]>
Commit | Line | Data |
---|---|---|
89c4ed63 A |
1 | /* |
2 | * FILE: sha2.c | |
3 | * AUTHOR: Aaron D. Gifford - http://www.aarongifford.com/ | |
4 | * | |
5 | * Copyright (c) 2000-2001, Aaron D. Gifford | |
6 | * All rights reserved. | |
7 | * | |
8 | * Modified by Jelte Jansen to fit in ldns, and not clash with any | |
9 | * system-defined SHA code. | |
10 | * Changes: | |
11 | * - Renamed (external) functions and constants to fit ldns style | |
12 | * - Removed _End and _Data functions | |
13 | * - Added ldns_shaX(data, len, digest) convenience functions | |
14 | * - Removed prototypes of _Transform functions and made those static | |
15 | * Modified by Wouter, and trimmed, to provide SHA512 for getentropy_fallback. | |
16 | * | |
17 | * Redistribution and use in source and binary forms, with or without | |
18 | * modification, are permitted provided that the following conditions | |
19 | * are met: | |
20 | * 1. Redistributions of source code must retain the above copyright | |
21 | * notice, this list of conditions and the following disclaimer. | |
22 | * 2. Redistributions in binary form must reproduce the above copyright | |
23 | * notice, this list of conditions and the following disclaimer in the | |
24 | * documentation and/or other materials provided with the distribution. | |
25 | * 3. Neither the name of the copyright holder nor the names of contributors | |
26 | * may be used to endorse or promote products derived from this software | |
27 | * without specific prior written permission. | |
28 | * | |
29 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND | |
30 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
31 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
32 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE | |
33 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
34 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
35 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
36 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
37 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
38 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
39 | * SUCH DAMAGE. | |
40 | * | |
41 | * $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $ | |
42 | */ | |
43 | #include "config.h" | |
44 | ||
45 | #include <string.h> /* memcpy()/memset() or bcopy()/bzero() */ | |
46 | #include <assert.h> /* assert() */ | |
47 | ||
48 | /* do we have sha512 header defs */ | |
49 | #ifndef SHA512_DIGEST_LENGTH | |
50 | #define SHA512_BLOCK_LENGTH 128 | |
51 | #define SHA512_DIGEST_LENGTH 64 | |
52 | #define SHA512_DIGEST_STRING_LENGTH (SHA512_DIGEST_LENGTH * 2 + 1) | |
53 | typedef struct _SHA512_CTX { | |
54 | uint64_t state[8]; | |
55 | uint64_t bitcount[2]; | |
56 | uint8_t buffer[SHA512_BLOCK_LENGTH]; | |
57 | } SHA512_CTX; | |
58 | #endif /* do we have sha512 header defs */ | |
59 | ||
60 | void SHA512_Init(SHA512_CTX*); | |
61 | void SHA512_Update(SHA512_CTX*, void*, size_t); | |
62 | void SHA512_Final(uint8_t[SHA512_DIGEST_LENGTH], SHA512_CTX*); | |
63 | unsigned char *SHA512(void *data, unsigned int data_len, unsigned char *digest); | |
64 | ||
65 | ||
66 | /*** SHA-256/384/512 Machine Architecture Definitions *****************/ | |
67 | /* | |
68 | * BYTE_ORDER NOTE: | |
69 | * | |
70 | * Please make sure that your system defines BYTE_ORDER. If your | |
71 | * architecture is little-endian, make sure it also defines | |
72 | * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are | |
73 | * equivilent. | |
74 | * | |
75 | * If your system does not define the above, then you can do so by | |
76 | * hand like this: | |
77 | * | |
78 | * #define LITTLE_ENDIAN 1234 | |
79 | * #define BIG_ENDIAN 4321 | |
80 | * | |
81 | * And for little-endian machines, add: | |
82 | * | |
83 | * #define BYTE_ORDER LITTLE_ENDIAN | |
84 | * | |
85 | * Or for big-endian machines: | |
86 | * | |
87 | * #define BYTE_ORDER BIG_ENDIAN | |
88 | * | |
89 | * The FreeBSD machine this was written on defines BYTE_ORDER | |
