]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
5d5c5d0d A |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. |
3 | * | |
8f6c56a5 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
8f6c56a5 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
8ad349bb | 24 | * limitations under the License. |
8f6c56a5 A |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
1c79356b A |
27 | */ |
28 | /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ | |
29 | /*- | |
30 | * Copyright (c) 1982, 1986, 1991, 1993 | |
31 | * The Regents of the University of California. All rights reserved. | |
32 | * (c) UNIX System Laboratories, Inc. | |
33 | * All or some portions of this file are derived from material licensed | |
34 | * to the University of California by American Telephone and Telegraph | |
35 | * Co. or Unix System Laboratories, Inc. and are reproduced herein with | |
36 | * the permission of UNIX System Laboratories, Inc. | |
37 | * | |
38 | * Redistribution and use in source and binary forms, with or without | |
39 | * modification, are permitted provided that the following conditions | |
40 | * are met: | |
41 | * 1. Redistributions of source code must retain the above copyright | |
42 | * notice, this list of conditions and the following disclaimer. | |
43 | * 2. Redistributions in binary form must reproduce the above copyright | |
44 | * notice, this list of conditions and the following disclaimer in the | |
45 | * documentation and/or other materials provided with the distribution. | |
46 | * 3. All advertising materials mentioning features or use of this software | |
47 | * must display the following acknowledgement: | |
48 | * This product includes software developed by the University of | |
49 | * California, Berkeley and its contributors. | |
50 | * 4. Neither the name of the University nor the names of its contributors | |
51 | * may be used to endorse or promote products derived from this software | |
52 | * without specific prior written permission. | |
53 | * | |
54 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
55 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
56 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
57 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
58 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
59 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
60 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
61 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
62 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
63 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
64 | * SUCH DAMAGE. | |
65 | * | |
66 | * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 | |
67 | */ | |
68 | /* | |
69 | * HISTORY | |
70 | */ | |
71 | ||
72 | #include <machine/spl.h> | |
73 | ||
74 | #include <sys/param.h> | |
75 | #include <sys/systm.h> | |
76 | #include <sys/time.h> | |
1c79356b A |
77 | #include <sys/resourcevar.h> |
78 | #include <sys/kernel.h> | |
79 | #include <sys/resource.h> | |
91447636 | 80 | #include <sys/proc_internal.h> |
1c79356b | 81 | #include <sys/vm.h> |
91447636 | 82 | #include <sys/sysctl.h> |
1c79356b A |
83 | |
84 | #ifdef GPROF | |
85 | #include <sys/gmon.h> | |
86 | #endif | |
87 | ||
88 | #include <kern/thread.h> | |
89 | #include <kern/ast.h> | |
90 | #include <kern/assert.h> | |
91 | #include <mach/boolean.h> | |
92 | ||
93 | #include <kern/thread_call.h> | |
94 | ||
91447636 A |
