit | |
693 | * record. | |
694 | * | |
695 | * It is assumed that the caller will hold any vnode locks necessary to | |
696 | * perform a VNOP_GETATTR() on the passed vnode. | |
697 | * | |
698 | * XXX: The attr code is very similar to vfs_vnops.c:vn_stat(), but always | |
699 | * provides access to the generation number as we need that to construct the | |
700 | * BSM file ID. | |
701 | * | |
702 | * XXX: We should accept the process argument from the caller, since it's | |
703 | * very likely they already have a reference. | |
704 | * | |
705 | * XXX: Error handling in this function is poor. | |
706 | * | |
707 | * XXXAUDIT: Possibly KASSERT the path pointer is NULL? | |
708 | */ | |
709 | void | |
710 | audit_arg_vnpath(struct kaudit_record *ar, struct vnode *vp, u_int64_t flags) | |
711 | { | |
712 | struct vnode_attr va; | |
713 | int error; | |
714 | int len; | |
715 | char **pathp; | |
716 | struct vnode_au_info *vnp; | |
717 | proc_t p; | |
718 | #if CONFIG_MACF | |
719 | char **vnode_mac_labelp; | |
720 | struct mac mac; | |
721 | #endif | |
722 | ||
723 | KASSERT(vp != NULL, ("audit_arg_vnpath: vp == NULL")); | |
724 | KASSERT((flags == ARG_VNODE1) || (flags == ARG_VNODE2), | |
725 | ("audit_arg_vnpath: flags != ARG_VNODE[1,2]")); | |
726 | ||
727 | p = current_proc(); | |
728 | ||
729 | /* | |
730 | * XXXAUDIT: The below clears, and then resets the flags for valid | |
731 | * arguments. Ideally, either the new vnode is used, or the old one | |
732 | * would be. | |
733 | */ | |
734 | if (flags & ARG_VNODE1) { | |
735 | ar->k_ar.ar_valid_arg &= (ARG_ALL ^ ARG_KPATH1); | |
736 | ar->k_ar.ar_valid_arg &= (ARG_ALL ^ ARG_VNODE1); | |
737 | pathp = &ar->k_ar.ar_arg_kpath1; | |
738 | vnp = &ar->k_ar.ar_arg_vnode1; | |
739 | #if CONFIG_MACF | |
740 | vnode_mac_labelp = &ar->k_ar.ar_vnode1_mac_labels; | |
741 | #endif | |
742 | } else { | |
743 | ar->k_ar.ar_valid_arg &= (ARG_ALL ^ ARG_KPATH2); | |
744 | ar->k_ar.ar_valid_arg &= (ARG_ALL ^ ARG_VNODE2); | |
745 | pathp = &ar->k_ar.ar_arg_kpath2; | |
746 | vnp = &ar->k_ar.ar_arg_vnode2; | |
747 | #if CONFIG_MACF | |
748 | vnode_mac_labelp = &ar->k_ar.ar_vnode2_mac_labels; | |
749 | #endif | |
750 | } | |
751 | ||
752 | if (*pathp == NULL) | |
753 | *pathp = malloc(MAXPATHLEN, M_AUDITPATH, M_WAITOK); | |
754 | else | |
755 | return; | |
756 | ||
757 | /* | |
758 | * If vn_getpath() succeeds, place it in a string buffer | |
759 | * attached to the audit record, and set a flag indicating | |
760 | * it is present. | |
761 | */ | |
762 | len = MAXPATHLEN; | |
763 | if (vn_getpath(vp, *pathp, &len) == 0) { | |
764 | if (flags & ARG_VNODE1) | |
765 | ARG_SET_VALID(ar, ARG_KPATH1); | |
766 | else | |
767 | ARG_SET_VALID(ar, ARG_KPATH2); | |
768 | } else { | |
769 | free(*pathp, M_AUDITPATH); | |
770 | *pathp = NULL; | |
771 | } | |
772 | ||
773 | VATTR_INIT(&va); | |
774 | VATTR_WANTED(&va, va_mode); | |
775 | VATTR_WANTED(&va, va_uid); | |
776 | VATTR_WANTED(&va, va_gid); | |
777 | VATTR_WANTED(&va, va_rdev); | |
778 | VATTR_WANTED(&va, va_fsid); | |
779 | VATTR_WANTED(&va, va_fileid); | |
780 | VATTR_WANTED(&va, va_gen); | |
781 | error = vnode_getattr(vp, &va, vfs_context_current()); | |
782 | if (error) { | |
783 | /* XXX: How to handle this case? */ | |
784 | return; | |
785 | } | |
786 | ||
787 | #if CONFIG_MACF | |
788 | if (*vnode_mac_labelp == NULL && (vp->v_lflag & VL_LABELED) == VL_LABELED) { | |
