]> git.saurik.com Git - apple/security.git/blob - OSX/libsecurity_apple_csp/open_ssl/bn/bn_exp.c
Security-57336.1.9.tar.gz
[apple/security.git] / OSX / libsecurity_apple_csp / open_ssl / bn / bn_exp.c
1 /* crypto/bn/bn_exp.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ====================================================================
59 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111
112
113 #include <stdio.h>
114 #include "cryptlib.h"
115 #include "bn_lcl.h"
116 #ifdef ATALLA
117 # include <alloca.h>
118 # include <atasi.h>
119 # include <assert.h>
120 # include <dlfcn.h>
121 #endif
122
123
124 #define TABLE_SIZE 32
125
126 /* slow but works */
127 int BN_mod_mul(BIGNUM *ret, BIGNUM *a, BIGNUM *b, const BIGNUM *m, BN_CTX *ctx)
128 {
129 BIGNUM *t;
130 int r=0;
131
132 bn_check_top(a);
133 bn_check_top(b);
134 bn_check_top(m);
135
136 BN_CTX_start(ctx);
137 if ((t = BN_CTX_get(ctx)) == NULL) goto err;
138 if (a == b)
139 { if (!BN_sqr(t,a,ctx)) goto err; }
140 else
141 { if (!BN_mul(t,a,b,ctx)) goto err; }
142 if (!BN_mod(ret,t,m,ctx)) goto err;
143 r=1;
144 err:
145 BN_CTX_end(ctx);
146 return(r);
147 }
148
149
150 /* this one works - simple but works */
151 int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx)
152 {
153 int i,bits,ret=0;
154 BIGNUM *v,*rr;
155
156 BN_CTX_start(ctx);
157 if ((r == a) || (r == p))
158 rr = BN_CTX_get(ctx);
159 else
160 rr = r;
161 if ((v = BN_CTX_get(ctx)) == NULL) goto err;
162
163 if (BN_copy(v,a) == NULL) goto err;
164 bits=BN_num_bits(p);
165
166 if (BN_is_odd(p))
167 { if (BN_copy(rr,a) == NULL) goto err; }
168 else { if (!BN_one(rr)) goto err; }
169
170 for (i=1; i<bits; i++)
171 {
172 if (!BN_sqr(v,v,ctx)) goto err;
173 if (BN_is_bit_set(p,i))
174 {
175 if (!BN_mul(rr,rr,v,ctx)) goto err;
176 }
177 }
178 ret=1;
179 err:
180 if (r != rr) BN_copy(r,rr);
181 BN_CTX_end(ctx);
182 return(ret);
183 }
184
185
186 #ifdef ATALLA
187
188 /*
189 * This routine will dynamically check for the existance of an Atalla AXL-200
190 * SSL accelerator module. If one is found, the variable
191 * asi_accelerator_present is set to 1 and the function pointers
192 * ptr_ASI_xxxxxx above will be initialized to corresponding ASI API calls.
193 */
194 typedef int tfnASI_GetPerformanceStatistics(int reset_flag,
195 unsigned int *ret_buf);
196 typedef int tfnASI_GetHardwareConfig(long card_num, unsigned int *ret_buf);
197 typedef int tfnASI_RSAPrivateKeyOpFn(RSAPrivateKey * rsaKey,
198 unsigned char *output,
199 unsigned char *input,
200 unsigned int modulus_len);
201
202 static tfnASI_GetHardwareConfig *ptr_ASI_GetHardwareConfig;
203 static tfnASI_RSAPrivateKeyOpFn *ptr_ASI_RSAPrivateKeyOpFn;
204 static tfnASI_GetPerformanceStatistics *ptr_ASI_GetPerformanceStatistics;
205 static int asi_accelerator_present;
206 static int tried_atalla;
207
208 void atalla_initialize_accelerator_handle(void)
209 {
210 void *dl_handle;
211 int status;
212 unsigned int config_buf[1024];
213 static int tested;
214
215 if(tested)
216 return;
217
218 tested=1;
219
220 bzero((void *)config_buf, 1024);
221
222 /*
223 * Check to see if the library is present on the system
224 */
225 dl_handle = dlopen("atasi.so", RTLD_NOW);
226 if (dl_handle == (void *) NULL)
227 {
228 /* printf("atasi.so library is not present on the system\n");
229 printf("No HW acceleration available\n");*/
230 return;
231 }
232
233 /*
234 * The library is present. Now we'll check to insure that the
235 * LDM is up and running. First we'll get the address of the
236 * function in the atasi library that we need to see if the
237 * LDM is operating.
