]>
Commit | Line | Data |
---|---|---|
1 | /**************************************************************** | |
2 | ||
3 | The author of this software is David M. Gay. | |
4 | ||
5 | Copyright (C) 1998, 1999 by Lucent Technologies | |
6 | All Rights Reserved | |
7 | ||
8 | Permission to use, copy, modify, and distribute this software and | |
9 | its documentation for any purpose and without fee is hereby | |
10 | granted, provided that the above copyright notice appear in all | |
11 | copies and that both that the copyright notice and this | |
12 | permission notice and warranty disclaimer appear in supporting | |
13 | documentation, and that the name of Lucent or any of its entities | |
14 | not be used in advertising or publicity pertaining to | |
15 | distribution of the software without specific, written prior | |
16 | permission. | |
17 | ||
18 | LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, | |
19 | INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. | |
20 | IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY | |
21 | SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | |
22 | WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER | |
23 | IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, | |
24 | ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF | |
25 | THIS SOFTWARE. | |
26 | ||
27 | ****************************************************************/ | |
28 | ||
29 | /* Please send bug reports to David M. Gay (dmg at acm dot org, | |
30 | * with " at " changed at "@" and " dot " changed to "."). */ | |
31 | ||
32 | #include "gdtoaimp.h" | |
33 | ||
34 | static Bigint * | |
35 | #ifdef KR_headers | |
36 | bitstob(bits, nbits, bbits) ULong *bits; int nbits; int *bbits; | |
37 | #else | |
38 | bitstob(ULong *bits, int nbits, int *bbits) | |
39 | #endif | |
40 | { | |
41 | int i, k; | |
42 | Bigint *b; | |
43 | ULong *be, *x, *x0; | |
44 | ||
45 | i = ULbits; | |
46 | k = 0; | |
47 | while(i < nbits) { | |
48 | i <<= 1; | |
49 | k++; | |
50 | } | |
51 | #ifndef Pack_32 | |
52 | if (!k) | |
53 | k = 1; | |
54 | #endif | |
55 | b = Balloc(k); | |
56 | be = bits + ((nbits - 1) >> kshift); | |
57 | x = x0 = b->x; | |
58 | do { | |
59 | *x++ = *bits & ALL_ON; | |
60 | #ifdef Pack_16 | |
61 | *x++ = (*bits >> 16) & ALL_ON; | |
62 | #endif | |
63 | } while(++bits <= be); | |
64 | i = x - x0; | |
65 | while(!x0[--i]) | |
66 | if (!i) { | |
67 | b->wds = 0; | |
68 | *bbits = 0; | |
69 | goto ret; | |
70 | } | |
71 | b->wds = i + 1; | |
72 | *bbits = i*ULbits + 32 - hi0bits(b->x[i]); | |
73 | ret: | |
74 | return b; | |
75 | } | |
76 | ||
77 | /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. | |
78 | * | |
79 | * Inspired by "How to Print Floating-Point Numbers Accurately" by | |
80 | * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. | |
81 | * | |
82 | * Modifications: | |
83 | * 1. Rather than iterating, we use a simple numeric overestimate | |
84 | * to determine k = floor(log10(d)). We scale relevant | |
85 | * quantities using O(log2(k)) rather than O(k) multiplications. | |
86 | * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't | |
87 | * try to generate digits strictly left to right. Instead, we | |