95 | void bsd_uprofil(struct time_value *syst, user_addr_t pc); |
96 | void get_procrustime(time_value_t *tv); | |
97 | int sysctl_clockrate(user_addr_t where, size_t *sizep); | |
98 | int tvtohz(struct timeval *tv); | |
99 | extern void psignal_sigprof(struct proc *); | |
100 | extern void psignal_vtalarm(struct proc *); | |
101 | extern void psignal_xcpu(struct proc *); | |
102 | ||
1c79356b A |
103 | /* |
104 | * Clock handling routines. | |
105 | * | |
106 | * This code is written to operate with two timers which run | |
107 | * independently of each other. The main clock, running at hz | |
108 | * times per second, is used to do scheduling and timeout calculations. | |
109 | * The second timer does resource utilization estimation statistically | |
110 | * based on the state of the machine phz times a second. Both functions | |
111 | * can be performed by a single clock (ie hz == phz), however the | |
112 | * statistics will be much more prone to errors. Ideally a machine | |
113 | * would have separate clocks measuring time spent in user state, system | |
114 | * state, interrupt state, and idle state. These clocks would allow a non- | |
115 | * approximate measure of resource utilization. | |
116 | */ | |
117 | ||
118 | /* | |
119 | * The hz hardware interval timer. | |
120 | * We update the events relating to real time. | |
121 | * If this timer is also being used to gather statistics, | |
122 | * we run through the statistics gathering routine as well. | |
123 | */ | |
124 | ||
91447636 A |
125 | int hz = 100; /* GET RID OF THIS !!! */ |
126 | int tick = (1000000 / 100); /* GET RID OF THIS !!! */ | |
127 | ||
1c79356b A |
128 | int bsd_hardclockinit = 0; |
129 | /*ARGSUSED*/ | |
130 | void | |
91447636 A |
131 | bsd_hardclock( |
132 | boolean_t usermode, | |
133 | #ifdef GPROF | |
134 | caddr_t pc, | |
135 | #else | |
136 | __unused caddr_t pc, | |
137 | #endif | |
138 | int numticks | |
139 | ) | |
1c79356b A |
140 | { |
141 | register struct proc *p; | |
1c79356b A |
142 | register thread_t thread; |
143 | int nusecs = numticks * tick; | |
55e303ae | 144 | struct timeval tv; |
1c79356b A |
145 | |
146 | if (!bsd_hardclockinit) | |
147 | return; | |
148 | ||
9bccf70c A |
149 | if (bsd_hardclockinit < 0) { |
150 | return; | |
151 | } | |
152 | ||
91447636 | 153 | thread = current_thread(); |
1c79356b A |
154 | /* |
155 | * Charge the time out based on the mode the cpu is in. | |
156 | * Here again we fudge for the lack of proper interval timers | |
157 | * assuming that the current state has been around at least | |
158 | * one tick. | |
159 | */ | |
0b4e3aa0 | 160 | p = (struct proc *)current_proc(); |
91447636 | 161 | if (p && ((p->p_flag & P_WEXIT) == 0)) { |
9bccf70c | 162 | if (usermode) { |
1c79356b A |
163 | if (p->p_stats && p->p_stats->p_prof.pr_scale) { |
164 | p->p_flag |= P_OWEUPC; | |
9bccf70c A |
165 | astbsd_on(); |
166 | } | |
167 | ||
168 | /* | |
169 | * CPU was in user state. Increment | |
170 | * user time counter, and process process-virtual time | |
171 | * interval timer. | |
172 | */ | |
173 | if (p->p_stats && | |
174 | timerisset(&p->p_stats->p_timer[ITIMER_VIRTUAL].it_value) && | |
175 | !itimerdecr(&p->p_stats->p_timer[ITIMER_VIRTUAL], nusecs)) { | |
9bccf70c A |
176 | |
177 | /* does psignal(p, SIGVTALRM) in a thread context */ | |
55e303ae | 178 | thread_call_func((thread_call_func_t)psignal_vtalarm, p, FALSE); |
1c79356b A |
179 | } |
180 | } | |
181 | ||
182 | /* | |
9bccf70c A |
