X-Git-Url: https://git.saurik.com/apple/javascriptcore.git/blobdiff_plain/9dae56ea45a0f5f8136a5c93d6f3a7f99399ca73..refs/heads/master:/jit/JITArithmetic.cpp diff --git a/jit/JITArithmetic.cpp b/jit/JITArithmetic.cpp index 0a3e9ab..167e413 100644 --- a/jit/JITArithmetic.cpp +++ b/jit/JITArithmetic.cpp @@ -20,954 +20,982 @@ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" -#include "JIT.h" #if ENABLE(JIT) +#include "JIT.h" #include "CodeBlock.h" -#include "JITInlineMethods.h" +#include "JITInlines.h" +#include "JITOperations.h" +#include "JITStubs.h" #include "JSArray.h" #include "JSFunction.h" #include "Interpreter.h" +#include "JSCInlines.h" #include "ResultType.h" #include "SamplingTool.h" +#include "SlowPathCall.h" -#ifndef NDEBUG -#include -#endif - -#define __ m_assembler. - -using namespace std; namespace JSC { -void JIT::compileFastArith_op_lshift(unsigned result, unsigned op1, unsigned op2) +void JIT::emit_op_jless(Instruction* currentInstruction) { - emitGetVirtualRegisters(op1, X86::eax, op2, X86::ecx); - // FIXME: would we be better using 'emitJumpSlowCaseIfNotImmediateIntegers'? - we *probably* ought to be consistent. - emitJumpSlowCaseIfNotImmediateInteger(X86::eax); - emitJumpSlowCaseIfNotImmediateInteger(X86::ecx); - emitFastArithImmToInt(X86::eax); - emitFastArithImmToInt(X86::ecx); -#if !PLATFORM(X86) - // Mask with 0x1f as per ecma-262 11.7.2 step 7. - // On 32-bit x86 this is not necessary, since the shift anount is implicitly masked in the instruction. - and32(Imm32(0x1f), X86::ecx); -#endif - lshift32(X86::ecx, X86::eax); -#if !USE(ALTERNATE_JSIMMEDIATE) - addSlowCase(joAdd32(X86::eax, X86::eax)); - signExtend32ToPtr(X86::eax, X86::eax); -#endif - emitFastArithReTagImmediate(X86::eax, X86::eax); - emitPutVirtualRegister(result); + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJump(op_jless, op1, op2, target, LessThan); } -void JIT::compileFastArithSlow_op_lshift(unsigned result, unsigned op1, unsigned op2, Vector::iterator& iter) + +void JIT::emit_op_jlesseq(Instruction* currentInstruction) { -#if USE(ALTERNATE_JSIMMEDIATE) - UNUSED_PARAM(op1); - UNUSED_PARAM(op2); - linkSlowCase(iter); - linkSlowCase(iter); -#else - // If we are limited to 32-bit immediates there is a third slow case, which required the operands to have been reloaded. - Jump notImm1 = getSlowCase(iter); - Jump notImm2 = getSlowCase(iter); - linkSlowCase(iter); - emitGetVirtualRegisters(op1, X86::eax, op2, X86::ecx); - notImm1.link(this); - notImm2.link(this); -#endif - emitPutJITStubArg(X86::eax, 1); - emitPutJITStubArg(X86::ecx, 2); - emitCTICall(Interpreter::cti_op_lshift); - emitPutVirtualRegister(result); + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJump(op_jlesseq, op1, op2, target, LessThanOrEqual); } -void JIT::compileFastArith_op_rshift(unsigned result, unsigned op1, unsigned op2) +void JIT::emit_op_jgreater(Instruction* currentInstruction) { - if (isOperandConstantImmediateInt(op2)) { - emitGetVirtualRegister(op1, X86::eax); - emitJumpSlowCaseIfNotImmediateInteger(X86::eax); - // Mask with 0x1f as per ecma-262 11.7.2 step 7. -#if USE(ALTERNATE_JSIMMEDIATE) - rshift32(Imm32(getConstantOperandImmediateInt(op2) & 0x1f), X86::eax); -#else - rshiftPtr(Imm32(getConstantOperandImmediateInt(op2) & 0x1f), X86::eax); -#endif - } else { - emitGetVirtualRegisters(op1, X86::eax, op2, X86::ecx); - emitJumpSlowCaseIfNotImmediateInteger(X86::eax); - emitJumpSlowCaseIfNotImmediateInteger(X86::ecx); - emitFastArithImmToInt(X86::ecx); -#if !PLATFORM(X86) - // Mask with 0x1f as per ecma-262 11.7.2 step 7. - // On 32-bit x86 this is not necessary, since the shift anount is implicitly masked in the instruction. - and32(Imm32(0x1f), X86::ecx); -#endif -#if USE(ALTERNATE_JSIMMEDIATE) - rshift32(X86::ecx, X86::eax); -#else - rshiftPtr(X86::ecx, X86::eax); -#endif - } -#if USE(ALTERNATE_JSIMMEDIATE) - emitFastArithIntToImmNoCheck(X86::eax, X86::eax); -#else - orPtr(Imm32(JSImmediate::TagTypeNumber), X86::eax); -#endif - emitPutVirtualRegister(result); + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJump(op_jgreater, op1, op2, target, GreaterThan); } -void JIT::compileFastArithSlow_op_rshift(unsigned result, unsigned, unsigned op2, Vector::iterator& iter) + +void JIT::emit_op_jgreatereq(Instruction* currentInstruction) { - linkSlowCase(iter); - if (isOperandConstantImmediateInt(op2)) - emitPutJITStubArgFromVirtualRegister(op2, 2, X86::ecx); - else { - linkSlowCase(iter); - emitPutJITStubArg(X86::ecx, 2); - } + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; - emitPutJITStubArg(X86::eax, 1); - emitCTICall(Interpreter::cti_op_rshift); - emitPutVirtualRegister(result); + emit_compareAndJump(op_jgreatereq, op1, op2, target, GreaterThanOrEqual); } -void JIT::compileFastArith_op_bitand(unsigned result, unsigned op1, unsigned op2) +void JIT::emit_op_jnless(Instruction* currentInstruction) { - if (isOperandConstantImmediateInt(op1)) { - emitGetVirtualRegister(op2, X86::eax); - emitJumpSlowCaseIfNotImmediateInteger(X86::eax); -#if USE(ALTERNATE_JSIMMEDIATE) - int32_t imm = getConstantOperandImmediateInt(op1); - andPtr(Imm32(imm), X86::eax); - if (imm >= 0) - emitFastArithIntToImmNoCheck(X86::eax, X86::eax); -#else - andPtr(Imm32(static_cast(JSImmediate::rawValue(getConstantOperand(op1)))), X86::eax); -#endif - } else if (isOperandConstantImmediateInt(op2)) { - emitGetVirtualRegister(op1, X86::eax); - emitJumpSlowCaseIfNotImmediateInteger(X86::eax); -#if USE(ALTERNATE_JSIMMEDIATE) - int32_t imm = getConstantOperandImmediateInt(op2); - andPtr(Imm32(imm), X86::eax); - if (imm >= 0) - emitFastArithIntToImmNoCheck(X86::eax, X86::eax); -#else - andPtr(Imm32(static_cast(JSImmediate::rawValue(getConstantOperand(op2)))), X86::eax); -#endif - } else { - emitGetVirtualRegisters(op1, X86::eax, op2, X86::edx); - andPtr(X86::edx, X86::eax); - emitJumpSlowCaseIfNotImmediateInteger(X86::eax); - } - emitPutVirtualRegister(result); + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJump(op_jnless, op1, op2, target, GreaterThanOrEqual); } -void JIT::compileFastArithSlow_op_bitand(unsigned result, unsigned op1, unsigned op2, Vector::iterator& iter) + +void JIT::emit_op_jnlesseq(Instruction* currentInstruction) { - linkSlowCase(iter); - if (isOperandConstantImmediateInt(op1)) { - emitPutJITStubArgFromVirtualRegister(op1, 1, X86::ecx); - emitPutJITStubArg(X86::eax, 2); - } else if (isOperandConstantImmediateInt(op2)) { - emitPutJITStubArg(X86::eax, 1); - emitPutJITStubArgFromVirtualRegister(op2, 2, X86::ecx); - } else { - emitPutJITStubArgFromVirtualRegister(op1, 1, X86::ecx); - emitPutJITStubArg(X86::edx, 2); - } - emitCTICall(Interpreter::cti_op_bitand); - emitPutVirtualRegister(result); -} + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; -void JIT::compileFastArith_op_mod(unsigned result, unsigned op1, unsigned op2) -{ - emitGetVirtualRegisters(op1, X86::eax, op2, X86::ecx); - emitJumpSlowCaseIfNotImmediateInteger(X86::eax); - emitJumpSlowCaseIfNotImmediateInteger(X86::ecx); -#if USE(ALTERNATE_JSIMMEDIATE) - addSlowCase(jePtr(X86::ecx, ImmPtr(JSValuePtr::encode(js0())))); - mod32(X86::ecx, X86::eax, X86::edx); -#else - emitFastArithDeTagImmediate(X86::eax); - addSlowCase(emitFastArithDeTagImmediateJumpIfZero(X86::ecx)); - mod32(X86::ecx, X86::eax, X86::edx); - signExtend32ToPtr(X86::edx, X86::edx); -#endif - emitFastArithReTagImmediate(X86::edx, X86::eax); - emitPutVirtualRegister(result); + emit_compareAndJump(op_jnlesseq, op1, op2, target, GreaterThan); } -void JIT::compileFastArithSlow_op_mod(unsigned result, unsigned, unsigned, Vector::iterator& iter) + +void JIT::emit_op_jngreater(Instruction* currentInstruction) { -#if USE(ALTERNATE_JSIMMEDIATE) - linkSlowCase(iter); - linkSlowCase(iter); - linkSlowCase(iter); -#else - Jump notImm1 = getSlowCase(iter); - Jump notImm2 = getSlowCase(iter); - linkSlowCase(iter); - emitFastArithReTagImmediate(X86::eax, X86::eax); - emitFastArithReTagImmediate(X86::ecx, X86::ecx); - notImm1.link(this); - notImm2.link(this); -#endif - emitPutJITStubArg(X86::eax, 1); - emitPutJITStubArg(X86::ecx, 