90 | * appropriately by including <sys/types.h> (which in turn includes | |
91 | * <machine/endian.h> where the appropriate definitions are actually | |
92 | * made). | |
93 | */ | |
94 | #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN) | |
95 | #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN | |
96 | #endif | |
97 | ||
98 | typedef uint8_t sha2_byte; /* Exactly 1 byte */ | |
99 | typedef uint32_t sha2_word32; /* Exactly 4 bytes */ | |
100 | #ifdef S_SPLINT_S | |
101 | typedef unsigned long long sha2_word64; /* lint 8 bytes */ | |
102 | #else | |
103 | typedef uint64_t sha2_word64; /* Exactly 8 bytes */ | |
104 | #endif | |
105 | ||
106 | /*** SHA-256/384/512 Various Length Definitions ***********************/ | |
107 | #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) | |
108 | ||
109 | ||
110 | /*** ENDIAN REVERSAL MACROS *******************************************/ | |
111 | #if BYTE_ORDER == LITTLE_ENDIAN | |
112 | #define REVERSE32(w,x) { \ | |
113 | sha2_word32 tmp = (w); \ | |
114 | tmp = (tmp >> 16) | (tmp << 16); \ | |
115 | (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \ | |
116 | } | |
117 | #ifndef S_SPLINT_S | |
118 | #define REVERSE64(w,x) { \ | |
119 | sha2_word64 tmp = (w); \ | |
120 | tmp = (tmp >> 32) | (tmp << 32); \ | |
121 | tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \ | |
122 | ((tmp & 0x00ff00ff00ff00ffULL) << 8); \ | |
123 | (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \ | |
124 | ((tmp & 0x0000ffff0000ffffULL) << 16); \ | |
125 | } | |
126 | #else /* splint */ | |
127 | #define REVERSE64(w,x) /* splint */ | |
128 | #endif /* splint */ | |
129 | #endif /* BYTE_ORDER == LITTLE_ENDIAN */ | |
130 | ||
131 | /* | |
132 | * Macro for incrementally adding the unsigned 64-bit integer n to the | |
133 | * unsigned 128-bit integer (represented using a two-element array of | |
134 | * 64-bit words): | |
135 | */ | |
136 | #define ADDINC128(w,n) { \ | |
137 | (w)[0] += (sha2_word64)(n); \ | |
138 | if ((w)[0] < (n)) { \ | |
139 | (w)[1]++; \ | |
140 | } \ | |
141 | } | |
142 | #ifdef S_SPLINT_S | |
143 | #undef ADDINC128 | |
144 | #define ADDINC128(w,n) /* splint */ | |
145 | #endif | |
146 | ||
147 | /* | |
148 | * Macros for copying blocks of memory and for zeroing out ranges | |
149 | * of memory. Using these macros makes it easy to switch from | |
150 | * using memset()/memcpy() and using bzero()/bcopy(). | |
151 | * | |
152 | * Please define either SHA2_USE_MEMSET_MEMCPY or define | |
153 | * SHA2_USE_BZERO_BCOPY depending on which function set you | |
154 | * choose to use: | |
155 | */ | |
156 | #if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY) | |
157 | /* Default to memset()/memcpy() if no option is specified */ | |
158 | #define SHA2_USE_MEMSET_MEMCPY 1 | |
159 | #endif | |
160 | #if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY) | |
161 | /* Abort with an error if BOTH options are defined */ | |
162 | #error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both! | |
163 | #endif | |
164 | ||
165 | #ifdef SHA2_USE_MEMSET_MEMCPY | |
166 | #define MEMSET_BZERO(p,l) memset((p), 0, (l)) | |
167 | #define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l)) | |
168 | #endif | |
169 | #ifdef SHA2_USE_BZERO_BCOPY | |
170 | #define MEMSET_BZERO(p,l) bzero((p), (l)) | |
171 | #define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l)) | |
172 | #endif | |
173 | ||
174 | ||
175 | /*** THE SIX LOGICAL FUNCTIONS ****************************************/ | |
176 | /* | |
177 | * Bit shifting and rotation (used by the six SHA-XYZ logical functions: | |
178 | * | |
179 | * NOTE: The naming of R and S appears backwards here (R is a SHIFT and | |
180 | * S is a ROTATION) because the SHA-256/384/512 description document | |
181 | * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this | |
182 | * same "backwards" definition. | |
183 | */ | |
184 | /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ | |
185 | #define R(b,x) ((x) >> (b)) | |
186 | /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ | |
187 | #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) | |
188 | ||
189 | /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ | |
190 | #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) | |
191 | #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) | |
192 | ||
193 | /* Four of six logical functions used in SHA-384 and SHA-512: */ | |
194 | #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) | |
195 | #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) | |
196 | #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) | |
197 | #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) | |
198 | ||
199 | /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ | |
200 | /* Hash constant words K for SHA-384 and SHA-512: */ | |
201 | static const sha2_word64 K512[80] = { | |
202 | 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, | |
203 | 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, | |
204 | 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, | |
205 | 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, | |
206 | 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, | |
207 | 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, | |
208 | 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, | |
209 | 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, | |
210 | 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, | |
211 | 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, | |
212 | 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, | |
213 | 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, | |
214 | 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, | |
215 | 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, | |
216 | 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, | |
217 | 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, | |
218 | 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, | |
219 | 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, | |
220 | 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, | |
221 | 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, | |
222 | 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, | |
223 | 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, | |
224 | 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, | |
225 | 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, | |
226 | 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, | |
227 | 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, | |
228 | 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, | |
229 | 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, | |
230 | 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, | |
231 | 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, | |
232 | 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, | |
233 | 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, | |
234 | 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, | |
235 | 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, | |
236 | 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, | |
237 | 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, | |
238 | 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, | |
239 | 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, | |
240 | 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, | |
241 | 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL | |
242 | }; | |
243 | ||
244 | /* initial hash value H for SHA-512 */ | |
245 | static const sha2_word64 sha512_initial_hash_value[8] = { | |
246 | 0x6a09e667f3bcc908ULL, | |
247 | 0xbb67ae8584caa73bULL, | |
248 | 0x3c6ef372fe94f82bULL, | |
249 | 0xa54ff53a5f1d36f1ULL, | |
250 | 0x510e527fade682d1ULL, | |
251 | 0x9b05688c2b3e6c1fULL, | |
252 | 0x1f83d9abfb41bd6bULL, | |
253 | 0x5be0cd19137e2179ULL | |
254 | }; | |
255 | ||
