Libc-498.1.1.tar.gz
[apple/libc.git] / gen / crypt.c
CommitLineData
e9ce8d39
A
1/*
2 * Copyright (c) 1999 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
734aad71
A
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. Please obtain a copy of the License at
10 * http://www.opensource.apple.com/apsl/ and read it before using this
11 * file.
12 *
13 * The Original Code and all software distributed under the License are
14 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
e9ce8d39
A
15 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
16 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
734aad71
A
17 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
18 * Please see the License for the specific language governing rights and
19 * limitations under the License.
e9ce8d39
A
20 *
21 * @APPLE_LICENSE_HEADER_END@
22 */
23/*
24 * Copyright (c) 1989, 1993
25 * The Regents of the University of California. All rights reserved.
26 *
27 * This code is derived from software contributed to Berkeley by
28 * Tom Truscott.
29 *
30 * Redistribution and use in source and binary forms, with or without
31 * modification, are permitted provided that the following conditions
32 * are met:
33 * 1. Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * 2. Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in the
37 * documentation and/or other materials provided with the distribution.
38 * 3. All advertising materials mentioning features or use of this software
39 * must display the following acknowledgement:
40 * This product includes software developed by the University of
41 * California, Berkeley and its contributors.
42 * 4. Neither the name of the University nor the names of its contributors
43 * may be used to endorse or promote products derived from this software
44 * without specific prior written permission.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 */
58
59
3d9156a7 60#include <sys/cdefs.h>
e9ce8d39
A
61#include <unistd.h>
62#include <limits.h>
3d9156a7 63#include <sys/types.h>
e9ce8d39 64#include <pwd.h>
3b2a1fe8 65#include <stdlib.h>
e9ce8d39
A
66
67/*
68 * UNIX password, and DES, encryption.
69 * By Tom Truscott, trt@rti.rti.org,
70 * from algorithms by Robert W. Baldwin and James Gillogly.
71 *
72 * References:
73 * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
74 * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
75 *
76 * "Password Security: A Case History," R. Morris and Ken Thompson,
77 * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
78 *
79 * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
80 * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
81 */
82
83/* ===== Configuration ==================== */
84
85/*
86 * define "MUST_ALIGN" if your compiler cannot load/store
87 * long integers at arbitrary (e.g. odd) memory locations.
3d9156a7 88 * (Either that or never pass unaligned addresses to __crypt_des_cipher!)
e9ce8d39
A
89 */
90#if !defined(vax)
91#define MUST_ALIGN
92#endif
93
94#ifdef CHAR_BITS
95#if CHAR_BITS != 8
96 #error C_block structure assumes 8 bit characters
97#endif
98#endif
99
100/*
101 * define "LONG_IS_32_BITS" only if sizeof(long)==4.
102 * This avoids use of bit fields (your compiler may be sloppy with them).
103 */
3d9156a7 104#if !defined(cray) && (LONG_BIT == 32)
e9ce8d39
A
105#define LONG_IS_32_BITS
106#endif
107
108/*
109 * define "B64" to be the declaration for a 64 bit integer.
110 * XXX this feature is currently unused, see "endian" comment below.
111 */
112#if defined(cray)
113#define B64 long
114#endif
115#if defined(convex)
116#define B64 long long
117#endif
118
119/*
120 * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
3d9156a7 121 * of lookup tables. This speeds up __crypt_des_setkey() and __crypt_des_cipher(), but has
e9ce8d39
A
122 * little effect on crypt().
123 */
124#if defined(notdef)
125#define LARGEDATA
126#endif
127
128/* compile with "-DSTATIC=int" when profiling */
129#ifndef STATIC
130#define STATIC static
131#endif
3d9156a7 132#ifndef BUILDING_VARIANT
e9ce8d39 133STATIC void init_des(), init_perm(), permute();
3d9156a7
A
134#endif /* BUILDING_VARIANT */
135__private_extern__ int __crypt_des_cipher(), __crypt_des_setkey();
e9ce8d39
A
136#ifdef DEBUG
137STATIC prtab();
138#endif
139
140/* ==================================== */
141
142/*
143 * Cipher-block representation (Bob Baldwin):
144 *
145 * DES operates on groups of 64 bits, numbered 1..64 (sigh). One
146 * representation is to store one bit per byte in an array of bytes. Bit N of
147 * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
148 * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
149 * first byte, 9..16 in the second, and so on. The DES spec apparently has
150 * bit 1 in the MSB of the first byte, but that is particularly noxious so we
151 * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
152 * the MSB of the first byte. Specifically, the 64-bit input data and key are
153 * converted to LSB format, and the output 64-bit block is converted back into
154 * MSB format.