183 | * If the cpu is currently scheduled to a process, then |
184 | * charge it with resource utilization for a tick, updating | |
185 | * statistics which run in (user+system) virtual time, | |
186 | * such as the cpu time limit and profiling timers. | |
187 | * This assumes that the current process has been running | |
188 | * the entire last tick. | |
1c79356b | 189 | */ |
9bccf70c A |
190 | if (!is_thread_idle(thread)) { |
191 | if (p->p_limit && | |
192 | p->p_limit->pl_rlimit[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { | |
193 | time_value_t sys_time, user_time; | |
1c79356b | 194 | |
9bccf70c A |
195 | thread_read_times(thread, &user_time, &sys_time); |
196 | if ((sys_time.seconds + user_time.seconds + 1) > | |
197 | p->p_limit->pl_rlimit[RLIMIT_CPU].rlim_cur) { | |
1c79356b | 198 | |
9bccf70c | 199 | /* does psignal(p, SIGXCPU) in a thread context */ |
55e303ae | 200 | thread_call_func((thread_call_func_t)psignal_xcpu, p, FALSE); |
1c79356b | 201 | |
9bccf70c A |
202 | if (p->p_limit->pl_rlimit[RLIMIT_CPU].rlim_cur < |
203 | p->p_limit->pl_rlimit[RLIMIT_CPU].rlim_max) | |
204 | p->p_limit->pl_rlimit[RLIMIT_CPU].rlim_cur += 5; | |
205 | } | |
1c79356b | 206 | } |
9bccf70c A |
207 | if (timerisset(&p->p_stats->p_timer[ITIMER_PROF].it_value) && |
208 | !itimerdecr(&p->p_stats->p_timer[ITIMER_PROF], nusecs)) { | |
1c79356b | 209 | |
9bccf70c | 210 | /* does psignal(p, SIGPROF) in a thread context */ |
55e303ae | 211 | thread_call_func((thread_call_func_t)psignal_sigprof, p, FALSE); |
9bccf70c A |
212 | } |
213 | } | |
1c79356b A |
214 | } |
215 | ||
9bccf70c | 216 | #ifdef GPROF |
1c79356b | 217 | /* |
9bccf70c | 218 | * Gather some statistics. |
1c79356b A |
219 | */ |
220 | gatherstats(usermode, pc); | |
9bccf70c | 221 | #endif |
1c79356b A |
222 | } |
223 | ||
224 | /* | |
9bccf70c | 225 | * Gather some statistics. |
1c79356b A |
226 | */ |
227 | /*ARGSUSED*/ | |
228 | void | |
9bccf70c | 229 | gatherstats( |
91447636 A |
230 | #ifdef GPROF |
231 | boolean_t usermode, | |
232 | caddr_t pc | |
233 | #else | |
234 | __unused boolean_t usermode, | |
235 | __unused caddr_t pc | |
236 | #endif | |
237 | ) | |
238 | ||
1c79356b | 239 | { |
1c79356b | 240 | #ifdef GPROF |
9bccf70c A |
241 | if (!usermode) { |
242 | struct gmonparam *p = &_gmonparam; | |
1c79356b | 243 | |
1c79356b | 244 | if (p->state == GMON_PROF_ON) { |
9bccf70c A |
245 | register int s; |
246 | ||
1c79356b A |
247 | s = pc - p->lowpc; |
248 | if (s < p->textsize) { | |
249 | s /= (HISTFRACTION * sizeof(*p->kcount)); | |
250 | p->kcount[s]++; | |
251 | } | |
252 | } | |
1c79356b | 253 | } |
9bccf70c | 254 | #endif |
1c79356b A |
255 | } |
256 | ||
257 | ||
258 | /* | |
259 | * Kernel timeout services. | |
260 | */ | |
261 | ||
262 | /* | |
263 | * Set a timeout. | |
264 | * | |
265 | * fcn: function to call | |
266 | * param: parameter to pass to function | |
267 | * interval: timeout interval, in hz. | |
268 | */ | |
269 | void | |
270 | timeout( | |
271 | timeout_fcn_t fcn, | |
272 | void *param, | |
273 | int interval) | |
274 | { | |
0b4e3aa0 | 275 | uint64_t deadline; |
1c79356b A |
276 | |
277 | clock_interval_to_deadline(interval, NSEC_PER_SEC / hz, &deadline); | |
278 | thread_call_func_delayed((thread_call_func_t)fcn, param, deadline); | |
279 | } | |
280 | ||
281 | /* | |
282 | * Cancel a timeout. | |
283 | */ | |
284 | void | |
285 | untimeout( | |
286 | register timeout_fcn_t fcn, | |
287 | register void *param) | |