789 | *vnode_mac_labelp = (char *)zalloc(audit_mac_label_zone); | |
790 | if (*vnode_mac_labelp != NULL) { | |
791 | mac.m_buflen = MAC_AUDIT_LABEL_LEN; | |
792 | mac.m_string = *vnode_mac_labelp; | |
793 | mac_vnode_label_externalize_audit(vp, &mac); | |
794 | } | |
795 | } | |
796 | #endif | |
797 | ||
798 | /* | |
799 | * XXX do we want to fall back here when these aren't supported? | |
800 | */ | |
801 | vnp->vn_mode = va.va_mode; | |
802 | vnp->vn_uid = va.va_uid; | |
803 | vnp->vn_gid = va.va_gid; | |
804 | vnp->vn_dev = va.va_rdev; | |
805 | vnp->vn_fsid = va.va_fsid; | |
806 | vnp->vn_fileid = (u_int32_t)va.va_fileid; | |
807 | vnp->vn_gen = va.va_gen; | |
808 | if (flags & ARG_VNODE1) | |
809 | ARG_SET_VALID(ar, ARG_VNODE1); | |
810 | else | |
811 | ARG_SET_VALID(ar, ARG_VNODE2); | |
812 | } | |
813 | ||
814 | void | |
815 | audit_arg_vnpath_withref(struct kaudit_record *ar, struct vnode *vp, u_int64_t flags) | |
816 | { | |
817 | if (vp == NULL || vnode_getwithref(vp)) | |
818 | return; | |
819 | audit_arg_vnpath(ar, vp, flags); | |
820 | (void)vnode_put(vp); | |
821 | } | |
822 | ||
823 | void | |
824 | audit_arg_mach_port1(struct kaudit_record *ar, mach_port_name_t port) | |
825 | { | |
826 | ||
827 | ar->k_ar.ar_arg_mach_port1 = port; | |
828 | ARG_SET_VALID(ar, ARG_MACHPORT1); | |
829 | } | |
830 | ||
831 | void | |
832 | audit_arg_mach_port2(struct kaudit_record *ar, mach_port_name_t port) | |
833 | { | |
834 | ||
835 | ar->k_ar.ar_arg_mach_port2 = port; | |
836 | ARG_SET_VALID(ar, ARG_MACHPORT2); | |
837 | } | |
838 | ||
839 | ||
840 | /* | |
841 | * Audit the argument strings passed to exec. | |
842 | */ | |
843 | void | |
844 | audit_arg_argv(struct kaudit_record *ar, char *argv, int argc, int length) | |
845 | { | |
846 | ||
847 | if (audit_argv == 0 || argc == 0) | |
848 | return; | |
849 | ||
850 | if (ar->k_ar.ar_arg_argv == NULL) | |
851 | ar->k_ar.ar_arg_argv = malloc(length, M_AUDITTEXT, M_WAITOK); | |
852 | bcopy(argv, ar->k_ar.ar_arg_argv, length); | |
853 | ar->k_ar.ar_arg_argc = argc; | |
854 | ARG_SET_VALID(ar, ARG_ARGV); | |
855 | } | |
856 | ||
857 | /* | |
858 | * Audit the environment strings passed to exec. | |
859 | */ | |
860 | void | |
861 | audit_arg_envv(struct kaudit_record *ar, char *envv, int envc, int length) | |
862 | { | |
863 | ||
864 | if (audit_arge == 0 || envc == 0) | |
865 | return; | |
866 | ||
867 | if (ar->k_ar.ar_arg_envv == NULL) | |
868 | ar->k_ar.ar_arg_envv = malloc(length, M_AUDITTEXT, M_WAITOK); | |
869 | bcopy(envv, ar->k_ar.ar_arg_envv, length); | |
870 | ar->k_ar.ar_arg_envc = envc; | |
871 | ARG_SET_VALID(ar, ARG_ENVV); | |
872 | } | |
873 | ||
874 | /* | |
875 | * The close() system call uses it's own audit call to capture the path/vnode | |
876 | * information because those pieces are not easily obtained within the system | |
877 | * call itself. | |
878 | */ | |
879 | void | |
880 | audit_sysclose(struct kaudit_record *ar, proc_t p, int fd) | |
881 | { | |
882 | struct fileproc *fp; | |
883 | struct vnode *vp; | |
884 | ||
885 | KASSERT(p != NULL, ("audit_sysclose: p == NULL")); | |
886 | ||
887 | audit_arg_fd(ar, fd); | |
888 | ||
889 | if (fp_getfvp(p, fd, &fp, &vp) != 0) | |
890 | return; | |
891 | ||
892 | audit_arg_vnpath_withref(ar, (struct vnode *)fp->f_fglob->fg_data, | |
893 | ARG_VNODE1); | |
894 | fp_drop(p, fd, fp, 0); | |
895 | } | |
896 | ||
897 | #endif /* CONFIG_AUDIT */ |