155 *
156 * DES operates internally on groups of 32 bits which are expanded to 48 bits
157 * by permutation E and shrunk back to 32 bits by the S boxes. To speed up
158 * the computation, the expansion is applied only once, the expanded
159 * representation is maintained during the encryption, and a compression
160 * permutation is applied only at the end. To speed up the S-box lookups,
161 * the 48 bits are maintained as eight 6 bit groups, one per byte, which
162 * directly feed the eight S-boxes. Within each byte, the 6 bits are the
163 * most significant ones. The low two bits of each byte are zero. (Thus,
164 * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
165 * first byte in the eight byte representation, bit 2 of the 48 bit value is
166 * the "8"-valued bit, and so on.) In fact, a combined "SPE"-box lookup is
167 * used, in which the output is the 64 bit result of an S-box lookup which
168 * has been permuted by P and expanded by E, and is ready for use in the next
169 * iteration. Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
170 * lookup. Since each byte in the 48 bit path is a multiple of four, indexed
171 * lookup of SPE[0] and SPE[1] is simple and fast. The key schedule and
172 * "salt" are also converted to this 8*(6+2) format. The SPE table size is
173 * 8*64*8 = 4K bytes.
174 *
175 * To speed up bit-parallel operations (such as XOR), the 8 byte
176 * representation is "union"ed with 32 bit values "i0" and "i1", and, on
177 * machines which support it, a 64 bit value "b64". This data structure,
178 * "C_block", has two problems. First, alignment restrictions must be
179 * honored. Second, the byte-order (e.g. little-endian or big-endian) of
180 * the architecture becomes visible.
181 *
182 * The byte-order problem is unfortunate, since on the one hand it is good
183 * to have a machine-independent C_block representation (bits 1..8 in the
184 * first byte, etc.), and on the other hand it is good for the LSB of the
185 * first byte to be the LSB of i0. We cannot have both these things, so we
186 * currently use the "little-endian" representation and avoid any multi-byte
187 * operations that depend on byte order. This largely precludes use of the
188 * 64-bit datatype since the relative order of i0 and i1 are unknown. It
189 * also inhibits grouping the SPE table to look up 12 bits at a time. (The
190 * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
191 * high-order zero, providing fast indexing into a 64-bit wide SPE.) On the
192 * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
193 * requires a 128 kilobyte table, so perhaps this is not a big loss.
194 *
195 * Permutation representation (Jim Gillogly):
196 *
197 * A transformation is defined by its effect on each of the 8 bytes of the
198 * 64-bit input. For each byte we give a 64-bit output that has the bits in
199 * the input distributed appropriately. The transformation is then the OR
200 * of the 8 sets of 64-bits. This uses 8*256*8 = 16K bytes of storage for
201 * each transformation. Unless LARGEDATA is defined, however, a more compact
202 * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
203 * The smaller table uses 16*16*8 = 2K bytes for each transformation. This
204 * is slower but tolerable, particularly for password encryption in which
205 * the SPE transformation is iterated many times. The small tables total 9K
206 * bytes, the large tables total 72K bytes.
207 *
208 * The transformations used are:
209 * IE3264: MSB->LSB conversion, initial permutation, and expansion.
210 * This is done by collecting the 32 even-numbered bits and applying
211 * a 32->64 bit transformation, and then collecting the 32 odd-numbered
212 * bits and applying the same transformation. Since there are only
213 * 32 input bits, the IE3264 transformation table is half the size of
214 * the usual table.
215 * CF6464: Compression, final permutation, and LSB->MSB conversion.
216 * This is done by two trivial 48->32 bit compressions to obtain
217 * a 64-bit block (the bit numbering is given in the "CIFP" table)
218 * followed by a 64->64 bit "cleanup" transformation. (It would
219 * be possible to group the bits in the 64-bit block so that 2
220 * identical 32->32 bit transformations could be used instead,
221 * saving a factor of 4 in space and possibly 2 in time, but
222 * byte-ordering and other complications rear their ugly head.
223 * Similar opportunities/problems arise in the key schedule
224 * transforms.)
225 * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
226 * This admittedly baroque 64->64 bit transformation is used to
227 * produce the first code (in 8*(6+2) format) of the key schedule.
228 * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
229 * It would be possible to define 15 more transformations, each
230 * with a different rotation, to generate the entire key schedule.
231 * To save space, however, we instead permute each code into the
232 * next by using a transformation that "undoes" the PC2 permutation,
233 * rotates the code, and then applies PC2. Unfortunately, PC2
234 * transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
235 * invertible. We get around that problem by using a modified PC2
236 * which retains the 8 otherwise-lost bits in the unused low-order
237 * bits of each byte. The low-order bits are cleared when the
238 * codes are stored into the key schedule.
239 * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
240 * This is faster than applying PC2ROT[0] twice,
241 *
242 * The Bell Labs "salt" (Bob Baldwin):
243 *
244 * The salting is a simple permutation applied to the 48-bit result of E.
245 * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
246 * i+24 of the result are swapped. The salt is thus a 24 bit number, with
247 * 16777216 possible values. (The original salt was 12 bits and could not
248 * swap bits 13..24 with 36..48.)
