/* * Copyright (c) 2002 Apple Computer, Inc. All rights reserved. * * @APPLE_LICENSE_HEADER_START@ * * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved. * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this * file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_LICENSE_HEADER_END@ */ #define ASSEMBLER #include #undef ASSEMBLER #define __APPLE_API_PRIVATE #include #undef __APPLE_API_PRIVATE /* We use mode-independent "g" opcodes such as "srgi". These expand * into word operations when targeting __ppc__, and into doubleword * operations when targeting __ppc64__. */ #include // *************** // * S T R C P Y * // *************** // // char* strcpy(const char *dst, const char *src); // // We optimize the move by doing it word parallel. This introduces // a complication: if we blindly did word load/stores until finding // a 0, we might get a spurious page fault by touching bytes past it. // To avoid this, we never do a "lwz" that crosses a page boundary, // and never store a byte we don't have to. // // The test for 0s relies on the following inobvious but very efficient // word-parallel test: // x = dataWord + 0xFEFEFEFF // y = ~dataWord & 0x80808080 // if (x & y) == 0 then no zero found // The test maps any non-zero byte to zero, and any zero byte to 0x80, // with one exception: 0x01 bytes preceeding the first zero are also // mapped to 0x80. // // We align the _source_, which allows us to avoid all worries about // spurious page faults. Doing so is faster than aligning the dest. // // In 64-bit mode, the algorithm is doubleword parallel. .text .globl EXT(strcpy) .align 5 LEXT(strcpy) // char* strcpy(const char *dst, const char *src); andi. r0,r4,GPR_BYTES-1 // is source aligned? #if defined(__ppc__) lis r6,hi16(0xFEFEFEFF) // start to generate 32-bit magic constants lis r7,hi16(0x80808080) ori r6,r6,lo16(0xFEFEFEFF) ori r7,r7,lo16(0x80808080) #else ld r6,_COMM_PAGE_MAGIC_FE(0) // get 0xFEFEFEFE FEFEFEFF from commpage ld r7,_COMM_PAGE_MAGIC_80(0) // get 0x80808080 80808080 from commpage #endif mr r9,r3 // use r9 for dest ptr (must return r3 intact) beq LwordloopEnter // source is aligned subfic r0,r0,GPR_BYTES // r0 <- #bytes to align source mtctr r0 // Loop over bytes. // r4 = source ptr (unaligned) // r6 = 0xFEFEFEFF // r7 = 0x80808080 // r9 = dest ptr (unaligned) // ctr = byte count Lbyteloop: lbz r8,0(r4) // r8 <- next source byte addi r4,r4,1 cmpwi r8,0 // 0 ? stb r8,0(r9) // pack into dest addi r9,r9,1 bdnzf eq,Lbyteloop // loop until (ctr==0) | (r8==0) bne LwordloopEnter // 0-byte not found, so enter word loop blr // 0-byte found, done // Word loop: move a word or doubleword at a time until 0-byte found. // r4 = source ptr (aligned) // r6 = 0xFEFEFEFF // r7 = 0x80808080 // r9 = dest ptr (unaligned) .align 5 // align inner loop, which is 8 words ling Lwordloop: stg r8,0(r9) // pack word or doubleword into destination addi r9,r9,GPR_BYTES LwordloopEnter: lg r8,0(r4) // r8 <- next source word or doubleword addi r4,r4,GPR_BYTES add r10,r8,r6 // r10 <- word + 0xFEFEFEFF andc r12,r7,r8 // r12 <- ~word & 0x80808080 and. r0,r10,r12 // r0 <- nonzero iff word has a 0-byte beq Lwordloop // loop if no 0-byte // Found a 0-byte. Store last word up to and including the 0, a byte at a time. // r8 = last word or doubleword, known to have a 0-byte // r9 = dest ptr Lstorelastbytes: srgi. r0,r8,GPR_BYTES*8-8 // shift leftmost byte into bottom so we can "stb" slgi r8,r8,8 // move on to next stb r0,0(r9) // pack into dest addi r9,r9,1 bne Lstorelastbytes // loop until 0 stored blr