238 */
239
240 ptr_ASI_GetHardwareConfig =
241 (tfnASI_GetHardwareConfig *)dlsym(dl_handle,"ASI_GetHardwareConfig");
242
243 if (ptr_ASI_GetHardwareConfig)
244 {
245 /*
246 * We found the call, now we'll get our config
247 * status. If we get a non 0 result, the LDM is not
248 * running and we cannot use the Atalla ASI *
249 * library.
250 */
251 status = (*ptr_ASI_GetHardwareConfig)(0L, config_buf);
252 if (status != 0)
253 {
254 printf("atasi.so library is present but not initialized\n");
255 printf("No HW acceleration available\n");
256 return;
257 }
258 }
259 else
260 {
261 /* printf("We found the library, but not the function. Very Strange!\n");*/
262 return ;
263 }
264
265 /*
266 * It looks like we have acceleration capabilities. Load up the
267 * pointers to our ASI API calls.
268 */
269 ptr_ASI_RSAPrivateKeyOpFn=
270 (tfnASI_RSAPrivateKeyOpFn *)dlsym(dl_handle, "ASI_RSAPrivateKeyOpFn");
271 if (ptr_ASI_RSAPrivateKeyOpFn == NULL)
272 {
273 /* printf("We found the library, but no RSA function. Very Strange!\n");*/
274 return;
275 }
276
277 ptr_ASI_GetPerformanceStatistics =
278 (tfnASI_GetPerformanceStatistics *)dlsym(dl_handle, "ASI_GetPerformanceStatistics");
279 if (ptr_ASI_GetPerformanceStatistics == NULL)
280 {
281 /* printf("We found the library, but no stat function. Very Strange!\n");*/
282 return;
283 }
284
285 /*
286 * Indicate that acceleration is available
287 */
288 asi_accelerator_present = 1;
289
290 /* printf("This system has acceleration!\n");*/
291
292 return;
293 }
294
295 /* make sure this only gets called once when bn_mod_exp calls bn_mod_exp_mont */
296 int BN_mod_exp_atalla(BIGNUM *r, BIGNUM *a, const BIGNUM *p, const BIGNUM *m)
297 {
298 unsigned char *abin;
299 unsigned char *pbin;
300 unsigned char *mbin;
301 unsigned char *rbin;
302 int an,pn,mn,ret;
303 RSAPrivateKey keydata;
304
305 atalla_initialize_accelerator_handle();
306 if(!asi_accelerator_present)
307 return 0;
308
309
310 /* We should be able to run without size testing */
311 # define ASIZE 128
312 an=BN_num_bytes(a);
313 pn=BN_num_bytes(p);
314 mn=BN_num_bytes(m);
315
316 if(an <= ASIZE && pn <= ASIZE && mn <= ASIZE)
317 {
318 int size=mn;
319
320 assert(an <= mn);
321 abin=alloca(size);
322 memset(abin,'\0',mn);
323 BN_bn2bin(a,abin+size-an);
324
325 pbin=alloca(pn);
326 BN_bn2bin(p,pbin);
327
328 mbin=alloca(size);
329 memset(mbin,'\0',mn);
330 BN_bn2bin(m,mbin+size-mn);
331
332 rbin=alloca(size);
333
334 memset(&keydata,'\0',sizeof keydata);
335 keydata.privateExponent.data=pbin;
336 keydata.privateExponent.len=pn;
337 keydata.modulus.data=mbin;
338 keydata.modulus.len=size;
339
340 ret=(*ptr_ASI_RSAPrivateKeyOpFn)(&keydata,rbin,abin,keydata.modulus.len);
341 /*fprintf(stderr,"!%s\n",BN_bn2hex(a));*/
342 if(!ret)
343 {
344 BN_bin2bn(rbin,keydata.modulus.len,r);
345 /*fprintf(stderr,"?%s\n",BN_bn2hex(r));*/
346 return 1;
347 }
348 }
349 return 0;
350 }
351 #endif /* def ATALLA */
352
353
354 int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
355 BN_CTX *ctx)
356 {
357 int ret;
358
359 bn_check_top(a);