249 *
250 * It is possible, but ugly, to warp the SPE table to account for the salt
251 * permutation. Fortunately, the conditional bit swapping requires only
252 * about four machine instructions and can be done on-the-fly with about an
253 * 8% performance penalty.
254 */
255
256typedef union {
257 unsigned char b[8];
258 struct {
259#if defined(LONG_IS_32_BITS)
260 /* long is often faster than a 32-bit bit field */
261 long i0;
262 long i1;
263#else
264 long i0: 32;
265 long i1: 32;
266#endif
267 } b32;
268#if defined(B64)
269 B64 b64;
270#endif
271} C_block;
272
273/*
274 * Convert twenty-four-bit long in host-order
275 * to six bits (and 2 low-order zeroes) per char little-endian format.
276 */
277#define TO_SIX_BIT(rslt, src) { \
278 C_block cvt; \
279 cvt.b[0] = src; src >>= 6; \
280 cvt.b[1] = src; src >>= 6; \
281 cvt.b[2] = src; src >>= 6; \
282 cvt.b[3] = src; \
283 rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2; \
284 }
285
286/*
287 * These macros may someday permit efficient use of 64-bit integers.
288 */
289#define ZERO(d,d0,d1) d0 = 0, d1 = 0
290#define LOAD(d,d0,d1,bl) d0 = (bl).b32.i0, d1 = (bl).b32.i1
291#define LOADREG(d,d0,d1,s,s0,s1) d0 = s0, d1 = s1
292#define OR(d,d0,d1,bl) d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
293#define STORE(s,s0,s1,bl) (bl).b32.i0 = s0, (bl).b32.i1 = s1
294#define DCL_BLOCK(d,d0,d1) long d0, d1
295
296#if defined(LARGEDATA)
297 /* Waste memory like crazy. Also, do permutations in line */
298#define LGCHUNKBITS 3
299#define CHUNKBITS (1<<LGCHUNKBITS)
300#define PERM6464(d,d0,d1,cpp,p) \
301 LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
302 OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
303 OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
304 OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]); \
305 OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]); \
306 OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]); \
307 OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]); \
308 OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
309#define PERM3264(d,d0,d1,cpp,p) \
310 LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
311 OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
312 OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
313 OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
314#else
315 /* "small data" */
316#define LGCHUNKBITS 2
317#define CHUNKBITS (1<<LGCHUNKBITS)
318#define PERM6464(d,d0,d1,cpp,p) \
319 { C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
320#define PERM3264(d,d0,d1,cpp,p) \
321 { C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
322
3d9156a7 323#ifndef BUILDING_VARIANT
e9ce8d39
A
324STATIC void permute(cp, out, p, chars_in)
325 unsigned char *cp;
326 C_block *out;
327 register C_block *p;
328 int chars_in;
329{
330 register DCL_BLOCK(D,D0,D1);
331 register C_block *tp;
332 register int t;
333
334 ZERO(D,D0,D1);
335 do {
336 t = *cp++;
337 tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
338 tp = &p[t>>4]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
339 } while (--chars_in > 0);
340 STORE(D,D0,D1,*out);
341}
3d9156a7 342#endif /* BUILDING_VARIANT */
e9ce8d39
A
343#endif /* LARGEDATA */
344
224c7076
A
345#ifndef BUILDING_VARIANT
346__private_extern__ int __crypt_des_setkey_called = 0;
347#else /* BUILDING_VARIANT */
348__private_extern__ int __crypt_des_setkey_called;
349#endif /* BUILDING_VARIANT */
e9ce8d39
A
350
351/* ===== (mostly) Standard DES Tables ==================== */
352
3d9156a7 353#ifndef BUILDING_VARIANT
e9ce8d39
A
354static unsigned char IP[] = { /* initial permutation */
355 58, 50, 42, 34, 26, 18, 10, 2,
356 60, 52, 44, 36, 28, 20, 12, 4,
357 62, 54, 46, 38, 30, 22, 14, 6,
358 64, 56, 48, 40, 32, 24, 16, 8,
359 57, 49, 41, 33, 25, 17, 9, 1,
360 59, 51, 43, 35, 27, 19, 11, 3,
361 61, 53, 45, 37, 29, 21, 13, 5,
362 63, 55, 47, 39, 31, 23, 15, 7,
363};
364
365/* The final permutation is the inverse of IP - no table is necessary */
366
367static unsigned char ExpandTr[] = { /* expansion operation */
368 32, 1, 2, 3, 4, 5,
369 4, 5, 6, 7, 8, 9,
370 8, 9, 10, 11, 12, 13,
371 12, 13, 14, 15, 16, 17,
372 16, 17, 18, 19, 20, 21,
373 20, 21, 22, 23, 24, 25,
374 24, 25, 26, 27, 28, 29,
375 28, 29, 30, 31, 32, 1,
376};
377
378static unsigned char PC1[] = { /* permuted choice table 1 */
379 57, 49, 41, 33, 25, 17, 9,
380 1, 58, 50, 42, 34, 26, 18,
381 10, 2, 59, 51, 43, 35, 27,
382 19, 11, 3, 60, 52, 44, 36,
383
384 63, 55, 47, 39, 31, 23, 15,
385 7, 62, 54, 46, 38, 30, 22,
386 14, 6, 61, 53, 45, 37, 29,
387 21, 13, 5, 28, 20, 12, 4,
388};
389
390static unsigned char Rotates[] = { /* PC1 rotation schedule */
391 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
392};
393