288 | { | |
289 | thread_call_func_cancel((thread_call_func_t)fcn, param, FALSE); | |
290 | } | |
291 | ||
292 | ||
91447636 A |
293 | /* |
294 | * Set a timeout. | |
295 | * | |
296 | * fcn: function to call | |
297 | * param: parameter to pass to function | |
298 | * ts: timeout interval, in timespec | |
299 | */ | |
300 | void | |
301 | bsd_timeout( | |
302 | timeout_fcn_t fcn, | |
303 | void *param, | |
304 | struct timespec *ts) | |
305 | { | |
306 | uint64_t deadline = 0; | |
307 | ||
308 | if (ts && (ts->tv_sec || ts->tv_nsec)) { | |
309 | nanoseconds_to_absolutetime((uint64_t)ts->tv_sec * NSEC_PER_SEC + ts->tv_nsec, &deadline ); | |
310 | clock_absolutetime_interval_to_deadline( deadline, &deadline ); | |
311 | } | |
312 | thread_call_func_delayed((thread_call_func_t)fcn, param, deadline); | |
313 | } | |
314 | ||
315 | /* | |
316 | * Cancel a timeout. | |
317 | */ | |
318 | void | |
319 | bsd_untimeout( | |
320 | register timeout_fcn_t fcn, | |
321 | register void *param) | |
322 | { | |
323 | thread_call_func_cancel((thread_call_func_t)fcn, param, FALSE); | |
324 | } | |
325 | ||
1c79356b A |
326 | |
327 | /* | |
328 | * Compute number of hz until specified time. | |
329 | * Used to compute third argument to timeout() from an | |
330 | * absolute time. | |
331 | */ | |
91447636 | 332 | int |
1c79356b A |
333 | hzto(tv) |
334 | struct timeval *tv; | |
335 | { | |
9bccf70c | 336 | struct timeval now; |
1c79356b A |
337 | register long ticks; |
338 | register long sec; | |
9bccf70c A |
339 | |
340 | microtime(&now); | |
1c79356b A |
341 | /* |
342 | * If number of milliseconds will fit in 32 bit arithmetic, | |
343 | * then compute number of milliseconds to time and scale to | |
344 | * ticks. Otherwise just compute number of hz in time, rounding | |
345 | * times greater than representible to maximum value. | |
346 | * | |
347 | * Delta times less than 25 days can be computed ``exactly''. | |
348 | * Maximum value for any timeout in 10ms ticks is 250 days. | |
349 | */ | |
9bccf70c | 350 | sec = tv->tv_sec - now.tv_sec; |
1c79356b | 351 | if (sec <= 0x7fffffff / 1000 - 1000) |
9bccf70c A |
352 | ticks = ((tv->tv_sec - now.tv_sec) * 1000 + |
353 | (tv->tv_usec - now.tv_usec) / 1000) | |
1c79356b A |
354 | / (tick / 1000); |
355 | else if (sec <= 0x7fffffff / hz) | |
356 | ticks = sec * hz; | |
357 | else | |
358 | ticks = 0x7fffffff; | |
1c79356b | 359 | |
9bccf70c | 360 | return (ticks); |
1c79356b | 361 | } |
1c79356b A |
362 | |
363 | /* | |
364 | * Return information about system clocks. | |
365 | */ | |
366 | int | |
91447636 | 367 | sysctl_clockrate(user_addr_t where, size_t *sizep) |
1c79356b A |
368 | { |
369 | struct clockinfo clkinfo; | |
370 | ||
371 | /* | |
372 | * Construct clockinfo structure. | |
373 | */ | |
374 | clkinfo.hz = hz; | |
375 | clkinfo.tick = tick; | |
376 | clkinfo.profhz = hz; | |
377 | clkinfo.stathz = hz; | |
91447636 | 378 | return sysctl_rdstruct(where, sizep, USER_ADDR_NULL, &clkinfo, sizeof(clkinfo)); |
1c79356b A |
379 | } |
380 | ||
381 | ||
382 | /* | |
383 | * Compute number of ticks in the specified amount of time. | |
384 | */ | |
385 | int | |
91447636 | 386 | tvtohz(struct timeval *tv) |
1c79356b A |
387 | { |
388 | register unsigned long ticks; | |
389 | register long sec, usec; | |
390 | ||
391 | /* | |
392 | * If the number of usecs in the whole seconds part of the time | |
393 | * difference fits in a long, then the total number of usecs will | |