360 bn_check_top(p);
361 bn_check_top(m);
362
363 #ifdef ATALLA
364 if(BN_mod_exp_atalla(r,a,p,m))
365 return 1;
366 /* If it fails, try the other methods (but don't try atalla again) */
367 tried_atalla=1;
368 #endif
369
370 #ifdef MONT_MUL_MOD
371 /* I have finally been able to take out this pre-condition of
372 * the top bit being set. It was caused by an error in BN_div
373 * with negatives. There was also another problem when for a^b%m
374 * a >= m. eay 07-May-97 */
375 /* if ((m->d[m->top-1]&BN_TBIT) && BN_is_odd(m)) */
376
377 if (BN_is_odd(m))
378 {
379 if (a->top == 1)
380 {
381 BN_ULONG A = a->d[0];
382 ret=BN_mod_exp_mont_word(r,A,p,m,ctx,NULL);
383 }
384 else
385 ret=BN_mod_exp_mont(r,a,p,m,ctx,NULL);
386 }
387 else
388 #endif
389 #ifdef RECP_MUL_MOD
390 { ret=BN_mod_exp_recp(r,a,p,m,ctx); }
391 #else
392 { ret=BN_mod_exp_simple(r,a,p,m,ctx); }
393 #endif
394
395 #ifdef ATALLA
396 tried_atalla=0;
397 #endif
398
399 return(ret);
400 }
401
402
403 int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
404 const BIGNUM *m, BN_CTX *ctx)
405 {
406 int i,j,bits,ret=0,wstart,wend,window,wvalue;
407 int start=1,ts=0;
408 BIGNUM *aa;
409 BIGNUM val[TABLE_SIZE];
410 BN_RECP_CTX recp;
411
412 bits=BN_num_bits(p);
413
414 if (bits == 0)
415 {
416 BN_one(r);
417 return(1);
418 }
419
420 BN_CTX_start(ctx);
421 if ((aa = BN_CTX_get(ctx)) == NULL) goto err;
422
423 BN_RECP_CTX_init(&recp);
424 if (BN_RECP_CTX_set(&recp,m,ctx) <= 0) goto err;
425
426 BN_init(&(val[0]));
427 ts=1;
428
429 if (!BN_mod(&(val[0]),a,m,ctx)) goto err; /* 1 */
430
431 window = BN_window_bits_for_exponent_size(bits);
432 if (window > 1)
433 {
434 if (!BN_mod_mul_reciprocal(aa,&(val[0]),&(val[0]),&recp,ctx))
435 goto err; /* 2 */
436 j=1<<(window-1);
437 for (i=1; i<j; i++)
438 {
439 BN_init(&val[i]);
440 if (!BN_mod_mul_reciprocal(&(val[i]),&(val[i-1]),aa,&recp,ctx))
441 goto err;
442 }
443 ts=i;
444 }
445
446 start=1; /* This is used to avoid multiplication etc
447 * when there is only the value '1' in the
448 * buffer. */
449 wvalue=0; /* The 'value' of the window */
450 wstart=bits-1; /* The top bit of the window */
451 wend=0; /* The bottom bit of the window */
452
453 if (!BN_one(r)) goto err;
454
455 for (;;)
456 {
457 if (BN_is_bit_set(p,wstart) == 0)
458 {
459 if (!start)
460 if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx))
461 goto err;
462 if (wstart == 0) break;
463 wstart--;
464 continue;
465 }
466 /* We now have wstart on a 'set' bit, we now need to work out
467 * how bit a window to do. To do this we need to scan
468 * forward until the last set bit before the end of the
469 * window */
470 j=wstart;
471 wvalue=1;
472 wend=0;
473 for (i=1; i<window; i++)
474 {
475 if (wstart-i < 0) break;
476 if (BN_is_bit_set(p,wstart-i))
477 {
478 wvalue<<=(i-wend);
479 wvalue|=1;
480 wend=i;
481 }
482 }
483
484 /* wend is the size of the current window */
485 j=wend+1;
486 /* add the 'bytes above' */
487 if (!start)
488 for (i=0; i<j; i++)
489 {
490 if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx))
491 goto err;
492 }