394/* note: each "row" of PC2 is left-padded with bits that make it invertible */
395static unsigned char PC2[] = { /* permuted choice table 2 */
396 9, 18, 14, 17, 11, 24, 1, 5,
397 22, 25, 3, 28, 15, 6, 21, 10,
398 35, 38, 23, 19, 12, 4, 26, 8,
399 43, 54, 16, 7, 27, 20, 13, 2,
400
401 0, 0, 41, 52, 31, 37, 47, 55,
402 0, 0, 30, 40, 51, 45, 33, 48,
403 0, 0, 44, 49, 39, 56, 34, 53,
404 0, 0, 46, 42, 50, 36, 29, 32,
405};
406
407static const unsigned char S[8][64] = { /* 48->32 bit substitution tables */
9385eb3d 408 { /* S[1] */
e9ce8d39
A
409 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
410 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
411 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
412 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13,
9385eb3d
A
413 },
414 { /* S[2] */
e9ce8d39
A
415 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
416 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
417 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
418 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9,
9385eb3d
A
419 },
420 { /* S[3] */
e9ce8d39
A
421 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
422 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
423 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
424 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12,
9385eb3d
A
425 },
426 { /* S[4] */
e9ce8d39
A
427 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
428 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
429 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
430 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14,
9385eb3d
A
431 },
432 { /* S[5] */
e9ce8d39
A
433 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
434 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
435 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
436 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3,
9385eb3d
A
437 },
438 { /* S[6] */
e9ce8d39
A
439 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
440 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
441 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
442 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13,
9385eb3d
A
443 },
444 { /* S[7] */
e9ce8d39
A
445 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
446 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
447 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
448 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12,
9385eb3d
A
449 },
450 { /* S[8] */
e9ce8d39
A
451 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
452 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
453 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
454 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11,
9385eb3d 455 },
e9ce8d39
A
456};
457
458static unsigned char P32Tr[] = { /* 32-bit permutation function */
459 16, 7, 20, 21,
460 29, 12, 28, 17,
461 1, 15, 23, 26,
462 5, 18, 31, 10,
463 2, 8, 24, 14,
464 32, 27, 3, 9,
465 19, 13, 30, 6,
466 22, 11, 4, 25,
467};
468
469static unsigned char CIFP[] = { /* compressed/interleaved permutation */
470 1, 2, 3, 4, 17, 18, 19, 20,
471 5, 6, 7, 8, 21, 22, 23, 24,
472 9, 10, 11, 12, 25, 26, 27, 28,
473 13, 14, 15, 16, 29, 30, 31, 32,
474
475 33, 34, 35, 36, 49, 50, 51, 52,
476 37, 38, 39, 40, 53, 54, 55, 56,
477 41, 42, 43, 44, 57, 58, 59, 60,
478 45, 46, 47, 48, 61, 62, 63, 64,
479};
480
481static unsigned char itoa64[] = /* 0..63 => ascii-64 */
482 "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
483
484
485/* ===== Tables that are initialized at run time ==================== */
486
487
488static unsigned char a64toi[128]; /* ascii-64 => 0..63 */
489
490/* Initial key schedule permutation */
3b2a1fe8
A
491// static C_block PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
492static C_block *PC1ROT;
e9ce8d39
A
493
494/* Subsequent key schedule rotation permutations */
3b2a1fe8
A
495// static C_block PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
496static C_block *PC2ROT[2];
e9ce8d39
A
497
498/* Initial permutation/expansion table */
3b2a1fe8
A
499// static C_block IE3264[32/CHUNKBITS][1<<CHUNKBITS];
500static C_block *IE3264;
e9ce8d39
A
501
502/* Table that combines the S, P, and E operations. */
3b2a1fe8
A
503// static long SPE[2][8][64];
504static long *SPE;
e9ce8d39
A
505
506/* compressed/interleaved => final permutation table */
3b2a1fe8
A
507// static C_block CF6464[64/CHUNKBITS][1<<CHUNKBITS];
508static C_block *CF6464;
e9ce8d39
A
509
510
511/* ==================================== */
512
513
514static C_block constdatablock; /* encryption constant */
515static char cryptresult[1+4+4+11+1]; /* encrypted result */
516
517/*
518 * Return a pointer to static data consisting of the "setting"
519 * followed by an encryption produced by the "key" and "setting".