2); - emitCTICall(Interpreter::cti_op_mod); - emitPutVirtualRegister(result); + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJump(op_jngreater, op1, op2, target, LessThanOrEqual); } -void JIT::compileFastArith_op_post_inc(unsigned result, unsigned srcDst) +void JIT::emit_op_jngreatereq(Instruction* currentInstruction) { - emitGetVirtualRegister(srcDst, X86::eax); - move(X86::eax, X86::edx); - emitJumpSlowCaseIfNotImmediateInteger(X86::eax); -#if USE(ALTERNATE_JSIMMEDIATE) - addSlowCase(joAdd32(Imm32(1), X86::edx)); - emitFastArithIntToImmNoCheck(X86::edx, X86::edx); -#else - addSlowCase(joAdd32(Imm32(1 << JSImmediate::IntegerPayloadShift), X86::edx)); - signExtend32ToPtr(X86::edx, X86::edx); -#endif - emitPutVirtualRegister(srcDst, X86::edx); - emitPutVirtualRegister(result); + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJump(op_jngreatereq, op1, op2, target, LessThan); } -void JIT::compileFastArithSlow_op_post_inc(unsigned result, unsigned srcDst, Vector::iterator& iter) + +void JIT::emitSlow_op_jless(Instruction* currentInstruction, Vector::iterator& iter) { - linkSlowCase(iter); - linkSlowCase(iter); - emitPutJITStubArg(X86::eax, 1); - emitCTICall(Interpreter::cti_op_post_inc); - emitPutVirtualRegister(srcDst, X86::edx); - emitPutVirtualRegister(result); + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJumpSlow(op1, op2, target, DoubleLessThan, operationCompareLess, false, iter); } -void JIT::compileFastArith_op_post_dec(unsigned result, unsigned srcDst) +void JIT::emitSlow_op_jlesseq(Instruction* currentInstruction, Vector::iterator& iter) { - emitGetVirtualRegister(srcDst, X86::eax); - move(X86::eax, X86::edx); - emitJumpSlowCaseIfNotImmediateInteger(X86::eax); -#if USE(ALTERNATE_JSIMMEDIATE) - addSlowCase(joSub32(Imm32(1), X86::edx)); - emitFastArithIntToImmNoCheck(X86::edx, X86::edx); -#else - addSlowCase(joSub32(Imm32(1 << JSImmediate::IntegerPayloadShift), X86::edx)); - signExtend32ToPtr(X86::edx, X86::edx); -#endif - emitPutVirtualRegister(srcDst, X86::edx); - emitPutVirtualRegister(result); + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrEqual, operationCompareLessEq, false, iter); } -void JIT::compileFastArithSlow_op_post_dec(unsigned result, unsigned srcDst, Vector::iterator& iter) + +void JIT::emitSlow_op_jgreater(Instruction* currentInstruction, Vector::iterator& iter) { - linkSlowCase(iter); - linkSlowCase(iter); - emitPutJITStubArg(X86::eax, 1); - emitCTICall(Interpreter::cti_op_post_dec); - emitPutVirtualRegister(srcDst, X86::edx); - emitPutVirtualRegister(result); + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThan, operationCompareGreater, false, iter); } -void JIT::compileFastArith_op_pre_inc(unsigned srcDst) +void JIT::emitSlow_op_jgreatereq(Instruction* currentInstruction, Vector::iterator& iter) { - emitGetVirtualRegister(srcDst, X86::eax); - emitJumpSlowCaseIfNotImmediateInteger(X86::eax); -#if USE(ALTERNATE_JSIMMEDIATE) - addSlowCase(joAdd32(Imm32(1), X86::eax)); - emitFastArithIntToImmNoCheck(X86::eax, X86::eax); -#else - addSlowCase(joAdd32(Imm32(1 << JSImmediate::IntegerPayloadShift), X86::eax)); - signExtend32ToPtr(X86::eax, X86::eax); -#endif - emitPutVirtualRegister(srcDst); + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrEqual, operationCompareGreaterEq, false, iter); } -void JIT::compileFastArithSlow_op_pre_inc(unsigned srcDst, Vector::iterator& iter) + +void JIT::emitSlow_op_jnless(Instruction* currentInstruction, Vector::iterator& iter) { - Jump notImm = getSlowCase(iter); - linkSlowCase(iter); - emitGetVirtualRegister(srcDst, X86::eax); - notImm.link(this); - emitPutJITStubArg(X86::eax, 1); - emitCTICall(Interpreter::cti_op_pre_inc); - emitPutVirtualRegister(srcDst); + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrEqualOrUnordered, operationCompareLess, true, iter); } -void JIT::compileFastArith_op_pre_dec(unsigned srcDst) +void JIT::emitSlow_op_jnlesseq(Instruction* currentInstruction, Vector::iterator& iter) { - emitGetVirtualRegister(srcDst, X86::eax); - emitJumpSlowCaseIfNotImmediateInteger(X86::eax); -#if USE(ALTERNATE_JSIMMEDIATE) - addSlowCase(joSub32(Imm32(1), X86::eax)); - emitFastArithIntToImmNoCheck(X86::eax, X86::eax); -#else - addSlowCase(joSub32(Imm32(1 << JSImmediate::IntegerPayloadShift), X86::eax)); - signExtend32ToPtr(X86::eax, X86::eax); -#endif - emitPutVirtualRegister(srcDst); + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrUnordered, operationCompareLessEq, true, iter); } -void JIT::compileFastArithSlow_op_pre_dec(unsigned srcDst, Vector::iterator& iter) + +void JIT::emitSlow_op_jngreater(Instruction* currentInstruction, Vector::iterator& iter) { - Jump notImm = getSlowCase(iter); - linkSlowCase(iter); - emitGetVirtualRegister(srcDst, X86::eax); - notImm.link(this); - emitPutJITStubArg(X86::eax, 1); - emitCTICall(Interpreter::cti_op_pre_dec); - emitPutVirtualRegister(srcDst); + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrEqualOrUnordered, operationCompareGreater, true, iter); } +void JIT::emitSlow_op_jngreatereq(Instruction* currentInstruction, Vector::iterator& iter) +{ + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrUnordered, operationCompareGreaterEq, true, iter); +} -#if !ENABLE(JIT_OPTIMIZE_ARITHMETIC) +#if USE(JSVALUE64) -void JIT::compileFastArith_op_add(Instruction* currentInstruction) +void JIT::emit_op_negate(Instruction* currentInstruction) { - unsigned result = currentInstruction[1].u.operand; - unsigned op1 = currentInstruction[2].u.operand; - unsigned op2 = currentInstruction[3].u.operand; + int dst = currentInstruction[1].u.operand; + int src = currentInstruction[2].u.operand; - emitPutJITStubArgFromVirtualRegister(op1, 1, X86::ecx); - emitPutJITStubArgFromVirtualRegister(op2, 2, X86::ecx); - emitCTICall(Interpreter::cti_op_add); - emitPutVirtualRegister(result); + emitGetVirtualRegister(src, regT0); + + Jump srcNotInt = emitJumpIfNotImmediateInteger(regT0); + addSlowCase(branchTest32(Zero, regT0, TrustedImm32(0x7fffffff))); + neg32(regT0); + emitFastArithReTagImmediate(regT0, regT0); + + Jump end = jump(); + + srcNotInt.link(this); + emitJumpSlowCaseIfNotImmediateNumber(regT0); + + move(TrustedImm64((int64_t)0x8000000000000000ull), regT1); + xor64(regT1, regT0); + + end.link(this); + emitPutVirtualRegister(dst); } -void JIT::compileFastArithSlow_op_add(Instruction*, Vector::iterator&) + +void JIT::emitSlow_op_negate(Instruction* currentInstruction, Vector::iterator& iter) { - ASSERT_NOT_REACHED(); + linkSlowCase(iter); // 0x7fffffff check + linkSlowCase(iter); // double check + + JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_negate); + slowPathCall.call(); } -void JIT::compileFastArith_op_mul(Instruction* currentInstruction) +void JIT::emit_op_lshift(Instruction* currentInstruction) { - unsigned result = currentInstruction[1].u.operand; - unsigned op1 = currentInstruction[2].u.operand; - unsigned op2 = currentInstruction[3].u.operand; + int result = currentInstruction[1].u.operand; + int op1 = currentInstruction[2].u.operand; + int op2 = currentInstruction[3].u.operand; - emitPutJITStubArgFromVirtualRegister(op1, 1, X86::ecx); - emitPutJITStubArgFromVirtualRegister(op2, 2, X86::ecx); - emitCTICall(Interpreter::cti_op_mul); + emitGetVirtualRegisters(op1, regT0, op2, regT2); + // FIXME: would we be better using 'emitJumpSlowCaseIfNotImmediateIntegers'? - we *probably* ought to be consistent. + emitJumpSlowCaseIfNotImmediateInteger(regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT2); + emitFastArithImmToInt(regT0); + emitFastArithImmToInt(regT2); + lshift32(regT2, regT0); + emitFastArithReTagImmediate(regT0, regT0); emitPutVirtualRegister(result); } -void JIT::compileFastArithSlow_op_mul(Instruction*, Vector::iterator&) + +void JIT::emitSlow_op_lshift(Instruction* currentInstruction, Vector::iterator& iter) { - ASSERT_NOT_REACHED(); + linkSlowCase(iter); + linkSlowCase(iter); + JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_lshift); + slowPathCall.call(); } -void JIT::compileFastArith_op_sub(Instruction* currentInstruction) +void JIT::emit_op_rshift(Instruction* currentInstruction) { - unsigned