X-Git-Url: https://git.saurik.com/apple/javascriptcore.git/blobdiff_plain/ba379fdc102753d6be2c4d937058fe40257329fe..2656c66b5b30d5597e842a751c7f19ad6c2fe31a:/runtime/MathObject.cpp diff --git a/runtime/MathObject.cpp b/runtime/MathObject.cpp index 2572bc9..fdf5abd 100644 --- a/runtime/MathObject.cpp +++ b/runtime/MathObject.cpp @@ -1,6 +1,6 @@ /* * Copyright (C) 1999-2000 Harri Porten (porten@kde.org) - * Copyright (C) 2007, 2008 Apple Inc. All Rights Reserved. + * Copyright (C) 2007, 2008, 2013 Apple Inc. All Rights Reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public @@ -21,222 +21,728 @@ #include "config.h" #include "MathObject.h" +#include "Lookup.h" #include "ObjectPrototype.h" -#include "Operations.h" +#include "JSCInlines.h" #include #include #include #include #include +#include namespace JSC { -ASSERT_CLASS_FITS_IN_CELL(MathObject); - -static JSValue JSC_HOST_CALL mathProtoFuncAbs(ExecState*, JSObject*, JSValue, const ArgList&); -static JSValue JSC_HOST_CALL mathProtoFuncACos(ExecState*, JSObject*, JSValue, const ArgList&); -static JSValue JSC_HOST_CALL mathProtoFuncASin(ExecState*, JSObject*, JSValue, const ArgList&); -static JSValue JSC_HOST_CALL mathProtoFuncATan(ExecState*, JSObject*, JSValue, const ArgList&); -static JSValue JSC_HOST_CALL mathProtoFuncATan2(ExecState*, JSObject*, JSValue, const ArgList&); -static JSValue JSC_HOST_CALL mathProtoFuncCeil(ExecState*, JSObject*, JSValue, const ArgList&); -static JSValue JSC_HOST_CALL mathProtoFuncCos(ExecState*, JSObject*, JSValue, const ArgList&); -static JSValue JSC_HOST_CALL mathProtoFuncExp(ExecState*, JSObject*, JSValue, const ArgList&); -static JSValue JSC_HOST_CALL mathProtoFuncFloor(ExecState*, JSObject*, JSValue, const ArgList&); -static JSValue JSC_HOST_CALL mathProtoFuncLog(ExecState*, JSObject*, JSValue, const ArgList&); -static JSValue JSC_HOST_CALL mathProtoFuncMax(ExecState*, JSObject*, JSValue, const ArgList&); -static JSValue JSC_HOST_CALL mathProtoFuncMin(ExecState*, JSObject*, JSValue, const ArgList&); -static JSValue JSC_HOST_CALL mathProtoFuncPow(ExecState*, JSObject*, JSValue, const ArgList&); -static JSValue JSC_HOST_CALL mathProtoFuncRandom(ExecState*, JSObject*, JSValue, const ArgList&); -static JSValue JSC_HOST_CALL mathProtoFuncRound(ExecState*, JSObject*, JSValue, const ArgList&); -static JSValue JSC_HOST_CALL mathProtoFuncSin(ExecState*, JSObject*, JSValue, const ArgList&); -static JSValue JSC_HOST_CALL mathProtoFuncSqrt(ExecState*, JSObject*, JSValue, const ArgList&); -static JSValue JSC_HOST_CALL mathProtoFuncTan(ExecState*, JSObject*, JSValue, const ArgList&); +STATIC_ASSERT_IS_TRIVIALLY_DESTRUCTIBLE(MathObject); + +static EncodedJSValue JSC_HOST_CALL mathProtoFuncAbs(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncACos(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncACosh(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncASin(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncASinh(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncATan(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncATanh(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncATan2(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncCbrt(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncCeil(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncCos(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncCosh(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncExp(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncExpm1(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncFloor(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncFround(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncHypot(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncLog(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncLog1p(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncLog10(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncLog2(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncMax(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncMin(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncPow(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncRandom(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncRound(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncSin(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncSinh(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncSqrt(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncTan(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncTanh(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncTrunc(ExecState*); +static