520 */
521char *
522crypt(key, setting)
523 register const char *key;
524 register const char *setting;
525{
526 register char *encp;
527 register long i;
528 register int t;
529 long salt;
530 int num_iter, salt_size;
531 C_block keyblock, rsltblock;
532
533 for (i = 0; i < 8; i++) {
534 if ((t = 2*(unsigned char)(*key)) != 0)
535 key++;
536 keyblock.b[i] = t;
537 }
3d9156a7 538 if (__crypt_des_setkey((char *)keyblock.b)) /* also initializes "a64toi" */
e9ce8d39
A
539 return (NULL);
540
541 encp = &cryptresult[0];
542 switch (*setting) {
543 case _PASSWORD_EFMT1:
544 /*
545 * Involve the rest of the password 8 characters at a time.
546 */
547 while (*key) {
3d9156a7 548 if (__crypt_des_cipher((char *)&keyblock,
e9ce8d39
A
549 (char *)&keyblock, 0L, 1))
550 return (NULL);
551 for (i = 0; i < 8; i++) {
552 if ((t = 2*(unsigned char)(*key)) != 0)
553 key++;
554 keyblock.b[i] ^= t;
555 }
3d9156a7 556 if (__crypt_des_setkey((char *)keyblock.b))
e9ce8d39
A
557 return (NULL);
558 }
559
560 *encp++ = *setting++;
561
562 /* get iteration count */
563 num_iter = 0;
564 for (i = 4; --i >= 0; ) {
565 if ((t = (unsigned char)setting[i]) == '\0')
566 t = '.';
567 encp[i] = t;
568 num_iter = (num_iter<<6) | a64toi[t];
569 }
570 setting += 4;
571 encp += 4;
572 salt_size = 4;
573 break;
574 default:
575 num_iter = 25;
576 salt_size = 2;
577 }
578
579 salt = 0;
580 for (i = salt_size; --i >= 0; ) {
581 if ((t = (unsigned char)setting[i]) == '\0')
582 t = '.';
583 encp[i] = t;
584 salt = (salt<<6) | a64toi[t];
585 }
586 encp += salt_size;
3d9156a7 587 if (__crypt_des_cipher((char *)&constdatablock, (char *)&rsltblock,
e9ce8d39
A
588 salt, num_iter))
589 return (NULL);
590
591 /*
592 * Encode the 64 cipher bits as 11 ascii characters.
593 */
594 i = ((long)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) | rsltblock.b[2];
595 encp[3] = itoa64[i&0x3f]; i >>= 6;
596 encp[2] = itoa64[i&0x3f]; i >>= 6;
597 encp[1] = itoa64[i&0x3f]; i >>= 6;
598 encp[0] = itoa64[i]; encp += 4;
599 i = ((long)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) | rsltblock.b[5];
600 encp[3] = itoa64[i&0x3f]; i >>= 6;
601 encp[2] = itoa64[i&0x3f]; i >>= 6;
602 encp[1] = itoa64[i&0x3f]; i >>= 6;
603 encp[0] = itoa64[i]; encp += 4;
604 i = ((long)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
605 encp[2] = itoa64[i&0x3f]; i >>= 6;
606 encp[1] = itoa64[i&0x3f]; i >>= 6;
607 encp[0] = itoa64[i];
608
609 encp[3] = 0;
610
611 return (cryptresult);
612}
613
614
615/*
3d9156a7 616 * The Key Schedule, filled in by __crypt_des_setkey() or setkey().
e9ce8d39
A
617 */
618#define KS_SIZE 16
619static C_block KS[KS_SIZE];
620
621/*
622 * Set up the key schedule from the key.
623 */
3d9156a7 624__private_extern__ int __crypt_des_setkey(key)
e9ce8d39
A
625 register const char *key;
626{
627 register DCL_BLOCK(K, K0, K1);
628 register C_block *ptabp;
629 register int i;
630 static int des_ready = 0;
631
632 if (!des_ready) {
633 init_des();
634 des_ready = 1;
635 }
636
3b2a1fe8 637 PERM6464(K,K0,K1,(unsigned char *)key,PC1ROT);
e9ce8d39
A
638 key = (char *)&KS[0];
639 STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
640 for (i = 1; i < 16; i++) {
641 key += sizeof(C_block);
642 STORE(K,K0,K1,*(C_block *)key);
3b2a1fe8 643 ptabp = PC2ROT[Rotates[i]-1];
e9ce8d39
A
644 PERM6464(K,K0,K1,(unsigned char *)key,ptabp);
645 STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
646 }
224c7076 647 __crypt_des_setkey_called = 1;
e9ce8d39
A
648 return (0);
649}
650
651/*
652 * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
653 * iterations of DES, using the the given 24-bit salt and the pre-computed key
654 * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
655 *
656 * NOTE: the performance of this routine is critically dependent on your
657 * compiler and machine architecture.