result = currentInstruction[1].u.operand; - unsigned op1 = currentInstruction[2].u.operand; - unsigned op2 = currentInstruction[3].u.operand; + int result = currentInstruction[1].u.operand; + int op1 = currentInstruction[2].u.operand; + int op2 = currentInstruction[3].u.operand; - emitPutJITStubArgFromVirtualRegister(op1, 1, X86::ecx); - emitPutJITStubArgFromVirtualRegister(op2, 2, X86::ecx); - emitCTICall(Interpreter::cti_op_sub); + if (isOperandConstantImmediateInt(op2)) { + // isOperandConstantImmediateInt(op2) => 1 SlowCase + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + // Mask with 0x1f as per ecma-262 11.7.2 step 7. + rshift32(Imm32(getConstantOperandImmediateInt(op2) & 0x1f), regT0); + } else { + emitGetVirtualRegisters(op1, regT0, op2, regT2); + if (supportsFloatingPointTruncate()) { + Jump lhsIsInt = emitJumpIfImmediateInteger(regT0); + // supportsFloatingPoint() && USE(JSVALUE64) => 3 SlowCases + addSlowCase(emitJumpIfNotImmediateNumber(regT0)); + add64(tagTypeNumberRegister, regT0); + move64ToDouble(regT0, fpRegT0); + addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0)); + lhsIsInt.link(this); + emitJumpSlowCaseIfNotImmediateInteger(regT2); + } else { + // !supportsFloatingPoint() => 2 SlowCases + emitJumpSlowCaseIfNotImmediateInteger(regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT2); + } + emitFastArithImmToInt(regT2); + rshift32(regT2, regT0); + } + emitFastArithIntToImmNoCheck(regT0, regT0); emitPutVirtualRegister(result); } -void JIT::compileFastArithSlow_op_sub(Instruction*, Vector::iterator&) + +void JIT::emitSlow_op_rshift(Instruction* currentInstruction, Vector::iterator& iter) { - ASSERT_NOT_REACHED(); -} + int op2 = currentInstruction[3].u.operand; -#elif USE(ALTERNATE_JSIMMEDIATE) // *AND* ENABLE(JIT_OPTIMIZE_ARITHMETIC) + if (isOperandConstantImmediateInt(op2)) + linkSlowCase(iter); -void JIT::compileBinaryArithOp(OpcodeID opcodeID, unsigned, unsigned op1, unsigned op2, OperandTypes) -{ - emitGetVirtualRegisters(op1, X86::eax, op2, X86::edx); - emitJumpSlowCaseIfNotImmediateInteger(X86::eax); - emitJumpSlowCaseIfNotImmediateInteger(X86::edx); - if (opcodeID == op_add) - addSlowCase(joAdd32(X86::edx, X86::eax)); - else if (opcodeID == op_sub) - addSlowCase(joSub32(X86::edx, X86::eax)); else { - ASSERT(opcodeID == op_mul); - addSlowCase(joMul32(X86::edx, X86::eax)); - addSlowCase(jz32(X86::eax)); + if (supportsFloatingPointTruncate()) { + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); + } else { + linkSlowCase(iter); + linkSlowCase(iter); + } } - emitFastArithIntToImmNoCheck(X86::eax, X86::eax); + + JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_rshift); + slowPathCall.call(); } -void JIT::compileBinaryArithOpSlowCase(OpcodeID opcodeID, Vector::iterator& iter, unsigned, unsigned op1, unsigned, OperandTypes types) +void JIT::emit_op_urshift(Instruction* currentInstruction) { - // We assume that subtracting TagTypeNumber is equivalent to adding DoubleEncodeOffset. - COMPILE_ASSERT(((JSImmediate::TagTypeNumber + JSImmediate::DoubleEncodeOffset) == 0), TagTypeNumber_PLUS_DoubleEncodeOffset_EQUALS_0); + int result = currentInstruction[1].u.operand; + int op1 = currentInstruction[2].u.operand; + int op2 = currentInstruction[3].u.operand; - Jump notImm1 = getSlowCase(iter); - Jump notImm2 = getSlowCase(iter); + if (isOperandConstantImmediateInt(op2)) { + // isOperandConstantImmediateInt(op2) => 1 SlowCase + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + // Mask with 0x1f as per ecma-262 11.7.2 step 7. + urshift32(Imm32(getConstantOperandImmediateInt(op2) & 0x1f), regT0); + } else { + emitGetVirtualRegisters(op1, regT0, op2, regT2); + if (supportsFloatingPointTruncate()) { + Jump lhsIsInt = emitJumpIfImmediateInteger(regT0); + // supportsFloatingPoint() && USE(JSVALUE64) => 3 SlowCases + addSlowCase(emitJumpIfNotImmediateNumber(regT0)); + add64(tagTypeNumberRegister, regT0); + move64ToDouble(regT0, fpRegT0); + addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0)); + lhsIsInt.link(this); + emitJumpSlowCaseIfNotImmediateInteger(regT2); + } else { + // !supportsFloatingPoint() => 2 SlowCases + emitJumpSlowCaseIfNotImmediateInteger(regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT2); + } + emitFastArithImmToInt(regT2); + urshift32(regT2, regT0); + } + emitFastArithIntToImmNoCheck(regT0, regT0); + emitPutVirtualRegister(result); +} - linkSlowCase(iter); // Integer overflow case - we could handle this in JIT code, but this is likely rare. - if (opcodeID == op_mul) // op_mul has an extra slow case to handle 0 * negative number. +void JIT::emitSlow_op_urshift(Instruction* currentInstruction, Vector::iterator& iter) +{ + int op2 = currentInstruction[3].u.operand; + + if (isOperandConstantImmediateInt(op2)) linkSlowCase(iter); - emitGetVirtualRegister(op1, X86::eax); - Label stubFunctionCall(this); - emitPutJITStubArg(X86::eax, 1); - emitPutJITStubArg(X86::edx, 2); - if (opcodeID == op_add) - emitCTICall(Interpreter::cti_op_add); - else if (opcodeID == op_sub) - emitCTICall(Interpreter::cti_op_sub); else { - ASSERT(opcodeID == op_mul); - emitCTICall(Interpreter::cti_op_mul); + if (supportsFloatingPointTruncate()) { + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); + } else { + linkSlowCase(iter); + linkSlowCase(iter); + } } - Jump end = jump(); - // if we get here, eax is not an int32, edx not yet checked. - notImm1.link(this); - if (!types.first().definitelyIsNumber()) - emitJumpIfNotImmediateNumber(X86::eax).linkTo(stubFunctionCall, this); - if (!types.second().definitelyIsNumber()) - emitJumpIfNotImmediateNumber(X86::edx).linkTo(stubFunctionCall, this); - addPtr(tagTypeNumberRegister, X86::eax); - m_assembler.movq_rr(X86::eax, X86::xmm1); - Jump op2isDouble = emitJumpIfNotImmediateInteger(X86::edx); - m_assembler.cvtsi2sd_rr(X86::edx, X86::xmm2); - Jump op2wasInteger = jump(); - - // if we get here, eax IS an int32, edx is not. - notImm2.link(this); - if (!types.second().definitelyIsNumber()) - emitJumpIfNotImmediateNumber(X86::edx).linkTo(stubFunctionCall, this); - m_assembler.cvtsi2sd_rr(X86::eax, X86::xmm1); - op2isDouble.link(this); - addPtr(tagTypeNumberRegister, X86::edx); - m_assembler.movq_rr(X86::edx, X86::xmm2); - op2wasInteger.link(this); + JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_urshift); + slowPathCall.call(); +} - if (opcodeID == op_add) - m_assembler.addsd_rr(X86::xmm2, X86::xmm1); - else if (opcodeID == op_sub) - m_assembler.subsd_rr(X86::xmm2, X86::xmm1); - else { - ASSERT(opcodeID == op_mul); - m_assembler.mulsd_rr(X86::xmm2, X86::xmm1); - } - m_assembler.movq_rr(X86::xmm1, X86::eax); - subPtr(tagTypeNumberRegister, X86::eax); +void JIT::emit_op_unsigned(Instruction* currentInstruction) +{ + int result = currentInstruction[1].u.operand; + int op1 = currentInstruction[2].u.operand; + + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + addSlowCase(branch32(LessThan, regT0, TrustedImm32(0))); + emitFastArithReTagImmediate(regT0, regT0); + emitPutVirtualRegister(result, regT0); +} - end.link(this); +void JIT::emitSlow_op_unsigned(Instruction* currentInstruction, Vector::iterator& iter) +{ + linkSlowCase(iter); + linkSlowCase(iter); + + JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_unsigned); + slowPathCall.call(); } -void JIT::compileFastArith_op_add(Instruction* currentInstruction) +void JIT::emit_compareAndJump(OpcodeID, int op1, int op2, unsigned target, RelationalCondition condition) { - unsigned result = currentInstruction[1].u.operand; - unsigned op1 = currentInstruction[2].u.operand; - unsigned op2 = currentInstruction[3].u.operand; - OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + // We generate inline code for the following cases in the fast path: + // - int immediate to constant int immediate + // - constant int immediate to int immediate + // - int immediate to int immediate - if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) { - emitPutJITStubArgFromVirtualRegister(op1, 1, X86::ecx); - emitPutJITStubArgFromVirtualRegister(op2, 