493
494 /* wvalue will be an odd number < 2^window */
495 if (!BN_mod_mul_reciprocal(r,r,&(val[wvalue>>1]),&recp,ctx))
496 goto err;
497
498 /* move the 'window' down further */
499 wstart-=wend+1;
500 wvalue=0;
501 start=0;
502 if (wstart < 0) break;
503 }
504 ret=1;
505 err:
506 BN_CTX_end(ctx);
507 for (i=0; i<ts; i++)
508 BN_clear_free(&(val[i]));
509 BN_RECP_CTX_free(&recp);
510 return(ret);
511 }
512
513
514 int BN_mod_exp_mont(BIGNUM *rr, BIGNUM *a, const BIGNUM *p,
515 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
516 {
517 int i,j,bits,ret=0,wstart,wend,window,wvalue;
518 int start=1,ts=0;
519 BIGNUM *d,*r;
520 BIGNUM *aa;
521 BIGNUM val[TABLE_SIZE];
522 BN_MONT_CTX *mont=NULL;
523
524 bn_check_top(a);
525 bn_check_top(p);
526 bn_check_top(m);
527
528 #ifdef ATALLA
529 if(!tried_atalla && BN_mod_exp_atalla(rr,a,p,m))
530 return 1;
531 /* If it fails, try the other methods */
532 #endif
533
534 if (!(m->d[0] & 1))
535 {
536 BNerr(BN_F_BN_MOD_EXP_MONT,BN_R_CALLED_WITH_EVEN_MODULUS);
537 return(0);
538 }
539 bits=BN_num_bits(p);
540 if (bits == 0)
541 {
542 BN_one(rr);
543 return(1);
544 }
545 BN_CTX_start(ctx);
546 d = BN_CTX_get(ctx);
547 r = BN_CTX_get(ctx);
548 if (d == NULL || r == NULL) goto err;
549
550 /* If this is not done, things will break in the montgomery
551 * part */
552
553 if (in_mont != NULL)
554 mont=in_mont;
555 else
556 {
557 if ((mont=BN_MONT_CTX_new()) == NULL) goto err;
558 if (!BN_MONT_CTX_set(mont,m,ctx)) goto err;
559 }
560
561 BN_init(&val[0]);
562 ts=1;
563 if (BN_ucmp(a,m) >= 0)
564 {
565 if (!BN_mod(&(val[0]),a,m,ctx))
566 goto err;
567 aa= &(val[0]);
568 }
569 else
570 aa=a;
571 if (!BN_to_montgomery(&(val[0]),aa,mont,ctx)) goto err; /* 1 */
572
573 window = BN_window_bits_for_exponent_size(bits);
574 if (window > 1)
575 {
576 if (!BN_mod_mul_montgomery(d,&(val[0]),&(val[0]),mont,ctx)) goto err; /* 2 */
577 j=1<<(window-1);
578 for (i=1; i<j; i++)
579 {
580 BN_init(&(val[i]));
581 if (!BN_mod_mul_montgomery(&(val[i]),&(val[i-1]),d,mont,ctx))
582 goto err;
583 }
584 ts=i;
585 }
586
587 start=1; /* This is used to avoid multiplication etc
588 * when there is only the value '1' in the
589 * buffer. */
590 wvalue=0; /* The 'value' of the window */
591 wstart=bits-1; /* The top bit of the window */
592 wend=0; /* The bottom bit of the window */
593
594 if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err;
595 for (;;)
596 {
597 if (BN_is_bit_set(p,wstart) == 0)
598 {
599 if (!start)
600 {
601 if (!BN_mod_mul_montgomery(r,r,r,mont,ctx))
602 goto err;
603 }
604 if (wstart == 0) break;
605 wstart--;
606 continue;
607 }
608 /* We now have wstart on a 'set' bit, we now need to work out
609 * how bit a window to do. To do this we need to scan
610 * forward until the last set bit before the end of the
611 * window */
612 j=wstart;
613 wvalue=1;
614 wend=0;
615 for (i=1; i<window; i++)
616 {
617 if (wstart-i < 0) break;
618 if (BN_is_bit_set(p,wstart-i))
619 {
620 wvalue<<=(i-wend);
621 wvalue|=1;
622 wend=i;
623 }
624 }
625
626 /* wend is the size of the current window */