658 */
3d9156a7 659__private_extern__ int __crypt_des_cipher(in, out, salt, num_iter)
e9ce8d39
A
660 const char *in;
661 char *out;
662 long salt;
663 int num_iter;
664{
665 /* variables that we want in registers, most important first */
666#if defined(pdp11)
667 register int j;
668#endif
669 register long L0, L1, R0, R1, k;
670 register C_block *kp;
3d9156a7
A
671 register int loop_count;
672 ssize_t ks_inc;
e9ce8d39
A
673 C_block B;
674
675 L0 = salt;
676 TO_SIX_BIT(salt, L0); /* convert to 4*(6+2) format */
677
678#if defined(vax) || defined(pdp11)
679 salt = ~salt; /* "x &~ y" is faster than "x & y". */
680#define SALT (~salt)
681#else
682#define SALT salt
683#endif
684
685#if defined(MUST_ALIGN)
686 B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
687 B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
688 LOAD(L,L0,L1,B);
689#else
690 LOAD(L,L0,L1,*(C_block *)in);
691#endif
692 LOADREG(R,R0,R1,L,L0,L1);
693 L0 &= 0x55555555L;
694 L1 &= 0x55555555L;
695 L0 = (L0 << 1) | L1; /* L0 is the even-numbered input bits */
696 R0 &= 0xaaaaaaaaL;
697 R1 = (R1 >> 1) & 0x55555555L;
698 L1 = R0 | R1; /* L1 is the odd-numbered input bits */
699 STORE(L,L0,L1,B);
3b2a1fe8
A
700 PERM3264(L,L0,L1,B.b,IE3264); /* even bits */
701 PERM3264(R,R0,R1,B.b+4,IE3264); /* odd bits */
e9ce8d39
A
702
703 if (num_iter >= 0)
704 { /* encryption */
705 kp = &KS[0];
706 ks_inc = sizeof(*kp);
707 }
708 else
709 { /* decryption */
710 num_iter = -num_iter;
711 kp = &KS[KS_SIZE-1];
712 ks_inc = -sizeof(*kp);
713 }
714
715 while (--num_iter >= 0) {
716 loop_count = 8;
717 do {
718
719#define SPTAB(t, i) (*(long *)((unsigned char *)t + i*(sizeof(long)/4)))
720#if defined(gould)
721 /* use this if B.b[i] is evaluated just once ... */
3b2a1fe8 722#define DOXOR(x,y,i) x^=SPTAB(&SPE[i * 64],B.b[i]); y^=SPTAB(&SPE[(8 * 64) + (i * 64)],B.b[i]);
e9ce8d39
A
723#else
724#if defined(pdp11)
725 /* use this if your "long" int indexing is slow */
3b2a1fe8 726#define DOXOR(x,y,i) j=B.b[i]; x^=SPTAB(&SPE[i * 64],j); y^=SPTAB(&SPE[(8 * 64) + (i * 64)],j);
e9ce8d39
A
727#else
728 /* use this if "k" is allocated to a register ... */
3b2a1fe8 729#define DOXOR(x,y,i) k=B.b[i]; x^=SPTAB(&SPE[i * 64],k); y^=SPTAB(&SPE[(8 * 64) + (i * 64)],k);
e9ce8d39
A
730#endif
731#endif
732
733#define CRUNCH(p0, p1, q0, q1) \
734 k = (q0 ^ q1) & SALT; \
735 B.b32.i0 = k ^ q0 ^ kp->b32.i0; \
736 B.b32.i1 = k ^ q1 ^ kp->b32.i1; \
737 kp = (C_block *)((char *)kp+ks_inc); \
738 \
739 DOXOR(p0, p1, 0); \
740 DOXOR(p0, p1, 1); \
741 DOXOR(p0, p1, 2); \
742 DOXOR(p0, p1, 3); \
743 DOXOR(p0, p1, 4); \
744 DOXOR(p0, p1, 5); \
745 DOXOR(p0, p1, 6); \
746 DOXOR(p0, p1, 7);
747
748 CRUNCH(L0, L1, R0, R1);
749 CRUNCH(R0, R1, L0, L1);
750 } while (--loop_count != 0);
751 kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
752
753
754 /* swap L and R */
755 L0 ^= R0; L1 ^= R1;
756 R0 ^= L0; R1 ^= L1;
757 L0 ^= R0; L1 ^= R1;
758 }
759
760 /* store the encrypted (or decrypted) result */
761 L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
762 L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
763 STORE(L,L0,L1,B);
3b2a1fe8 764 PERM6464(L,L0,L1,B.b,CF6464);
e9ce8d39
A
765#if defined(MUST_ALIGN)
766 STORE(L,L0,L1,B);
767 out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
768 out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
769#else
770 STORE(L,L0,L1,*(C_block *)out);
771#endif
772 return (0);
773}
774
775
776/*
777 * Initialize various tables. This need only be done once. It could even be
778 * done at compile time, if the compiler were capable of that sort of thing.
779 */
780STATIC void init_des()
781{
782 register int i, j;
783 register long k;
784 register int tableno;
785 static unsigned char perm[64], tmp32[32]; /* "static" for speed */
786
787 /*
788 * table that converts chars "./0-9A-Za-z"to integers 0-63.