2, X86::ecx); - emitCTICall(Interpreter::cti_op_add); - emitPutVirtualRegister(result); + if (isOperandConstantImmediateChar(op1)) { + emitGetVirtualRegister(op2, regT0); + addSlowCase(emitJumpIfNotJSCell(regT0)); + JumpList failures; + emitLoadCharacterString(regT0, regT0, failures); + addSlowCase(failures); + addJump(branch32(commute(condition), regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target); return; } + if (isOperandConstantImmediateChar(op2)) { + emitGetVirtualRegister(op1, regT0); + addSlowCase(emitJumpIfNotJSCell(regT0)); + JumpList failures; + emitLoadCharacterString(regT0, regT0, failures); + addSlowCase(failures); + addJump(branch32(condition, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target); + return; + } + if (isOperandConstantImmediateInt(op2)) { + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + int32_t op2imm = getConstantOperandImmediateInt(op2); + addJump(branch32(condition, regT0, Imm32(op2imm)), target); + } else if (isOperandConstantImmediateInt(op1)) { + emitGetVirtualRegister(op2, regT1); + emitJumpSlowCaseIfNotImmediateInteger(regT1); + int32_t op1imm = getConstantOperandImmediateInt(op1); + addJump(branch32(commute(condition), regT1, Imm32(op1imm)), target); + } else { + emitGetVirtualRegisters(op1, regT0, op2, regT1); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT1); - if (isOperandConstantImmediateInt(op1)) { - emitGetVirtualRegister(op2, X86::eax); - emitJumpSlowCaseIfNotImmediateInteger(X86::eax); - addSlowCase(joAdd32(Imm32(getConstantOperandImmediateInt(op1)), X86::eax)); - emitFastArithIntToImmNoCheck(X86::eax, X86::eax); - } else if (isOperandConstantImmediateInt(op2)) { - emitGetVirtualRegister(op1, X86::eax); - emitJumpSlowCaseIfNotImmediateInteger(X86::eax); - addSlowCase(joAdd32(Imm32(getConstantOperandImmediateInt(op2)), X86::eax)); - emitFastArithIntToImmNoCheck(X86::eax, X86::eax); - } else - compileBinaryArithOp(op_add, result, op1, op2, types); - - emitPutVirtualRegister(result); + addJump(branch32(condition, regT0, regT1), target); + } } -void JIT::compileFastArithSlow_op_add(Instruction* currentInstruction, Vector::iterator& iter) -{ - unsigned result = currentInstruction[1].u.operand; - unsigned op1 = currentInstruction[2].u.operand; - unsigned op2 = currentInstruction[3].u.operand; - OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); - if (isOperandConstantImmediateInt(op1)) { +void JIT::emit_compareAndJumpSlow(int op1, int op2, unsigned target, DoubleCondition condition, size_t (JIT_OPERATION *operation)(ExecState*, EncodedJSValue, EncodedJSValue), bool invert, Vector::iterator& iter) +{ + COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jlesseq), OPCODE_LENGTH_op_jlesseq_equals_op_jless); + COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jnless), OPCODE_LENGTH_op_jnless_equals_op_jless); + COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jnlesseq), OPCODE_LENGTH_op_jnlesseq_equals_op_jless); + COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jgreater), OPCODE_LENGTH_op_jgreater_equals_op_jless); + COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jgreatereq), OPCODE_LENGTH_op_jgreatereq_equals_op_jless); + COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jngreater), OPCODE_LENGTH_op_jngreater_equals_op_jless); + COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jngreatereq), OPCODE_LENGTH_op_jngreatereq_equals_op_jless); + + // We generate inline code for the following cases in the slow path: + // - floating-point number to constant int immediate + // - constant int immediate to floating-point number + // - floating-point number to floating-point number. + if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) { linkSlowCase(iter); linkSlowCase(iter); - emitPutJITStubArgFromVirtualRegister(op1, 1, X86::ecx); - emitPutJITStubArgFromVirtualRegister(op2, 2, X86::ecx); - emitCTICall(Interpreter::cti_op_add); - } else if (isOperandConstantImmediateInt(op2)) { linkSlowCase(iter); linkSlowCase(iter); - emitPutJITStubArgFromVirtualRegister(op1, 1, X86::ecx); - emitPutJITStubArgFromVirtualRegister(op2, 2, X86::ecx); - emitCTICall(Interpreter::cti_op_add); - } else - compileBinaryArithOpSlowCase(op_add, iter, result, op1, op2, types); - emitPutVirtualRegister(result); -} + emitGetVirtualRegister(op1, argumentGPR0); + emitGetVirtualRegister(op2, argumentGPR1); + callOperation(operation, argumentGPR0, argumentGPR1); + emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, returnValueGPR), target); + return; + } -void JIT::compileFastArith_op_mul(Instruction* currentInstruction) -{ - unsigned result = currentInstruction[1].u.operand; - unsigned op1 = currentInstruction[2].u.operand; - unsigned op2 = currentInstruction[3].u.operand; - OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + if (isOperandConstantImmediateInt(op2)) { + linkSlowCase(iter); - // For now, only plant a fast int case if the constant operand is greater than zero. - int32_t value; - if (isOperandConstantImmediateInt(op1) && ((value = getConstantOperandImmediateInt(op1)) > 0)) { - emitGetVirtualRegister(op2, X86::eax); - emitJumpSlowCaseIfNotImmediateInteger(X86::eax); - addSlowCase(joMul32(Imm32(value), X86::eax, X86::eax)); - emitFastArithReTagImmediate(X86::eax, X86::eax); - } else if (isOperandConstantImmediateInt(op2) && ((value = getConstantOperandImmediateInt(op2)) > 0)) { - emitGetVirtualRegister(op1, X86::eax); - emitJumpSlowCaseIfNotImmediateInteger(X86::eax); - addSlowCase(joMul32(Imm32(value), X86::eax, X86::eax)); - emitFastArithReTagImmediate(X86::eax, X86::eax); - } else - compileBinaryArithOp(op_mul, result, op1, op2, types); + if (supportsFloatingPoint()) { + Jump fail1 = emitJumpIfNotImmediateNumber(regT0); + add64(tagTypeNumberRegister, regT0); + move64ToDouble(regT0, fpRegT0); - emitPutVirtualRegister(result); -} -void JIT::compileFastArithSlow_op_mul(Instruction* currentInstruction, Vector::iterator& iter) -{ - unsigned result = currentInstruction[1].u.operand; - unsigned op1 = currentInstruction[2].u.operand; - unsigned op2 = currentInstruction[3].u.operand; - OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + int32_t op2imm = getConstantOperand(op2).asInt32(); + + move(Imm32(op2imm), regT1); + convertInt32ToDouble(regT1, fpRegT1); + + emitJumpSlowToHot(branchDouble(condition, fpRegT0, fpRegT1), target); - if ((isOperandConstantImmediateInt(op1) && (getConstantOperandImmediateInt(op1) > 0)) - || (isOperandConstantImmediateInt(op2) && (getConstantOperandImmediateInt(op2) > 0))) { + emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jless)); + + fail1.link(this); + } + + emitGetVirtualRegister(op2, regT1); + callOperation(operation, regT0, regT1); + emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, returnValueGPR), target); + } else if (isOperandConstantImmediateInt(op1)) { linkSlowCase(iter); + + if (supportsFloatingPoint()) { + Jump fail1 = emitJumpIfNotImmediateNumber(regT1); + add64(tagTypeNumberRegister, regT1); + move64ToDouble(regT1, fpRegT1); + + int32_t op1imm = getConstantOperand(op1).asInt32(); + + move(Imm32(op1imm), regT0); + convertInt32ToDouble(regT0, fpRegT0); + + emitJumpSlowToHot(branchDouble(condition, fpRegT0, fpRegT1), target); + + emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jless)); + + fail1.link(this); + } + + emitGetVirtualRegister(op1, regT2); + callOperation(operation, regT2, regT1); + emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, returnValueGPR), target); + } else { linkSlowCase(iter); - // There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0. - emitPutJITStubArgFromVirtualRegister(op1, 1, X86::ecx); - emitPutJITStubArgFromVirtualRegister(op2, 2, X86::ecx); - emitCTICall(Interpreter::cti_op_mul); - } else - compileBinaryArithOpSlowCase(op_mul, iter, result, op1, op2, types); - emitPutVirtualRegister(result); -} + if (supportsFloatingPoint()) { + Jump fail1 = emitJumpIfNotImmediateNumber(regT0); + Jump fail2 = emitJumpIfNotImmediateNumber(regT1); + Jump fail3 = emitJumpIfImmediateInteger(regT1); + add64(tagTypeNumberRegister, regT0); + add64(tagTypeNumberRegister, regT1); + move64ToDouble(regT0, fpRegT0); + move64ToDouble(regT1, fpRegT1); -void