EncodedJSValue JSC_HOST_CALL mathProtoFuncIMul(ExecState*); } -#include "MathObject.lut.h" - namespace JSC { -// ------------------------------ MathObject -------------------------------- - -const ClassInfo MathObject::info = { "Math", 0, 0, ExecState::mathTable }; - -/* Source for MathObject.lut.h -@begin mathTable - abs mathProtoFuncAbs DontEnum|Function 1 - acos mathProtoFuncACos DontEnum|Function 1 - asin mathProtoFuncASin DontEnum|Function 1 - atan mathProtoFuncATan DontEnum|Function 1 - atan2 mathProtoFuncATan2 DontEnum|Function 2 - ceil mathProtoFuncCeil DontEnum|Function 1 - cos mathProtoFuncCos DontEnum|Function 1 - exp mathProtoFuncExp DontEnum|Function 1 - floor mathProtoFuncFloor DontEnum|Function 1 - log mathProtoFuncLog DontEnum|Function 1 - max mathProtoFuncMax DontEnum|Function 2 - min mathProtoFuncMin DontEnum|Function 2 - pow mathProtoFuncPow DontEnum|Function 2 - random mathProtoFuncRandom DontEnum|Function 0 - round mathProtoFuncRound DontEnum|Function 1 - sin mathProtoFuncSin DontEnum|Function 1 - sqrt mathProtoFuncSqrt DontEnum|Function 1 - tan mathProtoFuncTan DontEnum|Function 1 -@end -*/ - -MathObject::MathObject(ExecState* exec, PassRefPtr structure) - : JSObject(structure) -{ - putDirectWithoutTransition(Identifier(exec, "E"), jsNumber(exec, exp(1.0)), DontDelete | DontEnum | ReadOnly); - putDirectWithoutTransition(Identifier(exec, "LN2"), jsNumber(exec, log(2.0)), DontDelete | DontEnum | ReadOnly); - putDirectWithoutTransition(Identifier(exec, "LN10"), jsNumber(exec, log(10.0)), DontDelete | DontEnum | ReadOnly); - putDirectWithoutTransition(Identifier(exec, "LOG2E"), jsNumber(exec, 1.0 / log(2.0)), DontDelete | DontEnum | ReadOnly); - putDirectWithoutTransition(Identifier(exec, "LOG10E"), jsNumber(exec, 1.0 / log(10.0)), DontDelete | DontEnum | ReadOnly); - putDirectWithoutTransition(Identifier(exec, "PI"), jsNumber(exec, piDouble), DontDelete | DontEnum | ReadOnly); - putDirectWithoutTransition(Identifier(exec, "SQRT1_2"), jsNumber(exec, sqrt(0.5)), DontDelete | DontEnum | ReadOnly); - putDirectWithoutTransition(Identifier(exec, "SQRT2"), jsNumber(exec, sqrt(2.0)), DontDelete | DontEnum | ReadOnly); - WTF::initializeWeakRandomNumberGenerator(); -} - -// ECMA 15.8 - -bool MathObject::getOwnPropertySlot(ExecState* exec, const Identifier& propertyName, PropertySlot &slot) -{ - const HashEntry* entry = ExecState::mathTable(exec)->entry(exec, propertyName); - - if (!entry) - return JSObject::getOwnPropertySlot(exec, propertyName, slot); - - ASSERT(entry->attributes() & Function); - setUpStaticFunctionSlot(exec, entry, this, propertyName, slot); - return true; +const ClassInfo MathObject::s_info = { "Math", &Base::s_info, 0, 0, CREATE_METHOD_TABLE(MathObject) }; + +MathObject::MathObject(VM& vm, Structure* structure) + : JSNonFinalObject(vm, structure) +{ +} + +void MathObject::finishCreation(VM& vm, JSGlobalObject* globalObject) +{ + Base::finishCreation(vm); + ASSERT(inherits(info())); + + putDirectWithoutTransition(vm, Identifier(&vm, "E"), jsNumber(exp(1.0)), DontDelete | DontEnum | ReadOnly); + putDirectWithoutTransition(vm, Identifier(&vm, "LN2"), jsNumber(log(2.0)), DontDelete | DontEnum | ReadOnly); + putDirectWithoutTransition(vm, Identifier(&vm, "LN10"), jsNumber(log(10.0)), DontDelete | DontEnum | ReadOnly); + putDirectWithoutTransition(vm, Identifier(&vm, "LOG2E"), jsNumber(1.0 / log(2.0)), DontDelete | DontEnum | ReadOnly); + putDirectWithoutTransition(vm, Identifier(&vm, "LOG10E"), jsNumber(0.4342944819032518), DontDelete | DontEnum | ReadOnly); + putDirectWithoutTransition(vm, Identifier(&vm, "PI"), jsNumber(piDouble), DontDelete | DontEnum | ReadOnly); + putDirectWithoutTransition(vm, Identifier(&vm, "SQRT1_2"), jsNumber(sqrt(0.5)), DontDelete | DontEnum | ReadOnly); + putDirectWithoutTransition(vm, Identifier(&vm, "SQRT2"), jsNumber(sqrt(2.0)), DontDelete | DontEnum | ReadOnly); + + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "abs"), 1, mathProtoFuncAbs, AbsIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "acos"), 1, mathProtoFuncACos, NoIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "asin"), 1, mathProtoFuncASin, NoIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "atan"), 1, mathProtoFuncATan, NoIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "acosh"), 1, mathProtoFuncACosh, NoIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "asinh"), 1, mathProtoFuncASinh, NoIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "atanh"), 1, mathProtoFuncATanh, NoIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "atan2"), 2, mathProtoFuncATan2, NoIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "cbrt"), 1, mathProtoFuncCbrt, NoIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "ceil"), 1, mathProtoFuncCeil, CeilIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "cos"), 1, mathProtoFuncCos, CosIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "cosh"), 1, mathProtoFuncCosh, NoIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "exp"), 1, mathProtoFuncExp, ExpIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "expm1"), 1, mathProtoFuncExpm1, NoIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "floor"), 1, mathProtoFuncFloor, FloorIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "fround"), 1, mathProtoFuncFround, FRoundIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "hypot"), 2, mathProtoFuncHypot, NoIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "log"), 1, mathProtoFuncLog, LogIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "log10"), 1, mathProtoFuncLog10, NoIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "log1p"), 1, mathProtoFuncLog1p, NoIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "log2"), 1, mathProtoFuncLog2, NoIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "max"), 2, mathProtoFuncMax, MaxIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "min"), 2, mathProtoFuncMin, MinIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "pow"), 2, mathProtoFuncPow, PowIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "random"), 0, mathProtoFuncRandom, NoIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "round"), 1, mathProtoFuncRound, RoundIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "sin"), 1, mathProtoFuncSin, SinIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "sinh"), 1, mathProtoFuncSinh, NoIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "sqrt"), 1, mathProtoFuncSqrt, SqrtIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "tan"), 1, mathProtoFuncTan, NoIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "tanh"), 1, mathProtoFuncTanh, NoIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "trunc"), 1, mathProtoFuncTrunc, NoIntrinsic, DontEnum | Function); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "imul"), 1, mathProtoFuncIMul, IMulIntrinsic, DontEnum | Function); } // ------------------------------ Functions -------------------------------- -JSValue JSC_HOST_CALL mathProtoFuncAbs(ExecState* exec, JSObject*, JSValue, const ArgList& args) +EncodedJSValue JSC_HOST_CALL mathProtoFuncAbs(ExecState* exec) { - return jsNumber(exec, fabs(args.at(0).toNumber(exec))); + return JSValue::encode(jsNumber(fabs(exec->argument(0).toNumber(exec)))); } -JSValue JSC_HOST_CALL mathProtoFuncACos(ExecState* exec, JSObject*, JSValue, const ArgList& args) +EncodedJSValue JSC_HOST_CALL mathProtoFuncACos(ExecState* exec) { - return jsNumber(exec, acos(args.at(0).toNumber(exec))); + return JSValue::encode(jsDoubleNumber(acos(exec->argument(0).toNumber(exec)))); } -JSValue JSC_HOST_CALL mathProtoFuncASin(ExecState* exec, JSObject*, JSValue, const