256 | typedef union _ldns_sha2_buffer_union { | |
257 | uint8_t* theChars; | |
258 | uint64_t* theLongs; | |
259 | } ldns_sha2_buffer_union; | |
260 | ||
261 | /*** SHA-512: *********************************************************/ | |
262 | void SHA512_Init(SHA512_CTX* context) { | |
263 | if (context == (SHA512_CTX*)0) { | |
264 | return; | |
265 | } | |
266 | MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH); | |
267 | MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH); | |
268 | context->bitcount[0] = context->bitcount[1] = 0; | |
269 | } | |
270 | ||
271 | static void SHA512_Transform(SHA512_CTX* context, | |
272 | const sha2_word64* data) { | |
273 | sha2_word64 a, b, c, d, e, f, g, h, s0, s1; | |
274 | sha2_word64 T1, T2, *W512 = (sha2_word64*)context->buffer; | |
275 | int j; | |
276 | ||
277 | /* initialize registers with the prev. intermediate value */ | |
278 | a = context->state[0]; | |
279 | b = context->state[1]; | |
280 | c = context->state[2]; | |
281 | d = context->state[3]; | |
282 | e = context->state[4]; | |
283 | f = context->state[5]; | |
284 | g = context->state[6]; | |
285 | h = context->state[7]; | |
286 | ||
287 | j = 0; | |
288 | do { | |
289 | #if BYTE_ORDER == LITTLE_ENDIAN | |
290 | /* Convert TO host byte order */ | |
291 | REVERSE64(*data++, W512[j]); | |
292 | /* Apply the SHA-512 compression function to update a..h */ | |
293 | T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; | |
294 | #else /* BYTE_ORDER == LITTLE_ENDIAN */ | |
295 | /* Apply the SHA-512 compression function to update a..h with copy */ | |
296 | T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++); | |
297 | #endif /* BYTE_ORDER == LITTLE_ENDIAN */ | |
298 | T2 = Sigma0_512(a) + Maj(a, b, c); | |
299 | h = g; | |
300 | g = f; | |
301 | f = e; | |
302 | e = d + T1; | |
303 | d = c; | |
304 | c = b; | |
305 | b = a; | |
306 | a = T1 + T2; | |
307 | ||
308 | j++; | |
309 | } while (j < 16); | |
310 | ||
311 | do { | |
312 | /* Part of the message block expansion: */ | |
313 | s0 = W512[(j+1)&0x0f]; | |
314 | s0 = sigma0_512(s0); | |
315 | s1 = W512[(j+14)&0x0f]; | |
316 | s1 = sigma1_512(s1); | |
317 | ||
318 | /* Apply the SHA-512 compression function to update a..h */ | |
319 | T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + | |
320 | (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); | |
321 | T2 = Sigma0_512(a) + Maj(a, b, c); | |
322 | h = g; | |
323 | g = f; | |
324 | f = e; | |
325 | e = d + T1; | |
326 | d = c; | |
327 | c = b; | |
328 | b = a; | |
329 | a = T1 + T2; | |
330 | ||
331 | j++; | |
332 | } while (j < 80); | |
333 | ||
334 | /* Compute the current intermediate hash value */ | |
335 | context->state[0] += a; | |
336 | context->state[1] += b; | |
337 | context->state[2] += c; | |
338 | context->state[3] += d; | |
339 | context->state[4] += e; | |
340 | context->state[5] += f; | |
341 | context->state[6] += g; | |
342 | context->state[7] += h; | |
343 | ||
344 | /* Clean up */ | |
345 | a = b = c = d = e = f = g = h = T1 = T2 = 0; | |
346 | } | |
347 | ||
348 | void SHA512_Update(SHA512_CTX* context, void *datain, size_t len) { | |
349 | size_t freespace, usedspace; | |
350 | const sha2_byte* data = (const sha2_byte*)datain; | |
351 | ||
352 | if (len == 0) { | |
353 | /* Calling with no data is valid - we do nothing */ | |
354 | return; | |
355 | } | |
356 | ||
357 | /* Sanity check: */ | |
358 | assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0); | |
359 | ||
360 | usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; | |
361 | if (usedspace > 0) { | |
362 | /* Calculate how much free space is available in the buffer */ | |
363 | freespace = SHA512_BLOCK_LENGTH - usedspace; | |
364 | ||
365 | if (len >= freespace) { | |
366 | /* Fill the buffer completely and process it */ | |
367 | MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace); | |
368 | ADDINC128(context->bitcount, freespace << 3); | |
369 | len -= freespace; | |
370 | data += freespace; | |