JIT::compileFastArith_op_sub(Instruction* currentInstruction) -{ - unsigned result = currentInstruction[1].u.operand; - unsigned op1 = currentInstruction[2].u.operand; - unsigned op2 = currentInstruction[3].u.operand; - OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + emitJumpSlowToHot(branchDouble(condition, fpRegT0, fpRegT1), target); - compileBinaryArithOp(op_sub, result, op1, op2, types); + emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jless)); - emitPutVirtualRegister(result); + fail1.link(this); + fail2.link(this); + fail3.link(this); + } + + linkSlowCase(iter); + callOperation(operation, regT0, regT1); + emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, returnValueGPR), target); + } } -void JIT::compileFastArithSlow_op_sub(Instruction* currentInstruction, Vector::iterator& iter) -{ - unsigned result = currentInstruction[1].u.operand; - unsigned op1 = currentInstruction[2].u.operand; - unsigned op2 = currentInstruction[3].u.operand; - OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); - compileBinaryArithOpSlowCase(op_sub, iter, result, op1, op2, types); +void JIT::emit_op_bitand(Instruction* currentInstruction) +{ + int result = currentInstruction[1].u.operand; + int op1 = currentInstruction[2].u.operand; + int op2 = currentInstruction[3].u.operand; + if (isOperandConstantImmediateInt(op1)) { + emitGetVirtualRegister(op2, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + int32_t imm = getConstantOperandImmediateInt(op1); + and64(Imm32(imm), regT0); + if (imm >= 0) + emitFastArithIntToImmNoCheck(regT0, regT0); + } else if (isOperandConstantImmediateInt(op2)) { + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + int32_t imm = getConstantOperandImmediateInt(op2); + and64(Imm32(imm), regT0); + if (imm >= 0) + emitFastArithIntToImmNoCheck(regT0, regT0); + } else { + emitGetVirtualRegisters(op1, regT0, op2, regT1); + and64(regT1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + } emitPutVirtualRegister(result); } -#else +void JIT::emitSlow_op_bitand(Instruction* currentInstruction, Vector::iterator& iter) +{ + linkSlowCase(iter); + + JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_bitand); + slowPathCall.call(); +} -typedef X86Assembler::JmpSrc JmpSrc; -typedef X86Assembler::JmpDst JmpDst; -typedef X86Assembler::XMMRegisterID XMMRegisterID; +void JIT::emit_op_inc(Instruction* currentInstruction) +{ + int srcDst = currentInstruction[1].u.operand; -#if PLATFORM(MAC) + emitGetVirtualRegister(srcDst, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + addSlowCase(branchAdd32(Overflow, TrustedImm32(1), regT0)); + emitFastArithIntToImmNoCheck(regT0, regT0); + emitPutVirtualRegister(srcDst); +} -static inline bool isSSE2Present() +void JIT::emitSlow_op_inc(Instruction* currentInstruction, Vector::iterator& iter) { - return true; // All X86 Macs are guaranteed to support at least SSE2 + linkSlowCase(iter); + linkSlowCase(iter); + JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_inc); + slowPathCall.call(); } -#else +void JIT::emit_op_dec(Instruction* currentInstruction) +{ + int srcDst = currentInstruction[1].u.operand; -static bool isSSE2Present() + emitGetVirtualRegister(srcDst, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + addSlowCase(branchSub32(Overflow, TrustedImm32(1), regT0)); + emitFastArithIntToImmNoCheck(regT0, regT0); + emitPutVirtualRegister(srcDst); +} + +void JIT::emitSlow_op_dec(Instruction* currentInstruction, Vector::iterator& iter) { - static const int SSE2FeatureBit = 1 << 26; - struct SSE2Check { - SSE2Check() - { - int flags; -#if COMPILER(MSVC) - _asm { - mov eax, 1 // cpuid function 1 gives us the standard feature set - cpuid; - mov flags, edx; - } -#else - flags = 0; - // FIXME: Add GCC code to do above asm -#endif - present = (flags & SSE2FeatureBit) != 0; - } - bool present; - }; - static SSE2Check check; - return check.present; + linkSlowCase(iter); + linkSlowCase(iter); + JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_dec); + slowPathCall.call(); } -#endif +/* ------------------------------ BEGIN: OP_MOD ------------------------------ */ -/* - This is required since number representation is canonical - values representable as a JSImmediate should not be stored in a JSNumberCell. - - In the common case, the double value from 'xmmSource' is written to the reusable JSNumberCell pointed to by 'jsNumberCell', then 'jsNumberCell' - is written to the output SF Register 'dst', and then a jump is planted (stored into *wroteJSNumberCell). - - However if the value from xmmSource is representable as a JSImmediate, then the JSImmediate value will be written to the output, and flow - control will fall through from the code planted. -*/ -void JIT::putDoubleResultToJSNumberCellOrJSImmediate(X86::XMMRegisterID xmmSource, X86::RegisterID jsNumberCell, unsigned dst, JmpSrc* wroteJSNumberCell, X86::XMMRegisterID tempXmm, X86::RegisterID tempReg1, X86::RegisterID tempReg2) -{ - // convert (double -> JSImmediate -> double), and check if the value is unchanged - in which case the value is representable as a JSImmediate. - __ cvttsd2si_rr(xmmSource, tempReg1); - __ addl_rr(tempReg1, tempReg1); - __ sarl_i8r(1, tempReg1); - __ cvtsi2sd_rr(tempReg1, tempXmm); - // Compare & branch if immediate. - __ ucomisd_rr(tempXmm, xmmSource); - JmpSrc resultIsImm = __ je(); - JmpDst resultLookedLikeImmButActuallyIsnt = __ label(); - - // Store the result to the JSNumberCell and jump. - __ movsd_rm(xmmSource, FIELD_OFFSET(JSNumberCell, m_value), jsNumberCell); - if (jsNumberCell != X86::eax) - __ movl_rr(jsNumberCell, X86::eax); - emitPutVirtualRegister(dst); - *wroteJSNumberCell = __ jmp(); - - __ link(resultIsImm, __ label()); - // value == (double)(JSImmediate)value... or at least, it looks that way... - // ucomi will report that (0 == -0), and will report true if either input in NaN (result is unordered). - __ link(__ jp(), resultLookedLikeImmButActuallyIsnt); // Actually was a NaN - __ pextrw_irr(3, xmmSource, tempReg2); - __ cmpl_ir(0x8000, tempReg2); - __ link(__ je(), resultLookedLikeImmButActuallyIsnt); // Actually was -0 - // Yes it really really really is representable as a JSImmediate. - emitFastArithIntToImmNoCheck(tempReg1, X86::eax); - emitPutVirtualRegister(dst); -} +#if CPU(X86) || CPU(X86_64) -void JIT::compileBinaryArithOp(OpcodeID opcodeID, unsigned dst, unsigned src1, unsigned src2, OperandTypes types) +void JIT::emit_op_mod(Instruction* currentInstruction) { - Structure* numberStructure = m_globalData->numberStructure.get(); - JmpSrc wasJSNumberCell1; - JmpSrc wasJSNumberCell1b; - JmpSrc wasJSNumberCell2; - JmpSrc wasJSNumberCell2b; + int result = currentInstruction[1].u.operand; + int op1 = currentInstruction[2].u.operand; + int op2 = currentInstruction[3].u.operand; - emitGetVirtualRegisters(src1, X86::eax, src2, X86::edx); + // Make sure registers are correct for x86 IDIV instructions. + ASSERT(regT0 == X86Registers::eax); + ASSERT(regT1 == X86Registers::edx); + ASSERT(regT2 == X86Registers::ecx); - if (types.second().isReusable() && isSSE2Present()) { - ASSERT(types.second().mightBeNumber()); + emitGetVirtualRegisters(op1, regT3, op2, regT2); + emitJumpSlowCaseIfNotImmediateInteger(regT3); + emitJumpSlowCaseIfNotImmediateInteger(regT2); - // Check op2 is a number - __ testl_i32r(JSImmediate::TagTypeNumber, X86::edx); - JmpSrc op2imm = __ jne(); - if (!types.second().definitelyIsNumber()) { - emitJumpSlowCaseIfNotJSCell(X86::edx, src2); - __ cmpl_im(reinterpret_cast(numberStructure), FIELD_OFFSET(JSCell, m_structure), X86::edx); - addSlowCase(__ jne()); - } + move(regT3, regT0); + addSlowCase(branchTest32(Zero, regT2)); + Jump denominatorNotNeg1 = branch32(NotEqual, regT2, TrustedImm32(-1)); + addSlowCase(branch32(Equal, regT0, TrustedImm32(-2147483647-1))); + denominatorNotNeg1.link(this); + m_assembler.cdq(); + m_assembler.idivl_r(regT2); + Jump numeratorPositive = branch32(GreaterThanOrEqual, regT3, TrustedImm32(0)); + addSlowCase(branchTest32(Zero, regT1)); + numeratorPositive.link(this); + emitFastArithReTagImmediate(regT1, regT0); + emitPutVirtualRegister(result); +} - // (1) In