88 | * compute with fewer bits and propagate the carry if necessary | |
89 | * when rounding the final digit up. This is often faster. | |
90 | * 3. Under the assumption that input will be rounded nearest, | |
91 | * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. | |
92 | * That is, we allow equality in stopping tests when the | |
93 | * round-nearest rule will give the same floating-point value | |
94 | * as would satisfaction of the stopping test with strict | |
95 | * inequality. | |
96 | * 4. We remove common factors of powers of 2 from relevant | |
97 | * quantities. | |
98 | * 5. When converting floating-point integers less than 1e16, | |
99 | * we use floating-point arithmetic rather than resorting | |
100 | * to multiple-precision integers. | |
101 | * 6. When asked to produce fewer than 15 digits, we first try | |
102 | * to get by with floating-point arithmetic; we resort to | |
103 | * multiple-precision integer arithmetic only if we cannot | |
104 | * guarantee that the floating-point calculation has given | |
105 | * the correctly rounded result. For k requested digits and | |
106 | * "uniformly" distributed input, the probability is | |
107 | * something like 10^(k-15) that we must resort to the Long | |
108 | * calculation. | |
109 | */ | |
110 | ||
111 | char * | |
112 | gdtoa | |
113 | #ifdef KR_headers | |
114 | (fpi, be, bits, kindp, mode, ndigits, decpt, rve) | |
115 | FPI *fpi; int be; ULong *bits; | |
116 | int *kindp, mode, ndigits, *decpt; char **rve; | |
117 | #else | |
118 | (FPI *fpi, int be, ULong *bits, int *kindp, int mode, int ndigits, int *decpt, char **rve) | |
119 | #endif | |
120 | { | |
121 | /* Arguments ndigits and decpt are similar to the second and third | |
122 | arguments of ecvt and fcvt; trailing zeros are suppressed from | |
123 | the returned string. If not null, *rve is set to point | |
124 | to the end of the return value. If d is +-Infinity or NaN, | |
125 | then *decpt is set to 9999. | |
126 | ||
127 | mode: | |
128 | 0 ==> shortest string that yields d when read in | |
129 | and rounded to nearest. | |
130 | 1 ==> like 0, but with Steele & White stopping rule; | |
131 | e.g. with IEEE P754 arithmetic , mode 0 gives | |
132 | 1e23 whereas mode 1 gives 9.999999999999999e22. | |
133 | 2 ==> max(1,ndigits) significant digits. This gives a | |
134 | return value similar to that of ecvt, except | |
135 | that trailing zeros are suppressed. | |
136 | 3 ==> through ndigits past the decimal point. This | |
137 | gives a return value similar to that from fcvt, | |
138 | except that trailing zeros are suppressed, and | |
139 | ndigits can be negative. | |
140 | 4-9 should give the same return values as 2-3, i.e., | |
141 | 4 <= mode <= 9 ==> same return as mode | |
142 | 2 + (mode & 1). These modes are mainly for | |
143 | debugging; often they run slower but sometimes | |
144 | faster than modes 2-3. | |
145 | 4,5,8,9 ==> left-to-right digit generation. | |
146 | 6-9 ==> don't try fast floating-point estimate | |
147 | (if applicable). | |
148 | ||
149 | Values of mode other than 0-9 are treated as mode 0. | |
150 | ||
151 | Sufficient space is allocated to the return value | |
