/* * Copyright (c) 2002 Apple Computer, Inc. All rights reserved. * * @APPLE_LICENSE_HEADER_START@ * * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved. * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this * file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_LICENSE_HEADER_END@ */ #define ASSEMBLER #include #undef ASSEMBLER // ***************** // * S T R N C P Y * // ***************** // // char* strncpy(const char *dst, const char *src, size_t len)); // // We optimize the move by doing it word parallel. This introduces // a complication: if we blindly did word load/stores until finding // a 0, we might get a spurious page fault by touching bytes past it. // To avoid this, we never do a "lwz" that crosses a page boundary, // or store unnecessary bytes. // // The test for 0s relies on the following inobvious but very efficient // word-parallel test: // x = dataWord + 0xFEFEFEFF // y = ~dataWord & 0x80808080 // if (x & y) == 0 then no zero found // The test maps any non-zero byte to zero, and any zero byte to 0x80, // with one exception: 0x01 bytes preceeding the first zero are also // mapped to 0x80. .text .globl EXT(strncpy) .align 5 LEXT(strncpy) andi. r0,r4,3 // is source aligned? dcbt 0,r4 // touch in source lis r6,hi16(0xFEFEFEFF) // start to load magic constants lis r7,hi16(0x80808080) dcbtst 0,r3 // touch in dst ori r6,r6,lo16(0xFEFEFEFF) ori r7,r7,lo16(0x80808080) mr r9,r3 // use r9 for dest ptr (must return r3 intact) add r2,r3,r5 // remember where end of buffer is beq Laligned // source is aligned subfic r0,r0,4 // r0 <- #bytes to word align source // Copy min(r0,r5) bytes, until 0-byte. // r0 = #bytes we propose to copy (NOTE: must be >0) // r2 = ptr to 1st byte not in buffer // r4 = source ptr (unaligned) // r5 = length remaining in buffer (may be 0) // r6 = 0xFEFEFEFF // r7 = 0x80808080 // r9 = dest ptr (unaligned) Lbyteloop: cmpwi r5,0 // buffer empty? (note: unsigned) beqlr-- // buffer full but 0 not found lbz r8,0(r4) // r8 <- next source byte subic. r0,r0,1 // decrement count of bytes to move addi r4,r4,1 subi r5,r5,1 // decrement buffer length remaining stb r8,0(r9) // pack into dest cmpwi cr1,r8,0 // 0-byte? addi r9,r9,1 beq cr1,L0found // byte was 0 bne Lbyteloop // r0!=0, source not yet aligned // Source is word aligned. Loop over words until end of buffer. Note that we // have aligned the source, rather than the dest, in order to avoid spurious // page faults. // r2 = ptr to 1st byte not in buffer // r4 = source ptr (word aligned) // r5 = length remaining in buffer // r6 = 0xFEFEFEFF // r7 = 0x80808080 // r9 = dest ptr (unaligned) Laligned: srwi. r8,r5,2 // get #words in buffer addi r0,r5,1 // if no words, compare rest of buffer beq-- Lbyteloop // r8==0, no words mtctr r8 // set up word loop count rlwinm r5,r5,0,0x3 // mask buffer length down to leftover bytes b LwordloopEnter // Move a word at a time, until one of two conditions: // - a zero byte is found // - end of buffer // At this point, registers are as follows: // r2 = ptr to 1st byte not in buffer // r4 = source ptr (word aligned) // r5 = leftover bytes in buffer (0..3) // r6 = 0xFEFEFEFF // r7 = 0x80808080 // r9 = dest ptr (unaligned) // ctr = whole words left in buffer .align 5 // align inner loop, which is 8 words long Lwordloop: stw r8,0(r9) // pack word into destination addi r9,r9,4 LwordloopEnter: lwz r8,0(r4) // r8 <- next 4 source bytes addi r4,r4,4 add r10,r8,r6 // r10 <- word + 0xFEFEFEFF andc r12,r7,r8 // r12 <- ~word & 0x80808080 and. r11,r10,r12 // r11 <- nonzero iff word has a 0-byte bdnzt eq,Lwordloop // loop if ctr!=0 and cr0_eq stw r8,0(r9) // pack in last word addi r9,r9,4 addi r0,r5,1 // if no 0-byte found... beq-- Lbyteloop // ...fill rest of buffer a byte at a time // Found a 0-byte, point to following byte with r9. slwi r0,r8,7 // move 0x01 false hit bits to 0x80 position andc r11,r11,r0 // mask out false hits cntlzw r0,r11 // find the 0-byte (r0 = 0,8,16, or 24) srwi r0,r0,3 // now r0 = 0, 1, 2, or 3 subfic r0,r0,3 // now r0 = 3, 2, 1, or 0 sub r9,r9,r0 // now r9 points one past the 0-byte // Zero rest of buffer, if any. We don't simply branch to bzero or memset, because // r3 is set up incorrectly, and there is a fair amt of overhead involved in using them. // Instead we use a simpler routine, which will nonetheless be faster unless the number // of bytes to 0 is large and we're on a 64-bit machine. // r2 = ptr to 1st byte not in buffer // r9 = ptr to 1st byte to zero L0found: sub r5,r2,r9 // r5 <- #bytes to zero (ie, rest of buffer) cmplwi r5,32 // how many? neg r8,r9 // start to compute #bytes to align ptr li r0,0 // get a 0 blt Ltail // skip if <32 bytes andi. r10,r8,31 // get #bytes to 32-byte align sub r5,r5,r10 // adjust buffer length srwi r11,r5,5 // get #32-byte chunks cmpwi cr1,r11,0 // any chunks? mtctr r11 // set up dcbz loop count beq 1f // skip if already 32-byte aligned // 32-byte align. We just store 32 0s, rather than test and use conditional // branches. stw r0,0(r9) // zero next 32 bytes stw r0,4(r9) stw r0,8(r9) stw r0,12(r9) stw r0,16(r9) stw r0,20(r9) stw r0,24(r9) stw r0,28(r9) add r9,r9,r10 // now r9 is 32-byte aligned beq cr1,Ltail // skip if no 32-byte chunks b 1f // Loop doing 32-byte version of DCBZ instruction. .align 4 // align the inner loop 1: dcbz 0,r9 // zero another 32 bytes addi r9,r9,32 bdnz 1b // Store trailing bytes. // r0 = 0 // r5 = #bytes to store (<32) // r9 = address Ltail: mtcrf 0x02,r5 // remaining byte count to cr6 and cr7 mtcrf 0x01,r5 bf 27,2f // 16-byte chunk? stw r0,0(r9) stw r0,4(r9) stw r0,8(r9) stw r0,12(r9) addi r9,r9,16 2: bf 28,4f // 8-byte chunk? stw r0,0(r9) stw r0,4(r9) addi r9,r9,8 4: bf 29,5f // word? stw r0,0(r9) addi r9,r9,4 5: bf 30,6f // halfword? sth r0,0(r9) addi r9,r9,2 6: bflr 31 // byte? stb r0,0(r9) blr