this case src2 is a reusable number cell. - // Slow case if src1 is not a number type. - __ testl_i32r(JSImmediate::TagTypeNumber, X86::eax); - JmpSrc op1imm = __ jne(); - if (!types.first().definitelyIsNumber()) { - emitJumpSlowCaseIfNotJSCell(X86::eax, src1); - __ cmpl_im(reinterpret_cast(numberStructure), FIELD_OFFSET(JSCell, m_structure), X86::eax); - addSlowCase(__ jne()); - } +void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector::iterator& iter) +{ + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); + JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_mod); + slowPathCall.call(); +} - // (1a) if we get here, src1 is also a number cell - __ movsd_mr(FIELD_OFFSET(JSNumberCell, m_value), X86::eax, X86::xmm0); - JmpSrc loadedDouble = __ jmp(); - // (1b) if we get here, src1 is an immediate - __ link(op1imm, __ label()); - emitFastArithImmToInt(X86::eax); - __ cvtsi2sd_rr(X86::eax, X86::xmm0); - // (1c) - __ link(loadedDouble, __ label()); - if (opcodeID == op_add) - __ addsd_mr(FIELD_OFFSET(JSNumberCell, m_value), X86::edx, X86::xmm0); - else if (opcodeID == op_sub) - __ subsd_mr(FIELD_OFFSET(JSNumberCell, m_value), X86::edx, X86::xmm0); - else { - ASSERT(opcodeID == op_mul); - __ mulsd_mr(FIELD_OFFSET(JSNumberCell, m_value), X86::edx, X86::xmm0); - } +#else // CPU(X86) || CPU(X86_64) - putDoubleResultToJSNumberCellOrJSImmediate(X86::xmm0, X86::edx, dst, &wasJSNumberCell2, X86::xmm1, X86::ecx, X86::eax); - wasJSNumberCell2b = __ jmp(); - - // (2) This handles cases where src2 is an immediate number. - // Two slow cases - either src1 isn't an immediate, or the subtract overflows. - __ link(op2imm, __ label()); - emitJumpSlowCaseIfNotImmediateInteger(X86::eax); - } else if (types.first().isReusable() && isSSE2Present()) { - ASSERT(types.first().mightBeNumber()); - - // Check op1 is a number - __ testl_i32r(JSImmediate::TagTypeNumber, X86::eax); - JmpSrc op1imm = __ jne(); - if (!types.first().definitelyIsNumber()) { - emitJumpSlowCaseIfNotJSCell(X86::eax, src1); - __ cmpl_im(reinterpret_cast(numberStructure), FIELD_OFFSET(JSCell, m_structure), X86::eax); - addSlowCase(__ jne()); - } +void JIT::emit_op_mod(Instruction* currentInstruction) +{ + JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_mod); + slowPathCall.call(); +} - // (1) In this case src1 is a reusable number cell. - // Slow case if src2 is not a number type. - __ testl_i32r(JSImmediate::TagTypeNumber, X86::edx); - JmpSrc op2imm = __ jne(); - if (!types.second().definitelyIsNumber()) { - emitJumpSlowCaseIfNotJSCell(X86::edx, src2); - __ cmpl_im(reinterpret_cast(numberStructure), FIELD_OFFSET(JSCell, m_structure), X86::edx); - addSlowCase(__ jne()); - } +void JIT::emitSlow_op_mod(Instruction*, Vector::iterator&) +{ + UNREACHABLE_FOR_PLATFORM(); +} - // (1a) if we get here, src2 is also a number cell - __ movsd_mr(FIELD_OFFSET(JSNumberCell, m_value), X86::edx, X86::xmm1); - JmpSrc loadedDouble = __ jmp(); - // (1b) if we get here, src2 is an immediate - __ link(op2imm, __ label()); - emitFastArithImmToInt(X86::edx); - __ cvtsi2sd_rr(X86::edx, X86::xmm1); - // (1c) - __ link(loadedDouble, __ label()); - __ movsd_mr(FIELD_OFFSET(JSNumberCell, m_value), X86::eax, X86::xmm0); - if (opcodeID == op_add) - __ addsd_rr(X86::xmm1, X86::xmm0); - else if (opcodeID == op_sub) - __ subsd_rr(X86::xmm1, X86::xmm0); - else { - ASSERT(opcodeID == op_mul); - __ mulsd_rr(X86::xmm1, X86::xmm0); - } - __ movsd_rm(X86::xmm0, FIELD_OFFSET(JSNumberCell, m_value), X86::eax); - emitPutVirtualRegister(dst); +#endif // CPU(X86) || CPU(X86_64) - putDoubleResultToJSNumberCellOrJSImmediate(X86::xmm0, X86::eax, dst, &wasJSNumberCell1, X86::xmm1, X86::ecx, X86::edx); - wasJSNumberCell1b = __ jmp(); +/* ------------------------------ END: OP_MOD ------------------------------ */ - // (2) This handles cases where src1 is an immediate number. - // Two slow cases - either src2 isn't an immediate, or the subtract overflows. - __ link(op1imm, __ label()); - emitJumpSlowCaseIfNotImmediateInteger(X86::edx); - } else - emitJumpSlowCaseIfNotImmediateIntegers(X86::eax, X86::edx, X86::ecx); - - if (opcodeID == op_add) { - emitFastArithDeTagImmediate(X86::eax); - __ addl_rr(X86::edx, X86::eax); - addSlowCase(__ jo()); - } else if (opcodeID == op_sub) { - __ subl_rr(X86::edx, X86::eax); - addSlowCase(__ jo()); - signExtend32ToPtr(X86::eax, X86::eax); - emitFastArithReTagImmediate(X86::eax, X86::eax); - } else { - ASSERT(opcodeID == op_mul); - // convert eax & edx from JSImmediates to ints, and check if either are zero - emitFastArithImmToInt(X86::edx); - JmpSrc op1Zero = emitFastArithDeTagImmediateJumpIfZero(X86::eax); - __ testl_rr(X86::edx, X86::edx); - JmpSrc op2NonZero = __ jne(); - __ link(op1Zero, __ label()); - // if either input is zero, add the two together, and check if the result is < 0. - // If it is, we have a problem (N < 0), (N * 0) == -0, not representatble as a JSImmediate. - __ movl_rr(X86::eax, X86::ecx); - __ addl_rr(X86::edx, X86::ecx); - addSlowCase(__ js()); - // Skip the above check if neither input is zero - __ link(op2NonZero, __ label()); - __ imull_rr(X86::edx, X86::eax); - addSlowCase(__ jo()); - signExtend32ToPtr(X86::eax, X86::eax); - emitFastArithReTagImmediate(X86::eax, X86::eax); - } - emitPutVirtualRegister(dst); +/* ------------------------------ BEGIN: USE(JSVALUE64) (OP_ADD, OP_SUB, OP_MUL) ------------------------------ */ - if (types.second().isReusable() && isSSE2Present()) { - __ link(wasJSNumberCell2, __ label()); - __ link(wasJSNumberCell2b, __ label()); - } - else if (types.first().isReusable() && isSSE2Present()) { - __ link(wasJSNumberCell1, __ label()); - __ link(wasJSNumberCell1b, __ label()); +void JIT::compileBinaryArithOp(OpcodeID opcodeID, int, int op1, int op2, OperandTypes) +{ + emitGetVirtualRegisters(op1, regT0, op2, regT1); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT1); + RareCaseProfile* profile = m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset); + if (opcodeID == op_add) + addSlowCase(branchAdd32(Overflow, regT1, regT0)); + else if (opcodeID == op_sub) + addSlowCase(branchSub32(Overflow, regT1, regT0)); + else { + ASSERT(opcodeID == op_mul); + if (shouldEmitProfiling()) { + // We want to be able to measure if this is taking the slow case just + // because of negative zero. If this produces positive zero, then we + // don't want the slow case to be taken because that will throw off + // speculative compilation. + move(regT0, regT2); + addSlowCase(branchMul32(Overflow, regT1, regT2)); + JumpList done; + done.append(branchTest32(NonZero, regT2)); + Jump negativeZero = branch32(LessThan, regT0, TrustedImm32(0)); + done.append(branch32(GreaterThanOrEqual, regT1, TrustedImm32(0))); + negativeZero.link(this); + // We only get here if we have a genuine negative zero. Record this, + // so that the speculative JIT knows that we failed speculation + // because of a negative zero. + add32(TrustedImm32(1), AbsoluteAddress(&profile->m_counter)); + addSlowCase(jump()); + done.link(this); + move(regT2, regT0); + } else { + addSlowCase(branchMul32(Overflow, regT1, regT0)); + addSlowCase(branchTest32(Zero, regT0)); + } } + emitFastArithIntToImmNoCheck(regT0, regT0); } -void JIT::compileBinaryArithOpSlowCase(OpcodeID opcodeID, Vector::iterator& iter, unsigned dst, unsigned src1, unsigned src2, OperandTypes types) +void JIT::compileBinaryArithOpSlowCase(Instruction* currentInstruction, OpcodeID opcodeID, Vector::iterator& iter, int result, int op1, int op2, OperandTypes types, bool op1HasImmediateIntFastCase, bool op2HasImmediateIntFastCase) { - linkSlowCase(iter); - if (types.second().isReusable() && isSSE2Present()) { - if (!types.first().definitelyIsNumber()) { - linkSlowCaseIfNotJSCell(iter, src1); - linkSlowCase(iter); - } - if (!types.second().definitelyIsNumber()) { - linkSlowCaseIfNotJSCell(iter, src2); - linkSlowCase(iter); - } - } else if (types.first().isReusable() && isSSE2Present()) { - if (!types.first().definitelyIsNumber()) { - linkSlowCaseIfNotJSCell(iter, src1); - linkSlowCase(iter); - } - if (!types.second().definitelyIsNumber()) { - linkSlowCaseIfNotJSCell(iter, src2); - linkSlowCase(iter); - } + // We assume that subtracting TagTypeNumber is equivalent to adding DoubleEncodeOffset. + COMPILE_ASSERT(((TagTypeNumber + DoubleEncodeOffset) == 0), TagTypeNumber_PLUS_DoubleEncodeOffset_EQUALS_0); + + Jump notImm1; + Jump notImm2; + if (op1HasImmediateIntFastCase) { + notImm2 = getSlowCase(iter); + } else if (op2HasImmediateIntFastCase) { + notImm1 = getSlowCase(iter); + } else { + notImm1 = getSlowCase(iter); + notImm2 = getSlowCase(iter); } - linkSlowCase(iter); - // additional entry point to handle -0 cases. - if (opcodeID == op_mul) + linkSlowCase(iter); // Integer overflow case - we could handle this in JIT code, but this is likely rare. + if (opcodeID == op_mul && !op1HasImmediateIntFastCase && !op2HasImmediateIntFastCase) // op_mul has an extra slow case to handle 0 * negative number. linkSlowCase(iter); - emitPutJITStubArgFromVirtualRegister(src1, 1, X86::ecx); - emitPutJITStubArgFromVirtualRegister(src2, 2, X86::ecx); + Label stubFunctionCall(this); + + JITSlowPathCall slowPathCall(this, currentInstruction, opcodeID == op_add ? slow_path_add : opcodeID == op_sub ? slow_path_sub : slow_path_mul); + slowPathCall.call(); + Jump end = jump(); + + if (op1HasImmediateIntFastCase) { + notImm2.link(this); + if (!types.second().definitelyIsNumber()) + emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this); + emitGetVirtualRegister(op1, regT1); + convertInt32ToDouble(regT1, fpRegT1); + add64(tagTypeNumberRegister, regT0); + move64ToDouble(regT0, fpRegT2); + } else if (op2HasImmediateIntFastCase) { + notImm1.link(this); + if (!types.first().definitelyIsNumber()) + emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this); + emitGetVirtualRegister(op2, regT1); + convertInt32ToDouble(regT1, fpRegT1); + add64(tagTypeNumberRegister, regT0); + move64ToDouble(regT0, fpRegT2); + } else { + // if we get here, eax is not an int32, edx not yet checked. + notImm1.link(this); + if (!types.first().definitelyIsNumber()) + emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this); + if (!types.second().definitelyIsNumber()) + emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this); + add64(tagTypeNumberRegister, regT0); + move64ToDouble(regT0, fpRegT1); + Jump op2isDouble = emitJumpIfNotImmediateInteger(regT1); + convertInt32ToDouble(regT1, fpRegT2); + Jump op2wasInteger = jump(); + + // if we get here, eax IS an int32, edx is not. + notImm2.link(this); + if (!types.second().definitelyIsNumber()) + emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this); + convertInt32ToDouble(regT0, fpRegT1); + op2isDouble.link(this); + add64(tagTypeNumberRegister, regT1); + move64ToDouble(regT1, fpRegT2); + op2wasInteger.link(this); + } + if (opcodeID == op_add) - emitCTICall(Interpreter::cti_op_add); + addDouble(fpRegT2, fpRegT1); else if (opcodeID == op_sub) - emitCTICall(Interpreter::cti_op_sub); + subDouble(fpRegT2, fpRegT1); + else if (opcodeID == op_mul) + mulDouble(fpRegT2, fpRegT1); else { - ASSERT(opcodeID == op_mul); - emitCTICall(Interpreter::cti_op_mul); + ASSERT(opcodeID == op_div); + divDouble(fpRegT2, fpRegT1); } - emitPutVirtualRegister(dst); + moveDoubleTo64(fpRegT1, regT0); + sub64(tagTypeNumberRegister, regT0); + emitPutVirtualRegister(result, regT0); + + end.link(this); } -void JIT::compileFastArith_op_add(Instruction* currentInstruction) +void JIT::emit_op_add(Instruction* currentInstruction) { - unsigned result = currentInstruction[1].u.operand; - unsigned op1 = currentInstruction[2].u.operand; - unsigned op2 = currentInstruction[3].u.operand; + int result = currentInstruction[1].u.operand; + int op1 = currentInstruction[2].u.operand; + int op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + + if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) { + addSlowCase(); + JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_add); + slowPathCall.call(); + return; + } if (isOperandConstantImmediateInt(op1)) { - emitGetVirtualRegister(op2, X86::eax); - emitJumpSlowCaseIfNotImmediateInteger(X86::eax); - addSlowCase(joAdd32(Imm32(getConstantOperandImmediateInt(op1) << JSImmediate::IntegerPayloadShift), X86::eax)); - signExtend32ToPtr(X86::eax, X86::eax); - emitPutVirtualRegister(result); + emitGetVirtualRegister(op2, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + addSlowCase(branchAdd32(Overflow, regT0, Imm32(getConstantOperandImmediateInt(op1)), regT1)); + emitFastArithIntToImmNoCheck(regT1, regT0); } else if (isOperandConstantImmediateInt(op2)) { - emitGetVirtualRegister(op1, X86::eax); - emitJumpSlowCaseIfNotImmediateInteger(X86::eax); - addSlowCase(joAdd32(Imm32(getConstantOperandImmediateInt(op2) << JSImmediate::IntegerPayloadShift), X86::eax)); - signExtend32ToPtr(X86::eax, X86::eax); - emitPutVirtualRegister(result); - } else { - OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); - if (types.first().mightBeNumber() && types.second().mightBeNumber()) - compileBinaryArithOp(op_add, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand)); - else { - emitPutJITStubArgFromVirtualRegister(op1, 1, X86::ecx); - emitPutJITStubArgFromVirtualRegister(op2, 2, X86::ecx); - emitCTICall(Interpreter::cti_op_add); - emitPutVirtualRegister(result); - } - } + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + addSlowCase(branchAdd32(Overflow, regT0, Imm32(getConstantOperandImmediateInt(op2)), regT1)); + emitFastArithIntToImmNoCheck(regT1, regT0); + } else + compileBinaryArithOp(op_add, result, op1, op2, types); + + emitPutVirtualRegister(result); } -void JIT::compileFastArithSlow_op_add(Instruction* currentInstruction, Vector::iterator& iter) + +void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector::iterator& iter) { - unsigned result = currentInstruction[1].u.operand; - unsigned op1 = currentInstruction[2].u.operand; - unsigned op2 = currentInstruction[3].u.operand; + int result = currentInstruction[1].u.operand; + int op1 = currentInstruction[2].u.operand; + int op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); - if (isOperandConstantImmediateInt(op1)) { - Jump notImm = getSlowCase(iter); - linkSlowCase(iter); - sub32(Imm32(getConstantOperandImmediateInt(op1) << JSImmediate::IntegerPayloadShift), X86::eax); - notImm.link(this); - emitPutJITStubArgFromVirtualRegister(op1, 1, X86::ecx); - emitPutJITStubArg(X86::eax, 2); - emitCTICall(Interpreter::cti_op_add); - emitPutVirtualRegister(result); - } else if (isOperandConstantImmediateInt(op2)) { - Jump notImm = getSlowCase(iter); - linkSlowCase(iter); - sub32(Imm32(getConstantOperandImmediateInt(op2) << JSImmediate::IntegerPayloadShift), X86::eax); - notImm.link(this); - emitPutJITStubArg(X86::eax, 1); - emitPutJITStubArgFromVirtualRegister(op2, 2, X86::ecx); - emitCTICall(Interpreter::cti_op_add); - emitPutVirtualRegister(result); - } else { - OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); - ASSERT(types.first().mightBeNumber() && types.second().mightBeNumber()); - compileBinaryArithOpSlowCase(op_add, iter, result, op1, op2, types); + if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) { + linkDummySlowCase(iter); + return; } + + bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1); + bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2); + compileBinaryArithOpSlowCase(currentInstruction, op_add, iter, result, op1, op2, types, op1HasImmediateIntFastCase, op2HasImmediateIntFastCase); } -void JIT::compileFastArith_op_mul(Instruction* currentInstruction) +void JIT::emit_op_mul(Instruction* currentInstruction) { - unsigned result = currentInstruction[1].u.operand; - unsigned op1 = currentInstruction[2].u.operand; - unsigned op2 = currentInstruction[3].u.operand; + int result = currentInstruction[1].u.operand; + int op1 = currentInstruction[2].u.operand; + int op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); // For now, only plant a fast int case if the constant operand is greater than zero. int32_t value; if (isOperandConstantImmediateInt(op1) && ((value = getConstantOperandImmediateInt(op1)) > 0)) { - emitGetVirtualRegister(op2, X86::eax); - emitJumpSlowCaseIfNotImmediateInteger(X86::eax); - emitFastArithDeTagImmediate(X86::eax); - addSlowCase(joMul32(Imm32(value), X86::eax, X86::eax)); - signExtend32ToPtr(X86::eax, X86::eax); - emitFastArithReTagImmediate(X86::eax, X86::eax); - emitPutVirtualRegister(result); + // Add a special fast case profile because the DFG JIT will expect one. + m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset); + emitGetVirtualRegister(op2, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT1)); + emitFastArithReTagImmediate(regT1, regT0); } else if (isOperandConstantImmediateInt(op2) && ((value = getConstantOperandImmediateInt(op2)) > 0)) { - emitGetVirtualRegister(op1, X86::eax); - emitJumpSlowCaseIfNotImmediateInteger(X86::eax); - emitFastArithDeTagImmediate(X86::eax); - addSlowCase(joMul32(Imm32(value), X86::eax, X86::eax)); - signExtend32ToPtr(X86::eax, X86::eax); - emitFastArithReTagImmediate(X86::eax, X86::eax); - emitPutVirtualRegister(result); + // Add a special fast case profile because the DFG JIT will expect one. + m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset); + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT1)); + emitFastArithReTagImmediate(regT1, regT0); } else - compileBinaryArithOp(op_mul, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand)); + compileBinaryArithOp(op_mul, result, op1, op2, types); + + emitPutVirtualRegister(result); } -void JIT::compileFastArithSlow_op_mul(Instruction* currentInstruction, Vector::iterator& iter) + +void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector::iterator& iter) { - unsigned result = currentInstruction[1].u.operand; - unsigned op1 = currentInstruction[2].u.operand; - unsigned op2 = currentInstruction[3].u.operand; + int result = currentInstruction[1].u.operand; + int op1 = currentInstruction[2].u.operand; + int op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); - if ((isOperandConstantImmediateInt(op1) && (getConstantOperandImmediateInt(op1) > 0)) - || (isOperandConstantImmediateInt(op2) && (getConstantOperandImmediateInt(op2) > 0))) { - linkSlowCase(iter); - linkSlowCase(iter); - // There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0. - emitPutJITStubArgFromVirtualRegister(op1, 1, X86::ecx); - emitPutJITStubArgFromVirtualRegister(op2, 2, X86::ecx); - emitCTICall(Interpreter::cti_op_mul); - emitPutVirtualRegister(result); - } else - compileBinaryArithOpSlowCase(op_mul, iter, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand)); + bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1) && getConstantOperandImmediateInt(op1) > 0; + bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2) && getConstantOperandImmediateInt(op2) > 0; + compileBinaryArithOpSlowCase(currentInstruction, op_mul, iter, result, op1, op2, types, op1HasImmediateIntFastCase, op2HasImmediateIntFastCase); } -void JIT::compileFastArith_op_sub(Instruction* currentInstruction) +void JIT::emit_op_div(Instruction* currentInstruction) { - compileBinaryArithOp(op_sub, currentInstruction[1].u.operand, currentInstruction[2].u.operand, currentInstruction[3].u.operand, OperandTypes::fromInt(currentInstruction[4].u.operand)); + int dst = currentInstruction[1].u.operand; + int op1 = currentInstruction[2].u.operand; + int op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + + if (isOperandConstantImmediateDouble(op1)) { + emitGetVirtualRegister(op1, regT0); + add64(tagTypeNumberRegister, regT0); + move64ToDouble(regT0, fpRegT0); + } else if (isOperandConstantImmediateInt(op1)) { + emitLoadInt32ToDouble(op1, fpRegT0); + } else { + emitGetVirtualRegister(op1, regT0); + if (!types.first().definitelyIsNumber()) + emitJumpSlowCaseIfNotImmediateNumber(regT0); + Jump notInt = emitJumpIfNotImmediateInteger(regT0); + convertInt32ToDouble(regT0, fpRegT0); + Jump skipDoubleLoad = jump(); + notInt.link(this); + add64(tagTypeNumberRegister, regT0); + move64ToDouble(regT0, fpRegT0); + skipDoubleLoad.link(this); + } + + if (isOperandConstantImmediateDouble(op2)) { + emitGetVirtualRegister(op2, regT1); + add64(tagTypeNumberRegister, regT1); + move64ToDouble(regT1, fpRegT1); + } else if (isOperandConstantImmediateInt(op2)) { + emitLoadInt32ToDouble(op2, fpRegT1); + } else { + emitGetVirtualRegister(op2, regT1); + if (!types.second().definitelyIsNumber()) + emitJumpSlowCaseIfNotImmediateNumber(regT1); + Jump notInt = emitJumpIfNotImmediateInteger(regT1); + convertInt32ToDouble(regT1, fpRegT1); + Jump skipDoubleLoad = jump(); + notInt.link(this); + add64(tagTypeNumberRegister, regT1); + move64ToDouble(regT1, fpRegT1); + skipDoubleLoad.link(this); + } + divDouble(fpRegT1, fpRegT0); + + // Is the result actually an integer? The DFG JIT would really like to know. If it's + // not an integer, we increment a count. If this together with the slow case counter + // are below threshold then the DFG JIT will compile this division with a specualtion + // that the remainder is zero. + + // As well, there are cases where a double result here would cause an important field + // in the heap to sometimes have doubles in it, resulting in double predictions getting + // propagated to a use site where it might cause damage (such as the index to an array + // access). So if we are DFG compiling anything in the program, we want this code to + // ensure that it produces integers whenever possible. + + JumpList notInteger; + branchConvertDoubleToInt32(fpRegT0, regT0, notInteger, fpRegT1); + // If we've got an integer, we might as well make that the result of the division. + emitFastArithReTagImmediate(regT0, regT0); + Jump isInteger = jump(); + notInteger.link(this); + moveDoubleTo64(fpRegT0, regT0); + Jump doubleZero = branchTest64(Zero, regT0); + add32(TrustedImm32(1), AbsoluteAddress(&m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset)->m_counter)); + sub64(tagTypeNumberRegister, regT0); + Jump trueDouble = jump(); + doubleZero.link(this); + move(tagTypeNumberRegister, regT0); + trueDouble.link(this); + isInteger.link(this); + + emitPutVirtualRegister(dst, regT0); +} + +void JIT::emitSlow_op_div(Instruction* currentInstruction, Vector::iterator& iter) +{ + int op1 = currentInstruction[2].u.operand; + int op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + if (types.first().definitelyIsNumber() && types.second().definitelyIsNumber()) { + if (!ASSERT_DISABLED) + abortWithReason(JITDivOperandsAreNotNumbers); + return; + } + if (!isOperandConstantImmediateDouble(op1) && !isOperandConstantImmediateInt(op1)) { + if (!types.first().definitelyIsNumber()) + linkSlowCase(iter); + } + if (!isOperandConstantImmediateDouble(op2) && !isOperandConstantImmediateInt(op2)) { + if (!types.second().definitelyIsNumber()) + linkSlowCase(iter); + } + // There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0. + JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_div); + slowPathCall.call(); } -void JIT::compileFastArithSlow_op_sub(Instruction* currentInstruction, Vector::iterator& iter) + +void JIT::emit_op_sub(Instruction* currentInstruction) { - compileBinaryArithOpSlowCase(op_sub, iter, currentInstruction[1].u.operand, currentInstruction[2].u.operand, currentInstruction[3].u.operand, OperandTypes::fromInt(currentInstruction[4].u.operand)); + int result = currentInstruction[1].u.operand; + int op1 = currentInstruction[2].u.operand; + int op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + + compileBinaryArithOp(op_sub, result, op1, op2, types); + emitPutVirtualRegister(result); } -#endif +void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector::iterator& iter) +{ + int result = currentInstruction[1].u.operand; + int op1 = currentInstruction[2].u.operand; + int op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + + compileBinaryArithOpSlowCase(currentInstruction, op_sub, iter, result, op1, op2, types, false, false); +} + +/* ------------------------------ END: OP_ADD, OP_SUB, OP_MUL ------------------------------ */ + +#endif // USE(JSVALUE64) } // namespace JSC