371 | SHA512_Transform(context, (sha2_word64*)context->buffer); | |
372 | } else { | |
373 | /* The buffer is not yet full */ | |
374 | MEMCPY_BCOPY(&context->buffer[usedspace], data, len); | |
375 | ADDINC128(context->bitcount, len << 3); | |
376 | /* Clean up: */ | |
377 | usedspace = freespace = 0; | |
378 | return; | |
379 | } | |
380 | } | |
381 | while (len >= SHA512_BLOCK_LENGTH) { | |
382 | /* Process as many complete blocks as we can */ | |
383 | SHA512_Transform(context, (sha2_word64*)data); | |
384 | ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); | |
385 | len -= SHA512_BLOCK_LENGTH; | |
386 | data += SHA512_BLOCK_LENGTH; | |
387 | } | |
388 | if (len > 0) { | |
389 | /* There's left-overs, so save 'em */ | |
390 | MEMCPY_BCOPY(context->buffer, data, len); | |
391 | ADDINC128(context->bitcount, len << 3); | |
392 | } | |
393 | /* Clean up: */ | |
394 | usedspace = freespace = 0; | |
395 | } | |
396 | ||
397 | static void SHA512_Last(SHA512_CTX* context) { | |
398 | size_t usedspace; | |
399 | ldns_sha2_buffer_union cast_var; | |
400 | ||
401 | usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; | |
402 | #if BYTE_ORDER == LITTLE_ENDIAN | |
403 | /* Convert FROM host byte order */ | |
404 | REVERSE64(context->bitcount[0],context->bitcount[0]); | |
405 | REVERSE64(context->bitcount[1],context->bitcount[1]); | |
406 | #endif | |
407 | if (usedspace > 0) { | |
408 | /* Begin padding with a 1 bit: */ | |
409 | context->buffer[usedspace++] = 0x80; | |
410 | ||
411 | if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) { | |
412 | /* Set-up for the last transform: */ | |
413 | MEMSET_BZERO(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace); | |
414 | } else { | |
415 | if (usedspace < SHA512_BLOCK_LENGTH) { | |
416 | MEMSET_BZERO(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace); | |
417 | } | |
418 | /* Do second-to-last transform: */ | |
419 | SHA512_Transform(context, (sha2_word64*)context->buffer); | |
420 | ||
421 | /* And set-up for the last transform: */ | |
422 | MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH - 2); | |
423 | } | |
424 | } else { | |
425 | /* Prepare for final transform: */ | |
426 | MEMSET_BZERO(context->buffer, SHA512_SHORT_BLOCK_LENGTH); | |
427 | ||
428 | /* Begin padding with a 1 bit: */ | |
429 | *context->buffer = 0x80; | |
430 | } | |
431 | /* Store the length of input data (in bits): */ | |
432 | cast_var.theChars = context->buffer; | |
433 | cast_var.theLongs[SHA512_SHORT_BLOCK_LENGTH / 8] = context->bitcount[1]; | |
434 | cast_var.theLongs[SHA512_SHORT_BLOCK_LENGTH / 8 + 1] = context->bitcount[0]; | |
435 | ||
436 | /* final transform: */ | |
437 | SHA512_Transform(context, (sha2_word64*)context->buffer); | |
438 | } | |
439 | ||
440 | void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) { | |
441 | sha2_word64 *d = (sha2_word64*)digest; | |
442 | ||
443 | /* Sanity check: */ | |
444 | assert(context != (SHA512_CTX*)0); | |
445 | ||
446 | /* If no digest buffer is passed, we don't bother doing this: */ | |
447 | if (digest != (sha2_byte*)0) { | |
448 | SHA512_Last(context); | |
449 | ||
450 | /* Save the hash data for output: */ | |
451 | #if BYTE_ORDER == LITTLE_ENDIAN | |
452 | { | |
453 | /* Convert TO host byte order */ | |
454 | int j; | |
455 | for (j = 0; j < 8; j++) { | |
456 | REVERSE64(context->state[j],context->state[j]); | |
457 | *d++ = context->state[j]; | |
458 | } | |
459 | } | |
460 | #else | |
461 | MEMCPY_BCOPY(d, context->state, SHA512_DIGEST_LENGTH); | |
462 | #endif | |
463 | } | |
464 | ||
465 | /* Zero out state data */ | |
466 | MEMSET_BZERO(context, sizeof(SHA512_CTX)); | |
467 | } | |
468 | ||
469 | unsigned char * | |
470 | SHA512(void *data, unsigned int data_len, unsigned char *digest) | |
471 | { | |
472 | SHA512_CTX ctx; | |
473 | SHA512_Init(&ctx); | |
474 | SHA512_Update(&ctx, data, data_len); | |
475 | SHA512_Final(digest, &ctx); | |
476 | return digest; | |
477 | } |