152 | to hold the suppressed trailing zeros. | |
153 | */ | |
154 | ||
155 | int bbits, b2, b5, be0, dig, i, ieps, ilim, ilim0, ilim1, inex; | |
156 | int j, j1, k, k0, k_check, kind, leftright, m2, m5, nbits; | |
157 | int rdir, s2, s5, spec_case, try_quick; | |
158 | Long L; | |
159 | Bigint *b, *b1, *delta, *mlo, *mhi, *mhi1, *S; | |
160 | double d2, ds; | |
161 | char *s, *s0; | |
162 | U d, eps; | |
163 | ||
164 | #ifndef MULTIPLE_THREADS | |
165 | if (dtoa_result) { | |
166 | freedtoa(dtoa_result); | |
167 | dtoa_result = 0; | |
168 | } | |
169 | #endif | |
170 | inex = 0; | |
171 | kind = *kindp &= ~STRTOG_Inexact; | |
172 | switch(kind & STRTOG_Retmask) { | |
173 | case STRTOG_Zero: | |
174 | goto ret_zero; | |
175 | case STRTOG_Normal: | |
176 | case STRTOG_Denormal: | |
177 | break; | |
178 | case STRTOG_Infinite: | |
179 | *decpt = -32768; | |
180 | return nrv_alloc("Infinity", rve, 8); | |
181 | case STRTOG_NaN: | |
182 | *decpt = -32768; | |
183 | return nrv_alloc("NaN", rve, 3); | |
184 | default: | |
185 | return 0; | |
186 | } | |
187 | b = bitstob(bits, nbits = fpi->nbits, &bbits); | |
188 | be0 = be; | |
189 | if ( (i = trailz(b)) !=0) { | |
190 | rshift(b, i); | |
191 | be += i; | |
192 | bbits -= i; | |
193 | } | |
194 | if (!b->wds) { | |
195 | Bfree(b); | |
196 | ret_zero: | |
197 | *decpt = 1; | |
198 | return nrv_alloc("0", rve, 1); | |
199 | } | |
200 | ||
201 | dval(&d) = b2d(b, &i); | |
202 | i = be + bbits - 1; | |
203 | word0(&d) &= Frac_mask1; | |
204 | word0(&d) |= Exp_11; | |
205 | #ifdef IBM | |
206 | if ( (j = 11 - hi0bits(word0(&d) & Frac_mask)) !=0) | |
207 | dval(&d) /= 1 << j; | |
208 | #endif | |
209 | ||
210 | /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 | |
211 | * log10(x) = log(x) / log(10) | |
212 | * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) | |
213 | * log10(&d) = (i-Bias)*log(2)/log(10) + log10(d2) | |
214 | * | |
215 | * This suggests computing an approximation k to log10(&d) by | |
216 | * | |
217 | * k = (i - Bias)*0.301029995663981 | |
218 | * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); | |
219 | * | |
220 | * We want k to be too large rather than too small. | |
221 | * The error in the first-order Taylor series approximation | |
222 | * is in our favor, so we just round up the constant enough | |
223 | * to compensate for any error in the multiplication of | |
224 | * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, | |
225 | * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, | |
226 | * adding 1e-13 to the constant term more than suffices. | |
227 | * Hence we adjust the constant term to 0.1760912590558. | |
228 | * (We could get a more accurate k by invoking log10, | |
229 | * but this is probably not worthwhile.) | |
230 | */ | |
231 | #ifdef IBM | |
232 | i <<= 2; | |
233 | i += j; | |
234 | #endif | |
235 | ds = (dval(&d)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981; | |
236 | ||
237 | /* correct assumption about exponent range */ | |
238 | if ((j = i) < 0) | |
239 | j = -j; | |
240 | if ((j -= 1077) > 0) | |
241 | ds += j * 7e-17; | |
242 | ||
243 | k = (int)ds; | |
244 | if (ds < 0. && ds != k) | |
245 | k--; /* want k = floor(ds) */ | |