789 */
790 for (i = 0; i < 64; i++)
791 a64toi[itoa64[i]] = i;
792
793 /*
794 * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
795 */
796 for (i = 0; i < 64; i++)
797 perm[i] = 0;
798 for (i = 0; i < 64; i++) {
799 if ((k = PC2[i]) == 0)
800 continue;
801 k += Rotates[0]-1;
802 if ((k%28) < Rotates[0]) k -= 28;
803 k = PC1[k];
804 if (k > 0) {
805 k--;
806 k = (k|07) - (k&07);
807 k++;
808 }
809 perm[i] = k;
810 }
811#ifdef DEBUG
812 prtab("pc1tab", perm, 8);
813#endif
3b2a1fe8
A
814 PC1ROT = (C_block *)calloc(sizeof(C_block), (64/CHUNKBITS) * (1<<CHUNKBITS));
815 for (i = 0; i < 2; i++)
816 PC2ROT[i] = (C_block *)calloc(sizeof(C_block), (64/CHUNKBITS) * (1<<CHUNKBITS));
e9ce8d39
A
817 init_perm(PC1ROT, perm, 8, 8);
818
819 /*
820 * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
821 */
822 for (j = 0; j < 2; j++) {
823 unsigned char pc2inv[64];
824 for (i = 0; i < 64; i++)
825 perm[i] = pc2inv[i] = 0;
826 for (i = 0; i < 64; i++) {
827 if ((k = PC2[i]) == 0)
828 continue;
829 pc2inv[k-1] = i+1;
830 }
831 for (i = 0; i < 64; i++) {
832 if ((k = PC2[i]) == 0)
833 continue;
834 k += j;
835 if ((k%28) <= j) k -= 28;
836 perm[i] = pc2inv[k];
837 }
838#ifdef DEBUG
839 prtab("pc2tab", perm, 8);
840#endif
841 init_perm(PC2ROT[j], perm, 8, 8);
842 }
843
844 /*
845 * Bit reverse, then initial permutation, then expansion.
846 */
847 for (i = 0; i < 8; i++) {
848 for (j = 0; j < 8; j++) {
849 k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
850 if (k > 32)
851 k -= 32;
852 else if (k > 0)
853 k--;
854 if (k > 0) {
855 k--;
856 k = (k|07) - (k&07);
857 k++;
858 }
859 perm[i*8+j] = k;
860 }
861 }
862#ifdef DEBUG
863 prtab("ietab", perm, 8);
864#endif
3b2a1fe8 865 IE3264 = (C_block *)calloc(sizeof(C_block), (32/CHUNKBITS) * (1<<CHUNKBITS));
e9ce8d39
A
866 init_perm(IE3264, perm, 4, 8);
867
868 /*
869 * Compression, then final permutation, then bit reverse.
870 */
871 for (i = 0; i < 64; i++) {
872 k = IP[CIFP[i]-1];
873 if (k > 0) {
874 k--;
875 k = (k|07) - (k&07);
876 k++;
877 }
878 perm[k-1] = i+1;
879 }
880#ifdef DEBUG
881 prtab("cftab", perm, 8);
882#endif
3b2a1fe8
A
883 CF6464 = (C_block *)calloc(sizeof(C_block), (64/CHUNKBITS) * (1<<CHUNKBITS));
884 SPE = (long *)calloc(sizeof(long), 2 * 8 * 64);
e9ce8d39
A
885 init_perm(CF6464, perm, 8, 8);
886
887 /*
888 * SPE table
889 */
890 for (i = 0; i < 48; i++)
891 perm[i] = P32Tr[ExpandTr[i]-1];
892 for (tableno = 0; tableno < 8; tableno++) {
893 for (j = 0; j < 64; j++) {
894 k = (((j >> 0) &01) << 5)|
895 (((j >> 1) &01) << 3)|
896 (((j >> 2) &01) << 2)|
897 (((j >> 3) &01) << 1)|
898 (((j >> 4) &01) << 0)|
899 (((j >> 5) &01) << 4);
900 k = S[tableno][k];
901 k = (((k >> 3)&01) << 0)|
902 (((k >> 2)&01) << 1)|
903 (((k >> 1)&01) << 2)|
904 (((k >> 0)&01) << 3);
905 for (i = 0; i < 32; i++)
906 tmp32[i] = 0;
907 for (i = 0; i < 4; i++)
908 tmp32[4 * tableno + i] = (k >> i) & 01;
909 k = 0;
910 for (i = 24; --i >= 0; )
911 k = (k<<1) | tmp32[perm[i]-1];
3b2a1fe8 912 TO_SIX_BIT(SPE[(tableno * 64) + j], k);
e9ce8d39
A
913 k = 0;
914 for (i = 24; --i >= 0; )
915 k = (k<<1) | tmp32[perm[i+24]-1];
3b2a1fe8 916 TO_SIX_BIT(SPE[(8 * 64) + (tableno * 64) + j], k);
e9ce8d39
A
917 }
918 }
919}
920
921/*
922 * Initialize "perm" to represent transformation "p", which rearranges
923 * (perhaps with expansion and/or contraction) one packed array of bits
924 * (of size "chars_in" characters) into another array (of size "chars_out"
925 * characters).
