.Dd May 26, 2004 .Dt ATOMIC 3 .Os Darwin .Sh NAME .Nm OSAtomicAdd32 , .Nm OSAtomicAdd32Barrier , .Nm OSAtomicIncrement32 , .Nm OSAtomicIncrement32Barrier , .Nm OSAtomicDecrement32 , .Nm OSAtomicDecrement32Barrier , .Nm OSAtomicOr32 , .Nm OSAtomicOr32Barrier , .Nm OSAtomicOr32Orig , .Nm OSAtomicOr32OrigBarrier , .Nm OSAtomicAnd32 , .Nm OSAtomicAnd32Barrier , .Nm OSAtomicAnd32Orig , .Nm OSAtomicAnd32OrigBarrier , .Nm OSAtomicXor32 , .Nm OSAtomicXor32Barrier , .Nm OSAtomicXor32Orig , .Nm OSAtomicXor32OrigBarrier , .Nm OSAtomicAdd64 , .Nm OSAtomicAdd64Barrier , .Nm OSAtomicIncrement64 , .Nm OSAtomicIncrement64Barrier , .Nm OSAtomicDecrement64 , .Nm OSAtomicDecrement64Barrier , .Nm OSAtomicCompareAndSwapInt , .Nm OSAtomicCompareAndSwapIntBarrier , .Nm OSAtomicCompareAndSwapLong , .Nm OSAtomicCompareAndSwapLongBarrier , .Nm OSAtomicCompareAndSwapPtr , .Nm OSAtomicCompareAndSwapPtrBarrier , .Nm OSAtomicCompareAndSwap32 , .Nm OSAtomicCompareAndSwap32Barrier , .Nm OSAtomicCompareAndSwap64 , .Nm OSAtomicCompareAndSwap64Barrier , .Nm OSAtomicTestAndSet , .Nm OSAtomicTestAndSetBarrier , .Nm OSAtomicTestAndClear , .Nm OSAtomicTestAndClearBarrier , .Nm OSSpinLockTry , .Nm OSSpinLockLock , .Nm OSSpinLockUnlock , .Nm OSAtomicEnqueue , .Nm OSAtomicDequeue .Nd atomic add, increment, decrement, or, and, xor, compare and swap, test and set, test and clear, spinlocks, and lockless queues .Sh LIBRARY .Lb libc .Sh SYNOPSIS .In libkern/OSAtomic.h .Ft int32_t .Fn OSAtomicAdd32 "int32_t theAmount" "volatile int32_t *theValue" .Ft int32_t .Fn OSAtomicAdd32Barrier "int32_t theAmount" "volatile int32_t *theValue" .Ft int32_t .Fn OSAtomicIncrement32 "volatile int32_t *theValue" .Ft int32_t .Fn OSAtomicIncrement32Barrier "volatile int32_t *theValue" .Ft int32_t .Fn OSAtomicDecrement32 "volatile int32_t *theValue" .Ft int32_t .Fn OSAtomicDecrement32Barrier "volatile int32_t *theValue" .Ft int32_t .Fn OSAtomicOr32 "uint32_t theMask" "volatile uint32_t *theValue" .Ft int32_t .Fn OSAtomicOr32Barrier "uint32_t theMask" "volatile uint32_t *theValue" .Ft int32_t .Fn OSAtomicAnd32 "uint32_t theMask" "volatile uint32_t *theValue" .Ft int32_t .Fn OSAtomicAnd32Barrier "uint32_t theMask" "volatile uint32_t *theValue" .Ft int32_t .Fn OSAtomicXor32 "uint32_t theMask" "volatile uint32_t *theValue" .Ft int32_t .Fn OSAtomicXor32Barrier "uint32_t theMask" "volatile uint32_t *theValue" .Ft int32_t .Fn OSAtomicOr32Orig "uint32_t theMask" "volatile uint32_t *theValue" .Ft int32_t .Fn OSAtomicOr32OrigBarrier "uint32_t theMask" "volatile uint32_t *theValue" .Ft int32_t .Fn OSAtomicAnd32Orig "uint32_t theMask" "volatile uint32_t *theValue" .Ft int32_t .Fn OSAtomicAnd32OrigBarrier "uint32_t theMask" "volatile uint32_t *theValue" .Ft int32_t .Fn OSAtomicXor32Orig "uint32_t theMask" "volatile uint32_t *theValue" .Ft int32_t .Fn OSAtomicXor32OrigBarrier "uint32_t theMask" "volatile uint32_t *theValue" .Ft int64_t .Fn OSAtomicAdd64 "int64_t theAmount" "volatile int64_t *theValue" .Ft int64_t .Fn OSAtomicAdd64Barrier "int64_t theAmount" "volatile int64_t *theValue" .Ft int64_t .Fn OSAtomicIncrement64 "volatile int64_t *theValue" .Ft int64_t .Fn OSAtomicIncrement64Barrier "volatile int64_t *theValue" .Ft int64_t .Fn OSAtomicDecrement64 "volatile int64_t *theValue" .Ft int64_t .Fn OSAtomicDecrement64Barrier "volatile int64_t *theValue" .Ft bool .Fn OSAtomicCompareAndSwapInt "int oldValue" "int newValue" "volatile int *theValue" .Ft bool .Fn OSAtomicCompareAndSwapIntBarrier "int oldValue" "int newValue" "volatile int *theValue" .Ft bool .Fn OSAtomicCompareAndSwapLong "long oldValue" "long newValue" "volatile long *theValue" .Ft bool .Fn OSAtomicCompareAndSwapLongBarrier "long oldValue" "long newValue" "volatile long *theValue" .Ft bool .Fn OSAtomicCompareAndSwapPtr "void* oldValue" "void* newValue" "void* volatile *theValue" .Ft bool .Fn OSAtomicCompareAndSwapPtrBarrier "void* oldValue" "void* newValue" "void* volatile *theValue" .Ft bool .Fn OSAtomicCompareAndSwap32 "int32_t oldValue" "int32_t newValue" "volatile int32_t *theValue" .Ft bool .Fn OSAtomicCompareAndSwap32Barrier "int32_t oldValue" "int32_t newValue" "volatile int32_t *theValue" .Ft bool .Fn OSAtomicCompareAndSwap64 "int64_t oldValue" "int64_t newValue" "volatile int64_t *theValue" .Ft bool .Fn OSAtomicCompareAndSwap64Barrier "int64_t oldValue" "int64_t newValue" "volatile int64_t *theValue" .Ft bool .Fn OSAtomicTestAndSet "uint32_t n" "volatile void *theAddress" .Ft bool .Fn OSAtomicTestAndSetBarrier "uint32_t n" "volatile void *theAddress" .Ft bool .Fn OSAtomicTestAndClear "uint32_t n" "volatile void *theAddress" .Ft bool .Fn OSAtomicTestAndClearBarrier "uint32_t n" "volatile void *theAddress" .Ft bool .Fn OSSpinLockTry "OSSpinLock *lock" .Ft void .Fn OSSpinLockLock "OSSpinLock *lock" .Ft void .Fn OSSpinLockUnlock "OSSpinLock *lock" .Ft void .Fn OSAtomicEnqueue "OSQueueHead *list" "void *new" "size_t offset" .Ft void* .Fn OSAtomicDequeue "OSQueueHead *list" "size_t offset" .Sh DESCRIPTION These functions are thread and multiprocessor safe. For each function, there is a version that does and another that does not incorporate a memory barrier. Barriers strictly order memory access on a weakly-ordered architecture such as PPC. All loads and stores executed in sequential program order before the barrier will complete before any load or store executed after the barrier. On a uniprocessor, the barrier operation is typically a nop. On a multiprocessor, the barrier can be quite expensive. .Pp Most code will want to use the barrier functions to ensure that memory shared between threads is properly synchronized. For example, if you want to initialize a shared data structure and then atomically increment a variable to indicate that the initialization is complete, then you must use OSAtomicIncrement32Barrier() to ensure that the stores to your data structure complete before the atomic add. Likewise, the consumer of that data structure must use OSAtomicDecrement32Barrier(), in order to ensure that their loads of the structure are not executed before the atomic decrement. On the other hand, if you are simply incrementing a global counter, then it is safe and potentially much faster to use OSAtomicIncrement32(). If you are unsure which version to use, prefer the barrier variants as they are safer. .Pp The logical (and, or, xor) and bit test operations are layered on top of the .Fn OSAtomicCompareAndSwap primitives. There are four versions of each logical operation, depending on whether or not there is a barrier, and whether the return value is the result of the operation (eg, .Fn OSAtomicOr32 ) or the original value before the operation (eg, .Fn OSAtomicOr32Orig ). .Pp The memory address .Fa theValue must be naturally aligned, ie 32-bit aligned for 32-bit operations and 64-bit aligned for 64-bit operations. .Pp The 64-bit operations are not implemented for 32-bit processes on PPC platforms. .Pp The .Fn OSAtomicCompareAndSwap operations compare .Fa oldValue to .Fa *theValue , and set .Fa *theValue to .Fa newValue if the comparison is equal. The comparison and assignment occur as one atomic operation. .Pp .Fn OSAtomicTestAndSet and .Fn OSAtomicTestAndClear operate on bit (0x80 >> ( .Fa n & 7)) of byte ((char*) .Fa theAddress + ( .Fa n >> 3)). They set the named bit to either 1 or 0, respectively. .Fa theAddress need not be aligned. .Pp The routines .Fn OSAtomicEnqueue and .Fn OSAtomicDequeue operate on singly linked LIFO queues. Ie, a dequeue operation will return the most recently enqueued element, or NULL if the list is empty. The operations are lockless, and barriers are used as necessary to permit thread-safe access to the queue element. .Fa offset is the offset in bytes to the link field in the queue element. For example: .Bd -literal -offset indent typedef struct elem { long data1; struct elem *link; int data2; } elem_t; elem_t fred, mary, *p; OSQueueHead q = OS_ATOMIC_QUEUE_INIT; OSAtomicEnqueue( &q, &fred, offsetof(elem_t,link) ); OSAtomicEnqueue( &q, &mary, offsetof(elem_t,link) ); p = OSAtomicDequeue( &q, offsetof(elem_t,link) ); .Ed In this example, the call of .Fn OSAtomicDequeue will return a ptr to mary. .Sh RETURN VALUES The arithmetic operations return the new value, after the operation has been performed. The boolean operations come in two styles, one of which returns the new value, and one of which (the "Orig" versions) returns the old. The compare-and-swap operations return true if the comparison was equal, ie if the swap occured. The bit test and set/clear operations return the original value of the bit. The dequeue operation returns the most recently enqueued element, or NULL if the list in empty. .Sh SEE ALSO .Xr spinlock 3 , .Xr barrier 3 .Sh HISTORY Most of these functions first appeared in Mac OS 10.4 (Tiger). The "Orig" forms of the boolean operations, the "int", "long" and "ptr" forms of compare-and-swap, and lockless enqueue/dequeue first appeared in Mac OS 10.5 (Leopard).