ArgList& args) +EncodedJSValue JSC_HOST_CALL mathProtoFuncASin(ExecState* exec) { - return jsNumber(exec, asin(args.at(0).toNumber(exec))); + return JSValue::encode(jsDoubleNumber(asin(exec->argument(0).toNumber(exec)))); } -JSValue JSC_HOST_CALL mathProtoFuncATan(ExecState* exec, JSObject*, JSValue, const ArgList& args) +EncodedJSValue JSC_HOST_CALL mathProtoFuncATan(ExecState* exec) { - return jsNumber(exec, atan(args.at(0).toNumber(exec))); + return JSValue::encode(jsDoubleNumber(atan(exec->argument(0).toNumber(exec)))); } -JSValue JSC_HOST_CALL mathProtoFuncATan2(ExecState* exec, JSObject*, JSValue, const ArgList& args) +EncodedJSValue JSC_HOST_CALL mathProtoFuncATan2(ExecState* exec) { - return jsNumber(exec, atan2(args.at(0).toNumber(exec), args.at(1).toNumber(exec))); + double arg0 = exec->argument(0).toNumber(exec); + double arg1 = exec->argument(1).toNumber(exec); + return JSValue::encode(jsDoubleNumber(atan2(arg0, arg1))); } -JSValue JSC_HOST_CALL mathProtoFuncCeil(ExecState* exec, JSObject*, JSValue, const ArgList& args) +EncodedJSValue JSC_HOST_CALL mathProtoFuncCeil(ExecState* exec) { - return jsNumber(exec, ceil(args.at(0).toNumber(exec))); + return JSValue::encode(jsNumber(ceil(exec->argument(0).toNumber(exec)))); } -JSValue JSC_HOST_CALL mathProtoFuncCos(ExecState* exec, JSObject*, JSValue, const ArgList& args) +EncodedJSValue JSC_HOST_CALL mathProtoFuncCos(ExecState* exec) { - return jsNumber(exec, cos(args.at(0).toNumber(exec))); + return JSValue::encode(jsDoubleNumber(cos(exec->argument(0).toNumber(exec)))); } -JSValue JSC_HOST_CALL mathProtoFuncExp(ExecState* exec, JSObject*, JSValue, const ArgList& args) +EncodedJSValue JSC_HOST_CALL mathProtoFuncExp(ExecState* exec) { - return jsNumber(exec, exp(args.at(0).toNumber(exec))); + return JSValue::encode(jsDoubleNumber(exp(exec->argument(0).toNumber(exec)))); } -JSValue JSC_HOST_CALL mathProtoFuncFloor(ExecState* exec, JSObject*, JSValue, const ArgList& args) +EncodedJSValue JSC_HOST_CALL mathProtoFuncFloor(ExecState* exec) { - return jsNumber(exec, floor(args.at(0).toNumber(exec))); + return JSValue::encode(jsNumber(floor(exec->argument(0).toNumber(exec)))); } -JSValue JSC_HOST_CALL mathProtoFuncLog(ExecState* exec, JSObject*, JSValue, const ArgList& args) +EncodedJSValue JSC_HOST_CALL mathProtoFuncHypot(ExecState* exec) { - return jsNumber(exec, log(args.at(0).toNumber(exec))); + unsigned argsCount = exec->argumentCount(); + double max = 0; + Vector args; + args.reserveInitialCapacity(argsCount); + for (unsigned i = 0; i < argsCount; ++i) { + args.uncheckedAppend(exec->uncheckedArgument(i).toNumber(exec)); + if (exec->hadException()) + return JSValue::encode(jsNull()); + if (std::isinf(args[i])) + return JSValue::encode(jsDoubleNumber(+std::numeric_limits::infinity())); + max = std::max(fabs(args[i]), max); + } + if (!max) + max = 1; + // Kahan summation algorithm significantly reduces the numerical error in the total obtained. + double sum = 0; + double compensation = 0; + for (double argument : args) { + double scaledArgument = argument / max; + double summand = scaledArgument * scaledArgument - compensation; + double preliminary = sum + summand; + compensation = (preliminary - sum) - summand; + sum = preliminary; + } + return JSValue::encode(jsDoubleNumber(sqrt(sum) * max)); +} + +EncodedJSValue JSC_HOST_CALL mathProtoFuncLog(ExecState* exec) +{ + return JSValue::encode(jsDoubleNumber(log(exec->argument(0).toNumber(exec)))); } -JSValue JSC_HOST_CALL mathProtoFuncMax(ExecState* exec, JSObject*, JSValue, const ArgList& args) +EncodedJSValue JSC_HOST_CALL mathProtoFuncMax(ExecState* exec) { - unsigned argsCount = args.size(); - double result = -Inf; + unsigned argsCount = exec->argumentCount(); + double result = -std::numeric_limits::infinity(); for (unsigned k = 0; k < argsCount; ++k) { - double val = args.at(k).toNumber(exec); - if (isnan(val)) { - result = NaN; - break; - } - if (val > result || (val == 0 && result == 0 && !signbit(val))) + double val = exec->uncheckedArgument(k).toNumber(exec); + if (std::isnan(val)) { + result = PNaN; + } else if (val > result || (!val && !result && !std::signbit(val))) result = val; } - return jsNumber(exec, result); + return JSValue::encode(jsNumber(result)); } -JSValue JSC_HOST_CALL mathProtoFuncMin(ExecState* exec, JSObject*, JSValue, const ArgList& args) +EncodedJSValue JSC_HOST_CALL mathProtoFuncMin(ExecState* exec) { - unsigned argsCount = args.size(); - double result = +Inf; + unsigned argsCount = exec->argumentCount(); + double result = +std::numeric_limits::infinity(); for (unsigned k = 0; k < argsCount; ++k) { - double val = args.at(k).toNumber(exec); - if (isnan(val)) { - result = NaN; - break; - } - if (val < result || (val == 0 && result == 0 && signbit(val))) + double val = exec->uncheckedArgument(k).toNumber(exec); + if (std::isnan(val)) { + result = PNaN; + } else if (val < result || (!val && !result && std::signbit(val))) result = val; } - return jsNumber(exec, result); + return JSValue::encode(jsNumber(result)); +} + +#if PLATFORM(IOS) && CPU(ARM_THUMB2) + +static double fdlibmPow(double x, double y); + +static ALWAYS_INLINE bool isDenormal(double x) +{ + static const uint64_t signbit = 0x8000000000000000ULL; + static const uint64_t minNormal = 0x0001000000000000ULL; + return (bitwise_cast(x) & ~signbit) - 1 < minNormal - 1; +} + +static ALWAYS_INLINE bool isEdgeCase(double x) +{ + static const uint64_t signbit = 0x8000000000000000ULL; + static const uint64_t infinity = 0x7fffffffffffffffULL; + return (bitwise_cast(x) & ~signbit) - 1 >= infinity - 1; +} + +static ALWAYS_INLINE double mathPow(double x, double y) +{ + if (!isDenormal(x) && !isDenormal(y)) { + double libmResult = pow(x,y); + if (libmResult || isEdgeCase(x) || isEdgeCase(y)) + return libmResult; + } + return fdlibmPow(x,y); +} + +#else + +ALWAYS_INLINE double mathPow(double x, double y) +{ + return pow(x, y); } -JSValue JSC_HOST_CALL mathProtoFuncPow(ExecState* exec, JSObject*, JSValue, const ArgList& args) +#endif + +EncodedJSValue JSC_HOST_CALL mathProtoFuncPow(ExecState* exec) { // ECMA 15.8.2.1.13 - double arg = args.at(0).toNumber(exec); - double arg2 = args.at(1).toNumber(exec); + double arg = exec->argument(0).toNumber(exec); + double arg2 = exec->argument(1).toNumber(exec); + + if (std::isnan(arg2)) + return JSValue::encode(jsNaN()); + if (std::isinf(arg2) && fabs(arg) == 1) + return JSValue::encode(jsNaN()); + return JSValue::encode(jsNumber(mathPow(arg, arg2))); +} + +EncodedJSValue JSC_HOST_CALL mathProtoFuncRandom(ExecState* exec) +{ + return JSValue::encode(jsDoubleNumber(exec->lexicalGlobalObject()->weakRandomNumber())); +} - if (isnan(arg2)) - return jsNaN(exec); - if (isinf(arg2) && fabs(arg) == 1) - return jsNaN(exec); - return jsNumber(exec, pow(arg, arg2)); +EncodedJSValue JSC_HOST_CALL mathProtoFuncRound(ExecState* exec) +{ + double arg = exec->argument(0).toNumber(exec); + double integer = ceil(arg); + return JSValue::encode(jsNumber(integer - (integer - arg > 0.5))); +} + +EncodedJSValue JSC_HOST_CALL mathProtoFuncSin(ExecState* exec) +{ + return JSValue::encode(jsDoubleNumber(sin(exec->argument(0).toNumber(exec)))); +} + +EncodedJSValue JSC_HOST_CALL mathProtoFuncSqrt(ExecState* exec) +{ + return JSValue::encode(jsDoubleNumber(sqrt(exec->argument(0).toNumber(exec)))); +} + +EncodedJSValue JSC_HOST_CALL mathProtoFuncTan(ExecState* exec) +{ + return JSValue::encode(jsDoubleNumber(tan(exec->argument(0).toNumber(exec)))); +} + +EncodedJSValue JSC_HOST_CALL mathProtoFuncIMul(ExecState* exec) +{ + int32_t left = exec->argument(0).toInt32(exec); + if (exec->hadException()) + return JSValue::encode(jsNull()); + int32_t right = exec->argument(1).toInt32(exec); + return JSValue::encode(jsNumber(left * right)); +} + +EncodedJSValue JSC_HOST_CALL mathProtoFuncACosh(ExecState* exec) +{ + return JSValue::encode(jsDoubleNumber(acosh(exec->argument(0).toNumber(exec)))); +} + +EncodedJSValue JSC_HOST_CALL mathProtoFuncASinh(ExecState* exec) +{ + return JSValue::encode(jsDoubleNumber(asinh(exec->argument(0).toNumber(exec)))); +} + +EncodedJSValue JSC_HOST_CALL mathProtoFuncATanh(ExecState* exec) +{ + return JSValue::encode(jsDoubleNumber(atanh(exec->argument(0).toNumber(exec)))); } -JSValue JSC_HOST_CALL mathProtoFuncRandom(ExecState* exec, JSObject*, JSValue, const ArgList&) +EncodedJSValue JSC_HOST_CALL mathProtoFuncCbrt(ExecState* exec) { - return jsNumber(exec, WTF::weakRandomNumber()); + return JSValue::encode(jsDoubleNumber(cbrt(exec->argument(0).toNumber(exec)))); } -JSValue JSC_HOST_CALL mathProtoFuncRound(ExecState* exec, JSObject*, JSValue, const ArgList& args) +EncodedJSValue JSC_HOST_CALL mathProtoFuncCosh(ExecState* exec) { - double arg = args.at(0).toNumber(exec); - if (signbit(arg) && arg >= -0.5) - return jsNumber(exec, -0.0); - return jsNumber(exec, floor(arg + 0.5)); + return JSValue::encode(jsDoubleNumber(cosh(exec->argument(0).toNumber(exec)))); } -JSValue JSC_HOST_CALL mathProtoFuncSin(ExecState* exec, JSObject*, JSValue, const ArgList& args) +EncodedJSValue JSC_HOST_CALL mathProtoFuncExpm1(ExecState* exec) { - return jsNumber(exec, sin(args.at(0).toNumber(exec))); + return JSValue::encode(jsDoubleNumber(expm1(exec->argument(0).toNumber(exec)))); } -JSValue JSC_HOST_CALL mathProtoFuncSqrt(ExecState* exec, JSObject*, JSValue, const ArgList& args) +EncodedJSValue JSC_HOST_CALL mathProtoFuncFround(ExecState* exec) { - return jsNumber(exec, sqrt(args.at(0).toNumber(exec))); + return JSValue::encode(jsDoubleNumber(static_cast(exec->argument(0).toNumber(exec)))); } -JSValue JSC_HOST_CALL mathProtoFuncTan(ExecState* exec, JSObject*, JSValue, const ArgList& args) +EncodedJSValue JSC_HOST_CALL mathProtoFuncLog1p(ExecState* exec) { - return jsNumber(exec, tan(args.at(0).toNumber(exec))); + double value = exec->argument(0).toNumber(exec); + if (value == 0) + return JSValue::encode(jsDoubleNumber(value)); + return JSValue::encode(jsDoubleNumber(log1p(value))); } +EncodedJSValue JSC_HOST_CALL mathProtoFuncLog10(ExecState* exec) +{ + return JSValue::encode(jsDoubleNumber(log10(exec->argument(0).toNumber(exec)))); +} + +EncodedJSValue JSC_HOST_CALL mathProtoFuncLog2(ExecState* exec) +{ + return JSValue::encode(jsDoubleNumber(log2(exec->argument(0).toNumber(exec)))); +} + +EncodedJSValue JSC_HOST_CALL mathProtoFuncSinh(ExecState* exec) +{ + return JSValue::encode(jsDoubleNumber(sinh(exec->argument(0).toNumber(exec)))); +} + +EncodedJSValue JSC_HOST_CALL mathProtoFuncTanh(ExecState* exec) +{ + return JSValue::encode(jsDoubleNumber(tanh(exec->argument(0).toNumber(exec)))); +} + +EncodedJSValue JSC_HOST_CALL mathProtoFuncTrunc(ExecState*exec) +{ + return JSValue::encode(jsNumber(exec->argument(0).toIntegerPreserveNaN(exec))); +} + + +#if PLATFORM(IOS) && CPU(ARM_THUMB2) + +// The following code is taken from netlib.org: +// http://www.netlib.org/fdlibm/fdlibm.h +// http://www.netlib.org/fdlibm/e_pow.c +// http://www.netlib.org/fdlibm/s_scalbn.c +// +// And was originally distributed under the following license: + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ +/* + * ==================================================== + * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. + * + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* __ieee754_pow(x,y) return x**y + * + * n + * Method: Let x = 2 * (1+f) + * 1. Compute and return log2(x) in two pieces: + * log2(x) = w1 + w2, + * where w1 has 53-24 = 29 bit trailing zeros. + * 2. Perform y*log2(x) = n+y' by simulating muti-precision + * arithmetic, where |y'|<=0.5. + * 3. Return x**y = 2**n*exp(y'*log2) + * + * Special cases: + * 1. (anything) ** 0 is 1 + * 2. (anything) ** 1 is itself + * 3. (anything) ** NAN is NAN + * 4. NAN ** (anything except 0) is NAN + * 5. +-(|x| > 1) ** +INF is +INF + * 6. +-(|x| > 1) ** -INF is +0 + * 7. +-(|x| < 1) ** +INF is +0 + * 8. +-(|x| < 1) ** -INF is +INF + * 9. +-1 ** +-INF is NAN + * 10. +0 ** (+anything except 0, NAN) is +0 + * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 + * 12. +0 ** (-anything except 0, NAN) is +INF + * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF + * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) + * 15. +INF ** (+anything except 0,NAN) is +INF + * 16. +INF ** (-anything except 0,NAN) is +0 + * 17. -INF ** (anything) = -0 ** (-anything) + * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) + * 19. (-anything except 0 and inf) ** (non-integer) is NAN + * + * Accuracy: + * pow(x,y) returns x**y nearly rounded. In particular + * pow(integer,integer) + * always returns the correct integer provided it is + * representable. + * + * Constants : + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +#define __HI(x) *(1+(int*)&x) +#define __LO(x) *(int*)&x + +static const double +bp[] = {1.0, 1.5,}, +dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ +dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ +zero = 0.0, +one = 1.0, +two = 2.0, +two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */ +huge = 1.0e300, +tiny = 1.0e-300, + /* for scalbn */ +two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ +twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */ + /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ +L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ +L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ +L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ +L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ +L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ +L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ +P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ +P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ +P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ +P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ +P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ +lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ +lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ +lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ +ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ +cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ +cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ +cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/ +ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ +ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/ +ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/ + +inline double fdlibmScalbn (double x, int n) +{ + int k,hx,lx; + hx = __HI(x); + lx = __LO(x); + k = (hx&0x7ff00000)>>20; /* extract exponent */ + if (k==0) { /* 0 or subnormal x */ + if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */ + x *= two54; + hx = __HI(x); + k = ((hx&0x7ff00000)>>20) - 54; + if (n< -50000) return tiny*x; /*underflow*/ + } + if (k==0x7ff) return x+x; /* NaN or Inf */ + k = k+n; + if (k > 0x7fe) return huge*copysign(huge,x); /* overflow */ + if (k > 0) /* normal result */ + {__HI(x) = (hx&0x800fffff)|(k<<20); return x;} + if (k <= -54) { + if (n > 50000) /* in case integer overflow in n+k */ + return huge*copysign(huge,x); /*overflow*/ + else return tiny*copysign(tiny,x); /*underflow*/ + } + k += 54; /* subnormal result */ + __HI(x) = (hx&0x800fffff)|(k<<20); + return x*twom54; +} + +double fdlibmPow(double x, double y) +{ + double z,ax,z_h,z_l,p_h,p_l; + double y1,t1,t2,r,s,t,u,v,w; + int i0,i1,i,j,k,yisint,n; + int hx,hy,ix,iy; + unsigned lx,ly; + + i0 = ((*(int*)&one)>>29)^1; i1=1-i0; + hx = __HI(x); lx = __LO(x); + hy = __HI(y); ly = __LO(y); + ix = hx&0x7fffffff; iy = hy&0x7fffffff; + + /* y==zero: x**0 = 1 */ + if((iy|ly)==0) return one; + + /* +-NaN return x+y */ + if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) || + iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) + return x+y; + + /* determine if y is an odd int when x < 0 + * yisint = 0 ... y is not an integer + * yisint = 1 ... y is an odd int + * yisint = 2 ... y is an even int + */ + yisint = 0; + if(hx<0) { + if(iy>=0x43400000) yisint = 2; /* even integer y */ + else if(iy>=0x3ff00000) { + k = (iy>>20)-0x3ff; /* exponent */ + if(k>20) { + j = ly>>(52-k); + if(static_cast(j<<(52-k))==ly) yisint = 2-(j&1); + } else if(ly==0) { + j = iy>>(20-k); + if((j<<(20-k))==iy) yisint = 2-(j&1); + } + } + } + + /* special value of y */ + if(ly==0) { + if (iy==0x7ff00000) { /* y is +-inf */ + if(((ix-0x3ff00000)|lx)==0) + return y - y; /* inf**+-1 is NaN */ + else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */ + return (hy>=0)? y: zero; + else /* (|x|<1)**-,+inf = inf,0 */ + return (hy<0)?