926 *
927 * "perm" must be all-zeroes on entry to this routine.
928 */
929STATIC void init_perm(perm, p, chars_in, chars_out)
3b2a1fe8 930 C_block *perm;
e9ce8d39
A
931 unsigned char p[64];
932 int chars_in, chars_out;
933{
934 register int i, j, k, l;
935
936 for (k = 0; k < chars_out*8; k++) { /* each output bit position */
937 l = p[k] - 1; /* where this bit comes from */
938 if (l < 0)
939 continue; /* output bit is always 0 */
940 i = l>>LGCHUNKBITS; /* which chunk this bit comes from */
941 l = 1<<(l&(CHUNKBITS-1)); /* mask for this bit */
942 for (j = 0; j < (1<<CHUNKBITS); j++) { /* each chunk value */
943 if ((j & l) != 0)
3b2a1fe8 944 perm[(i * (1<<CHUNKBITS)) + j].b[k>>3] |= 1<<(k&07);
e9ce8d39
A
945 }
946 }
947}
3d9156a7 948#endif /* BUILDING_VARIANT */
e9ce8d39
A
949
950/*
951 * "setkey" routine (for backwards compatibility)
952 */
3d9156a7 953#if __DARWIN_UNIX03
59e0d9fe 954void setkey(key)
3d9156a7
A
955#else /* !__DARWIN_UNIX03 */
956int setkey(key)
957#endif /* __DARWIN_UNIX03 */
e9ce8d39
A
958 register const char *key;
959{
960 register int i, j, k;
961 C_block keyblock;
962
963 for (i = 0; i < 8; i++) {
964 k = 0;
965 for (j = 0; j < 8; j++) {
966 k <<= 1;
967 k |= (unsigned char)*key++;
968 }
969 keyblock.b[i] = k;
970 }
3d9156a7
A
971#if __DARWIN_UNIX03
972 __crypt_des_setkey((char *)keyblock.b);
973#else /* !__DARWIN_UNIX03 */
974 return (__crypt_des_setkey((char *)keyblock.b));
975#endif /* __DARWIN_UNIX03 */
e9ce8d39
A
976}
977
978/*
979 * "encrypt" routine (for backwards compatibility)
980 */
3d9156a7 981#if __DARWIN_UNIX03
59e0d9fe 982void encrypt(block, flag)
3d9156a7
A
983#else /* !__DARWIN_UNIX03 */
984int encrypt(block, flag)
985#endif /* __DARWIN_UNIX03 */
e9ce8d39
A
986 register char *block;
987 int flag;
988{
989 register int i, j, k;
990 C_block cblock;
991
224c7076
A
992 /* Prevent encrypt from crashing if setkey was never called.
993 * This does not make a good cypher */
994 if (!__crypt_des_setkey_called) {
995 cblock.b32.i0 = cblock.b32.i1 = 0;
996 __crypt_des_setkey((char *)cblock.b);
997 }
e9ce8d39
A
998 for (i = 0; i < 8; i++) {
999 k = 0;
1000 for (j = 0; j < 8; j++) {
1001 k <<= 1;
1002 k |= (unsigned char)*block++;
1003 }
1004 cblock.b[i] = k;
1005 }
3d9156a7
A
1006 if (__crypt_des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
1007#if __DARWIN_UNIX03
1008 return;
1009#else /* !__DARWIN_UNIX03 */
e9ce8d39 1010 return (1);
3d9156a7 1011#endif /* __DARWIN_UNIX03 */
e9ce8d39
A
1012 for (i = 7; i >= 0; i--) {
1013 k = cblock.b[i];
1014 for (j = 7; j >= 0; j--) {
1015 *--block = k&01;
1016 k >>= 1;
1017 }
1018 }
3d9156a7 1019#if !__DARWIN_UNIX03
e9ce8d39 1020 return (0);
3d9156a7 1021#endif /* !__DARWIN_UNIX03 */
e9ce8d39
A
1022}
1023
3d9156a7 1024#ifndef BUILDING_VARIANT
e9ce8d39
A
1025#ifdef DEBUG
1026STATIC
1027prtab(s, t, num_rows)
1028 char *s;
1029 unsigned char *t;
1030 int num_rows;
1031{
1032 register int i, j;
1033
1034 (void)printf("%s:\n", s);
1035 for (i = 0; i < num_rows; i++) {
1036 for (j = 0; j < 8; j++) {
1037 (void)printf("%3d", t[i*8+j]);
1038 }
1039 (void)printf("\n");
1040 }
1041 (void)printf("\n");
1042}
1043#endif
3d9156a7 1044#endif /* BUILDING_VARIANT */