246 | k_check = 1; | |
247 | #ifdef IBM | |
248 | j = be + bbits - 1; | |
249 | if ( (j1 = j & 3) !=0) | |
250 | dval(&d) *= 1 << j1; | |
251 | word0(&d) += j << Exp_shift - 2 & Exp_mask; | |
252 | #else | |
253 | word0(&d) += (be + bbits - 1) << Exp_shift; | |
254 | #endif | |
255 | if (k >= 0 && k <= Ten_pmax) { | |
256 | if (dval(&d) < tens[k]) | |
257 | k--; | |
258 | k_check = 0; | |
259 | } | |
260 | j = bbits - i - 1; | |
261 | if (j >= 0) { | |
262 | b2 = 0; | |
263 | s2 = j; | |
264 | } | |
265 | else { | |
266 | b2 = -j; | |
267 | s2 = 0; | |
268 | } | |
269 | if (k >= 0) { | |
270 | b5 = 0; | |
271 | s5 = k; | |
272 | s2 += k; | |
273 | } | |
274 | else { | |
275 | b2 -= k; | |
276 | b5 = -k; | |
277 | s5 = 0; | |
278 | } | |
279 | if (mode < 0 || mode > 9) | |
280 | mode = 0; | |
281 | try_quick = 1; | |
282 | if (mode > 5) { | |
283 | mode -= 4; | |
284 | try_quick = 0; | |
285 | } | |
286 | leftright = 1; | |
287 | ilim = ilim1 = -1; /* Values for cases 0 and 1; done here to */ | |
288 | /* silence erroneous "gcc -Wall" warning. */ | |
289 | switch(mode) { | |
290 | case 0: | |
291 | case 1: | |
292 | i = (int)(nbits * .30103) + 3; | |
293 | ndigits = 0; | |
294 | break; | |
295 | case 2: | |
296 | leftright = 0; | |
297 | /* no break */ | |
298 | case 4: | |
299 | if (ndigits <= 0) | |
300 | ndigits = 1; | |
301 | ilim = ilim1 = i = ndigits; | |
302 | break; | |
303 | case 3: | |
304 | leftright = 0; | |
305 | /* no break */ | |
306 | case 5: | |
307 | i = ndigits + k + 1; | |
308 | ilim = i; | |
309 | ilim1 = i - 1; | |
310 | if (i <= 0) | |
311 | i = 1; | |
312 | } | |
313 | s = s0 = rv_alloc(i); | |
314 | ||
315 | if ( (rdir = fpi->rounding - 1) !=0) { | |
316 | if (rdir < 0) | |
317 | rdir = 2; | |
318 | if (kind & STRTOG_Neg) | |
319 | rdir = 3 - rdir; | |
320 | } | |
321 | ||
322 | /* Now rdir = 0 ==> round near, 1 ==> round up, 2 ==> round down. */ | |
323 | ||
324 | if (ilim >= 0 && ilim <= Quick_max && try_quick && !rdir | |
325 | #ifndef IMPRECISE_INEXACT | |
326 | && k == 0 | |
327 | #endif | |
328 | ) { | |
329 | ||
330 | /* Try to get by with floating-point arithmetic. */ | |
331 | ||
332 | i = 0; | |
333 | d2 = dval(&d); | |
334 | #ifdef IBM | |
335 | if ( (j = 11 - hi0bits(word0(&d) & Frac_mask)) !=0) | |
336 | dval(&d) /= 1 << j; | |
337 | #endif | |
338 | k0 = k; | |
339 | ilim0 = ilim; | |
340 | ieps = 2; /* conservative */ | |
341 | if (k > 0) { | |
342 | ds = tens[k&0xf]; | |
343 | j = k >> 4; | |
344 | if (j & Bletch) { | |
345 | /* prevent overflows */ | |
346 | j &= Bletch - 1; | |
347 | dval(&d) /= bigtens[n_bigtens-1]; | |
348 | ieps++; | |
349 | } | |
350 | for(; j; j >>= 1, i++) | |
351 | if (j & 1) { | |
352 | ieps++; | |
353 | ds *= bigtens[i]; | |
354 | } | |
355 | } | |
356 | else { | |
357 | ds = 1.; | |
358 | if ( (j1 = -k) !=0) { | |
359 | dval(&d) *= tens[j1 & 0xf]; | |
360 | for(j = j1 >> 4; j; j >>= 1, i++) | |
361 | if (j & 1) { | |
362 | ieps++; | |
363 | dval(&d) *= bigtens[i]; | |
364 | } | |
365 | } | |
366 | } | |
367 | if (k_check && dval(&d) < 1. && ilim > 0) { | |
368 | if (ilim1 <= 0) | |
369 | goto fast_failed; | |
370 | ilim = ilim1; | |
371 | k--; | |
372 | dval(&d) *= 10.; | |