-y: zero; + } + if(iy==0x3ff00000) { /* y is +-1 */ + if(hy<0) return one/x; else return x; + } + if(hy==0x40000000) return x*x; /* y is 2 */ + if(hy==0x3fe00000) { /* y is 0.5 */ + if(hx>=0) /* x >= +0 */ + return sqrt(x); + } + } + + ax = fabs(x); + /* special value of x */ + if(lx==0) { + if(ix==0x7ff00000||ix==0||ix==0x3ff00000){ + z = ax; /*x is +-0,+-inf,+-1*/ + if(hy<0) z = one/z; /* z = (1/|x|) */ + if(hx<0) { + if(((ix-0x3ff00000)|yisint)==0) { + z = (z-z)/(z-z); /* (-1)**non-int is NaN */ + } else if(yisint==1) + z = -z; /* (x<0)**odd = -(|x|**odd) */ + } + return z; + } + } + + n = (hx>>31)+1; + + /* (x<0)**(non-int) is NaN */ + if((n|yisint)==0) return (x-x)/(x-x); + + s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ + if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */ + + /* |y| is huge */ + if(iy>0x41e00000) { /* if |y| > 2**31 */ + if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */ + if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; + if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; + } + /* over/underflow if x is not close to one */ + if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny; + if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny; + /* now |1-x| is tiny <= 2**-20, suffice to compute + log(x) by x-x^2/2+x^3/3-x^4/4 */ + t = ax-one; /* t has 20 trailing zeros */ + w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25)); + u = ivln2_h*t; /* ivln2_h has 21 sig. bits */ + v = t*ivln2_l-w*ivln2; + t1 = u+v; + __LO(t1) = 0; + t2 = v-(t1-u); + } else { + double ss,s2,s_h,s_l,t_h,t_l; + n = 0; + /* take care subnormal number */ + if(ix<0x00100000) + {ax *= two53; n -= 53; ix = __HI(ax); } + n += ((ix)>>20)-0x3ff; + j = ix&0x000fffff; + /* determine interval */ + ix = j|0x3ff00000; /* normalize ix */ + if(j<=0x3988E) k=0; /* |x|>1)|0x20000000)+0x00080000+(k<<18); + t_l = ax - (t_h-bp[k]); + s_l = v*((u-s_h*t_h)-s_h*t_l); + /* compute log(ax) */ + s2 = ss*ss; + r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); + r += s_l*(s_h+ss); + s2 = s_h*s_h; + t_h = 3.0+s2+r; + __LO(t_h) = 0; + t_l = r-((t_h-3.0)-s2); + /* u+v = ss*(1+...) */ + u = s_h*t_h; + v = s_l*t_h+t_l*ss; + /* 2/(3log2)*(ss+...) */ + p_h = u+v; + __LO(p_h) = 0; + p_l = v-(p_h-u); + z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */ + z_l = cp_l*p_h+p_l*cp+dp_l[k]; + /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */ + t = (double)n; + t1 = (((z_h+z_l)+dp_h[k])+t); + __LO(t1) = 0; + t2 = z_l-(((t1-t)-dp_h[k])-z_h); + } + + /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ + y1 = y; + __LO(y1) = 0; + p_l = (y-y1)*t1+y*t2; + p_h = y1*t1; + z = p_l+p_h; + j = __HI(z); + i = __LO(z); + if (j>=0x40900000) { /* z >= 1024 */ + if(((j-0x40900000)|i)!=0) /* if z > 1024 */ + return s*huge*huge; /* overflow */ + else { + if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */ + } + } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */ + if(((j-0xc090cc00)|i)!=0) /* z < -1075 */ + return s*tiny*tiny; /* underflow */ + else { + if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */ + } + } + /* + * compute 2**(p_h+p_l) + */ + i = j&0x7fffffff; + k = (i>>20)-0x3ff; + n = 0; + if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ + n = j+(0x00100000>>(k+1)); + k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */ + t = zero; + __HI(t) = (n&~(0x000fffff>>k)); + n = ((n&0x000fffff)|0x00100000)>>(20-k); + if(j<0) n = -n; + p_h -= t; + } + t = p_l+p_h; + __LO(t) = 0; + u = t*lg2_h; + v = (p_l-(t-p_h))*lg2+t*lg2_l; + z = u+v; + w = v-(z-u); + t = z*z; + t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); + r = (z*t1)/(t1-two)-(w+z*w); + z = one-(r-z); + j = __HI(z); + j += (n<<20); + if((j>>20)<=0) z = fdlibmScalbn(z,n); /* subnormal output */ + else __HI(z) += (n<<20); + return s*z; +} + +#endif + } // namespace JSC