394 | * fit in an unsigned long. Compute the total and convert it to | |
395 | * ticks, rounding up and adding 1 to allow for the current tick | |
396 | * to expire. Rounding also depends on unsigned long arithmetic | |
397 | * to avoid overflow. | |
398 | * | |
399 | * Otherwise, if the number of ticks in the whole seconds part of | |
400 | * the time difference fits in a long, then convert the parts to | |
401 | * ticks separately and add, using similar rounding methods and | |
402 | * overflow avoidance. This method would work in the previous | |
403 | * case but it is slightly slower and assumes that hz is integral. | |
404 | * | |
405 | * Otherwise, round the time difference down to the maximum | |
406 | * representable value. | |
407 | * | |
408 | * If ints have 32 bits, then the maximum value for any timeout in | |
409 | * 10ms ticks is 248 days. | |
410 | */ | |
411 | sec = tv->tv_sec; | |
412 | usec = tv->tv_usec; | |
413 | if (usec < 0) { | |
414 | sec--; | |
415 | usec += 1000000; | |
416 | } | |
417 | if (sec < 0) { | |
418 | #ifdef DIAGNOSTIC | |
419 | if (usec > 0) { | |
420 | sec++; | |
421 | usec -= 1000000; | |
422 | } | |
423 | printf("tvotohz: negative time difference %ld sec %ld usec\n", | |
424 | sec, usec); | |
425 | #endif | |
426 | ticks = 1; | |
427 | } else if (sec <= LONG_MAX / 1000000) | |
428 | ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1)) | |
429 | / tick + 1; | |
430 | else if (sec <= LONG_MAX / hz) | |
431 | ticks = sec * hz | |
432 | + ((unsigned long)usec + (tick - 1)) / tick + 1; | |
433 | else | |
434 | ticks = LONG_MAX; | |
435 | if (ticks > INT_MAX) | |
436 | ticks = INT_MAX; | |
437 | return ((int)ticks); | |
438 | } | |
439 | ||
440 | ||
441 | /* | |
442 | * Start profiling on a process. | |
443 | * | |
444 | * Kernel profiling passes kernel_proc which never exits and hence | |
445 | * keeps the profile clock running constantly. | |
446 | */ | |
447 | void | |
448 | startprofclock(p) | |
449 | register struct proc *p; | |
450 | { | |
451 | if ((p->p_flag & P_PROFIL) == 0) | |
452 | p->p_flag |= P_PROFIL; | |
453 | } | |
454 | ||
455 | /* | |
456 | * Stop profiling on a process. | |
457 | */ | |
458 | void | |
459 | stopprofclock(p) | |
460 | register struct proc *p; | |
461 | { | |
462 | if (p->p_flag & P_PROFIL) | |
463 | p->p_flag &= ~P_PROFIL; | |
464 | } | |
465 | ||
466 | void | |
91447636 | 467 | bsd_uprofil(struct time_value *syst, user_addr_t pc) |
1c79356b A |
468 | { |
469 | struct proc *p = current_proc(); | |
470 | int ticks; | |
471 | struct timeval *tv; | |
472 | struct timeval st; | |
473 | ||
474 | if (p == NULL) | |
475 | return; | |
476 | if ( !(p->p_flag & P_PROFIL)) | |
477 | return; | |
478 | ||
479 | st.tv_sec = syst->seconds; | |
480 | st.tv_usec = syst->microseconds; | |
481 | ||
482 | tv = &(p->p_stats->p_ru.ru_stime); | |
483 | ||
484 | ticks = ((tv->tv_sec - st.tv_sec) * 1000 + | |
485 | (tv->tv_usec - st.tv_usec) / 1000) / | |
486 | (tick / 1000); | |
487 | if (ticks) | |
488 | addupc_task(p, pc, ticks); | |
489 | } | |
490 | ||
491 | void | |
492 | get_procrustime(time_value_t *tv) | |
493 | { | |
494 | struct proc *p = current_proc(); | |
495 | struct timeval st; | |
496 | ||
497 | if (p == NULL) | |
498 | return; | |
499 | if ( !(p->p_flag & P_PROFIL)) | |
500 | return; | |
501 | ||
502 | st = p->p_stats->p_ru.ru_stime; | |
503 | ||
504 | tv->seconds = st.tv_sec; | |
505 | tv->microseconds = st.tv_usec; | |
506 | } |