373 | ieps++; | |
374 | } | |
375 | dval(&eps) = ieps*dval(&d) + 7.; | |
376 | word0(&eps) -= (P-1)*Exp_msk1; | |
377 | if (ilim == 0) { | |
378 | S = mhi = 0; | |
379 | dval(&d) -= 5.; | |
380 | if (dval(&d) > dval(&eps)) | |
381 | goto one_digit; | |
382 | if (dval(&d) < -dval(&eps)) | |
383 | goto no_digits; | |
384 | goto fast_failed; | |
385 | } | |
386 | #ifndef No_leftright | |
387 | if (leftright) { | |
388 | /* Use Steele & White method of only | |
389 | * generating digits needed. | |
390 | */ | |
391 | dval(&eps) = ds*0.5/tens[ilim-1] - dval(&eps); | |
392 | for(i = 0;;) { | |
393 | L = (Long)(dval(&d)/ds); | |
394 | dval(&d) -= L*ds; | |
395 | *s++ = '0' + (int)L; | |
396 | if (dval(&d) < dval(&eps)) { | |
397 | if (dval(&d)) | |
398 | inex = STRTOG_Inexlo; | |
399 | goto ret1; | |
400 | } | |
401 | if (ds - dval(&d) < dval(&eps)) | |
402 | goto bump_up; | |
403 | if (++i >= ilim) | |
404 | break; | |
405 | dval(&eps) *= 10.; | |
406 | dval(&d) *= 10.; | |
407 | } | |
408 | } | |
409 | else { | |
410 | #endif | |
411 | /* Generate ilim digits, then fix them up. */ | |
412 | dval(&eps) *= tens[ilim-1]; | |
413 | for(i = 1;; i++, dval(&d) *= 10.) { | |
414 | if ( (L = (Long)(dval(&d)/ds)) !=0) | |
415 | dval(&d) -= L*ds; | |
416 | *s++ = '0' + (int)L; | |
417 | if (i == ilim) { | |
418 | ds *= 0.5; | |
419 | if (dval(&d) > ds + dval(&eps)) | |
420 | goto bump_up; | |
421 | else if (dval(&d) < ds - dval(&eps)) { | |
422 | if (dval(&d)) | |
423 | inex = STRTOG_Inexlo; | |
424 | goto clear_trailing0; | |
425 | } | |
426 | break; | |
427 | } | |
428 | } | |
429 | #ifndef No_leftright | |
430 | } | |
431 | #endif | |
432 | fast_failed: | |
433 | s = s0; | |
434 | dval(&d) = d2; | |
435 | k = k0; | |
436 | ilim = ilim0; | |
437 | } | |
438 | ||
439 | /* Do we have a "small" integer? */ | |
440 | ||
441 | if (be >= 0 && k <= Int_max) { | |
442 | /* Yes. */ | |
443 | ds = tens[k]; | |
444 | if (ndigits < 0 && ilim <= 0) { | |
445 | S = mhi = 0; | |
446 | if (ilim < 0 || dval(&d) <= 5*ds) | |
447 | goto no_digits; | |
448 | goto one_digit; | |
449 | } | |
450 | for(i = 1;; i++, dval(&d) *= 10.) { | |
451 | L = dval(&d) / ds; | |
452 | dval(&d) -= L*ds; | |
453 | #ifdef Check_FLT_ROUNDS | |
454 | /* If FLT_ROUNDS == 2, L will usually be high by 1 */ | |
455 | if (dval(&d) < 0) { | |
456 | L--; | |
457 | dval(&d) += ds; | |
458 | } | |
459 | #endif | |
460 | *s++ = '0' + (int)L; | |
461 | if (dval(&d) == 0.) | |
462 | break; | |
463 | if (i == ilim) { | |
464 | if (rdir) { | |
465 | if (rdir == 1) | |
466 | goto bump_up; | |
467 | inex = STRTOG_Inexlo; | |
468 | goto ret1; | |
469 | } | |
470 | dval(&d) += dval(&d); | |
471 | if (dval(&d) > ds || (dval(&d) == ds && L & 1)) { | |
472 | bump_up: | |
473 | inex = STRTOG_Inexhi; | |
474 | while(*--s == '9') | |
475 | if (s == s0) { | |
476 | k++; | |
477 | *s = '0'; | |
478 | break; | |
479 | } | |
480 | ++*s++; | |
481 | } | |
482 | else { | |
483 | inex = STRTOG_Inexlo; | |
484 | clear_trailing0: | |
485 | while(*--s == '0'){} | |
486 | ++s; | |
487 | } | |
488 | break; | |
489 | } | |
490 | } | |
491 | goto ret1; | |
492 | } | |
493 | ||
494 | m2 = b2; | |
495 | m5 = b5; | |
496 | mhi = mlo = 0; | |