627 j=wend+1;
628 /* add the 'bytes above' */
629 if (!start)
630 for (i=0; i<j; i++)
631 {
632 if (!BN_mod_mul_montgomery(r,r,r,mont,ctx))
633 goto err;
634 }
635
636 /* wvalue will be an odd number < 2^window */
637 if (!BN_mod_mul_montgomery(r,r,&(val[wvalue>>1]),mont,ctx))
638 goto err;
639
640 /* move the 'window' down further */
641 wstart-=wend+1;
642 wvalue=0;
643 start=0;
644 if (wstart < 0) break;
645 }
646 if (!BN_from_montgomery(rr,r,mont,ctx)) goto err;
647 ret=1;
648 err:
649 if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont);
650 BN_CTX_end(ctx);
651 for (i=0; i<ts; i++)
652 BN_clear_free(&(val[i]));
653 return(ret);
654 }
655
656 int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
657 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
658 {
659 BN_MONT_CTX *mont = NULL;
660 int b, bits, ret=0;
661 int r_is_one;
662 BN_ULONG w, next_w;
663 BIGNUM *d, *r, *t;
664 BIGNUM *swap_tmp;
665 #define BN_MOD_MUL_WORD(r, w, m) \
666 (BN_mul_word(r, (w)) && \
667 (/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \
668 (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1))))
669 /* BN_MOD_MUL_WORD is only used with 'w' large,
670 * so the BN_ucmp test is probably more overhead
671 * than always using BN_mod (which uses BN_copy if
672 * a similar test returns true). */
673 #define BN_TO_MONTGOMERY_WORD(r, w, mont) \
674 (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx))
675
676 bn_check_top(p);
677 bn_check_top(m);
678
679 if (!(m->d[0] & 1))
680 {
681 BNerr(BN_F_BN_MOD_EXP_MONT_WORD,BN_R_CALLED_WITH_EVEN_MODULUS);
682 return(0);
683 }
684 bits = BN_num_bits(p);
685 if (bits == 0)
686 {
687 BN_one(rr);
688 return(1);
689 }
690 BN_CTX_start(ctx);
691 d = BN_CTX_get(ctx);
692 r = BN_CTX_get(ctx);
693 t = BN_CTX_get(ctx);
694 if (d == NULL || r == NULL || t == NULL) goto err;
695
696 #ifdef ATALLA
697 if (!tried_atalla)
698 {
699 BN_set_word(t, a);
700 if (BN_mod_exp_atalla(rr, t, p, m))
701 {
702 BN_CTX_end(ctx);
703 return 1;
704 }
705 }
706 /* If it fails, try the other methods */
707 #endif
708
709 if (in_mont != NULL)
710 mont=in_mont;
711 else
712 {
713 if ((mont = BN_MONT_CTX_new()) == NULL) goto err;
714 if (!BN_MONT_CTX_set(mont, m, ctx)) goto err;
715 }
716
717 r_is_one = 1; /* except for Montgomery factor */
718
719 /* bits-1 >= 0 */
720
721 /* The result is accumulated in the product r*w. */
722 w = a; /* bit 'bits-1' of 'p' is always set */
723 for (b = bits-2; b >= 0; b--)
724 {
725 /* First, square r*w. */
726 next_w = w*w;
727 if ((next_w/w) != w) /* overflow */
728 {
729 if (r_is_one)
730 {
731 if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err;
732 r_is_one = 0;
733 }
734 else
735 {
736 if (!BN_MOD_MUL_WORD(r, w, m)) goto err;
737 }
738 next_w = 1;
739 }
740 w = next_w;
741 if (!r_is_one)
742 {
743 if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) goto err;
744 }
745
746 /* Second, multiply r*w by 'a' if exponent bit is set. */
747 if (BN_is_bit_set(p, b))
748 {
749 next_w = w*a;
750 if ((next_w/a) != w) /* overflow */
751 {
752 if (r_is_one)