497 | if (leftright) { | |
498 | if (mode < 2) { | |
499 | i = nbits - bbits; | |
500 | if (be - i++ < fpi->emin) | |
501 | /* denormal */ | |
502 | i = be - fpi->emin + 1; | |
503 | } | |
504 | else { | |
505 | j = ilim - 1; | |
506 | if (m5 >= j) | |
507 | m5 -= j; | |
508 | else { | |
509 | s5 += j -= m5; | |
510 | b5 += j; | |
511 | m5 = 0; | |
512 | } | |
513 | if ((i = ilim) < 0) { | |
514 | m2 -= i; | |
515 | i = 0; | |
516 | } | |
517 | } | |
518 | b2 += i; | |
519 | s2 += i; | |
520 | mhi = i2b(1); | |
521 | } | |
522 | if (m2 > 0 && s2 > 0) { | |
523 | i = m2 < s2 ? m2 : s2; | |
524 | b2 -= i; | |
525 | m2 -= i; | |
526 | s2 -= i; | |
527 | } | |
528 | if (b5 > 0) { | |
529 | if (leftright) { | |
530 | if (m5 > 0) { | |
531 | mhi = pow5mult(mhi, m5); | |
532 | b1 = mult(mhi, b); | |
533 | Bfree(b); | |
534 | b = b1; | |
535 | } | |
536 | if ( (j = b5 - m5) !=0) | |
537 | b = pow5mult(b, j); | |
538 | } | |
539 | else | |
540 | b = pow5mult(b, b5); | |
541 | } | |
542 | S = i2b(1); | |
543 | if (s5 > 0) | |
544 | S = pow5mult(S, s5); | |
545 | ||
546 | /* Check for special case that d is a normalized power of 2. */ | |
547 | ||
548 | spec_case = 0; | |
549 | if (mode < 2) { | |
550 | if (bbits == 1 && be0 > fpi->emin + 1) { | |
551 | /* The special case */ | |
552 | b2++; | |
553 | s2++; | |
554 | spec_case = 1; | |
555 | } | |
556 | } | |
557 | ||
558 | /* Arrange for convenient computation of quotients: | |
559 | * shift left if necessary so divisor has 4 leading 0 bits. | |
560 | * | |
561 | * Perhaps we should just compute leading 28 bits of S once | |
562 | * and for all and pass them and a shift to quorem, so it | |
563 | * can do shifts and ors to compute the numerator for q. | |
564 | */ | |
565 | i = ((s5 ? hi0bits(S->x[S->wds-1]) : ULbits - 1) - s2 - 4) & kmask; | |
566 | m2 += i; | |
567 | if ((b2 += i) > 0) | |
568 | b = lshift(b, b2); | |
569 | if ((s2 += i) > 0) | |
570 | S = lshift(S, s2); | |
571 | if (k_check) { | |
572 | if (cmp(b,S) < 0) { | |
573 | k--; | |
574 | b = multadd(b, 10, 0); /* we botched the k estimate */ | |
575 | if (leftright) | |
576 | mhi = multadd(mhi, 10, 0); | |
577 | ilim = ilim1; | |
578 | } | |
579 | } | |
580 | if (ilim <= 0 && mode > 2) { | |
581 | if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) { | |
582 | /* no digits, fcvt style */ | |
583 | no_digits: | |
584 | k = -1 - ndigits; | |
585 | inex = STRTOG_Inexlo; | |
586 | goto ret; | |
587 | } | |
588 | one_digit: | |
589 | inex = STRTOG_Inexhi; | |
590 | *s++ = '1'; | |
591 | k++; | |
592 | goto ret; | |
593 | } | |
594 | if (leftright) { | |
595 | if (m2 > 0) | |
596 | mhi = lshift(mhi, m2); | |
597 | ||
598 | /* Compute mlo -- check for special case | |
599 | * that d is a normalized power of 2. | |
600 | */ | |
601 | ||
602 | mlo = mhi; | |
603 | if (spec_case) { | |
604 | mhi = Balloc(mhi->k); | |
605 | Bcopy(mhi, mlo); | |
606 | mhi = lshift(mhi, 1); | |
607 | } | |
608 | ||
609 | for(i = 1;;i++) { | |
610 | dig = quorem(b,S) + '0'; | |
611 | /* Do we yet have the shortest decimal string | |
612 | * that will round to d? | |
613 | */ | |
614 | j = cmp(b, mlo); | |
615 | delta = diff(S, mhi); | |
616 | j1 = delta->sign ? 1 : cmp(b, delta); | |
617 | Bfree(delta); | |
618 | #ifndef ROUND_BIASED | |
619 | if (j1 == 0 && !mode && !(bits[0] & 1) && !rdir) { | |
620 | if (dig == '9') | |
621 | goto round_9_up; | |
622 | if (j <= 0) { | |
623 | if (b->wds > 1 || b->x[0]) | |
624 | inex = STRTOG_Inexlo; | |
625 | } | |
626 | else { | |
627 | dig++; | |
628 | inex = STRTOG_Inexhi; | |
629 | } | |
630 | *s++ = dig; | |
631 | goto ret; | |
632 | } | |
633 | #endif | |
634 | if (j < 0 || (j == 0 && !mode | |
635 | #ifndef ROUND_BIASED | |
636 | && !(bits[0] & 1) | |
637 | #endif | |
638 | )) { | |
639 | if (rdir && (b->wds > 1 || b->x[0])) { | |
640 | if (rdir == 2) { | |
641 | inex = STRTOG_Inexlo; | |
642 | goto accept; | |
643 | } | |
644 | while (cmp(S,mhi) > 0) { | |
645 | *s++ = dig; | |
646 | mhi1 = multadd(mhi, 10, 0); | |
647 | if (mlo == mhi) | |
648 | mlo = mhi1; | |
649 | mhi = mhi1; | |
650 | b = multadd(b, 10, 0); | |
651 | dig = quorem(b,S) + '0'; | |
652 | } | |
653 | if (dig++ == '9') | |
654 | goto round_9_up; | |
655 | inex = STRTOG_Inexhi; | |
656 | goto accept; | |
657 | } | |
658 | if (j1 > 0) { | |
659 | b = lshift(b, 1); | |
660 | j1 = cmp(b, S); | |
661 | if ((j1 > 0 || (j1 == 0 && dig & 1)) | |
662 | && dig++ == '9') | |
663 | goto round_9_up; | |
664 | inex = STRTOG_Inexhi; | |
665 | } | |
666 | if (b->wds > 1 || b->x[0]) | |
667 | inex = STRTOG_Inexlo; | |
668 | accept: | |
669 | *s++ = dig; | |
670 | goto ret; | |
671 | } | |
672 | if (j1 > 0 && rdir != 2) { | |
673 | if (dig == '9') { /* possible if i == 1 */ | |
674 | round_9_up: | |
675 | *s++ = '9'; | |
676 | inex = STRTOG_Inexhi; | |
677 | goto roundoff; | |
678 | } | |
679 | inex = STRTOG_Inexhi; | |
680 | *s++ = dig + 1; | |
681 | goto ret; | |
682 | } | |
683 | *s++ = dig; | |
684 | if (i == ilim) | |
685 | break; | |
686 | b = multadd(b, 10, 0); | |
687 | if (mlo == mhi) | |
688 | mlo = mhi = multadd(mhi, 10, 0); | |
689 | else { | |
690 | mlo = multadd(mlo, 10, 0); | |
691 | mhi = multadd(mhi, 10, 0); | |
692 | } | |
693 | } | |
694 | } | |
695 | else | |
696 | for(i = 1;; i++) { | |
697 | *s++ = dig = quorem(b,S) + '0'; | |
698 | if (i >= ilim) | |
699 | break; | |
700 | b = multadd(b, 10, 0); | |
701 | } | |
702 | ||
703 | /* Round off last digit */ | |
704 | ||
705 | if (rdir) { | |
706 | if (rdir == 2 || (b->wds <= 1 && !b->x[0])) | |
707 | goto chopzeros; | |
708 | goto roundoff; | |
709 | } | |
710 | b = lshift(b, 1); | |
711 | j = cmp(b, S); | |
712 | if (j > 0 || (j == 0 && dig & 1)) { | |
713 | roundoff: | |
714 | inex = STRTOG_Inexhi; | |
715 | while(*--s == '9') | |
716 | if (s == s0) { | |
717 | k++; | |
718 | *s++ = '1'; | |
719 | goto ret; | |
720 | } | |
721 | ++*s++; | |
722 | } | |
723 | else { | |
724 | chopzeros: | |
725 | if (b->wds > 1 || b->x[0]) | |
726 | inex = STRTOG_Inexlo; | |
727 | while(*--s == '0'){} | |
728 | ++s; | |
729 | } | |
730 | ret: | |
731 | Bfree(S); | |
732 | if (mhi) { | |
733 | if (mlo && mlo != mhi) | |
734 | Bfree(mlo); | |
735 | Bfree(mhi); | |
736 | } | |
737 | ret1: | |
738 | Bfree(b); | |
739 | *s = 0; | |
740 | *decpt = k + 1; | |
741 | if (rve) | |
742 | *rve = s; | |
743 | *kindp |= inex; | |
744 | return s0; | |
745 | } |