753 {
754 if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err;
755 r_is_one = 0;
756 }
757 else
758 {
759 if (!BN_MOD_MUL_WORD(r, w, m)) goto err;
760 }
761 next_w = a;
762 }
763 w = next_w;
764 }
765 }
766
767 /* Finally, set r:=r*w. */
768 if (w != 1)
769 {
770 if (r_is_one)
771 {
772 if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err;
773 r_is_one = 0;
774 }
775 else
776 {
777 if (!BN_MOD_MUL_WORD(r, w, m)) goto err;
778 }
779 }
780
781 if (r_is_one) /* can happen only if a == 1*/
782 {
783 if (!BN_one(rr)) goto err;
784 }
785 else
786 {
787 if (!BN_from_montgomery(rr, r, mont, ctx)) goto err;
788 }
789 ret = 1;
790 err:
791 if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont);
792 BN_CTX_end(ctx);
793 return(ret);
794 }
795
796
797 /* The old fallback, simple version :-) */
798 int BN_mod_exp_simple(BIGNUM *r, BIGNUM *a, BIGNUM *p, BIGNUM *m,
799 BN_CTX *ctx)
800 {
801 int i,j,bits,ret=0,wstart,wend,window,wvalue,ts=0;
802 int start=1;
803 BIGNUM *d;
804 BIGNUM val[TABLE_SIZE];
805
806 bits=BN_num_bits(p);
807
808 if (bits == 0)
809 {
810 BN_one(r);
811 return(1);
812 }
813
814 BN_CTX_start(ctx);
815 if ((d = BN_CTX_get(ctx)) == NULL) goto err;
816
817 BN_init(&(val[0]));
818 ts=1;
819 if (!BN_mod(&(val[0]),a,m,ctx)) goto err; /* 1 */
820
821 window = BN_window_bits_for_exponent_size(bits);
822 if (window > 1)
823 {
824 if (!BN_mod_mul(d,&(val[0]),&(val[0]),m,ctx))
825 goto err; /* 2 */
826 j=1<<(window-1);
827 for (i=1; i<j; i++)
828 {
829 BN_init(&(val[i]));
830 if (!BN_mod_mul(&(val[i]),&(val[i-1]),d,m,ctx))
831 goto err;
832 }
833 ts=i;
834 }
835
836 start=1; /* This is used to avoid multiplication etc
837 * when there is only the value '1' in the
838 * buffer. */
839 wvalue=0; /* The 'value' of the window */
840 wstart=bits-1; /* The top bit of the window */
841 wend=0; /* The bottom bit of the window */
842
843 if (!BN_one(r)) goto err;
844
845 for (;;)
846 {
847 if (BN_is_bit_set(p,wstart) == 0)
848 {
849 if (!start)
850 if (!BN_mod_mul(r,r,r,m,ctx))
851 goto err;
852 if (wstart == 0) break;
853 wstart--;
854 continue;
855 }
856 /* We now have wstart on a 'set' bit, we now need to work out
857 * how bit a window to do. To do this we need to scan
858 * forward until the last set bit before the end of the
859 * window */
860 j=wstart;
861 wvalue=1;
862 wend=0;
863 for (i=1; i<window; i++)
864 {
865 if (wstart-i < 0) break;
866 if (BN_is_bit_set(p,wstart-i))
867 {
868 wvalue<<=(i-wend);
869 wvalue|=1;
870 wend=i;
871 }
872 }
873
874 /* wend is the size of the current window */
875 j=wend+1;
876 /* add the 'bytes above' */
877 if (!start)
878 for (i=0; i<j; i++)
879 {
880 if (!BN_mod_mul(r,r,r,m,ctx))
881 goto err;
882 }
883
884 /* wvalue will be an odd number < 2^window */
885 if (!BN_mod_mul(r,r,&(val[wvalue>>1]),m,ctx))
886 goto err;
887
888 /* move the 'window' down further */
889 wstart-=wend+1;
890 wvalue=0;
891 start=0;
892 if (wstart < 0) break;
893 }
894 ret=1;
895 err:
896 BN_CTX_end(ctx);
897 for (i=0; i<ts; i++)
898 BN_clear_free(&(val[i]));
899 return(ret);
900 }
901