X-Git-Url: https://git.saurik.com/apple/javascriptcore.git/blobdiff_plain/9bcd318d5fa2a38139c9651d263a06c797529333..ba379fdc102753d6be2c4d937058fe40257329fe:/jit/JITOpcodes.cpp diff --git a/jit/JITOpcodes.cpp b/jit/JITOpcodes.cpp new file mode 100644 index 0000000..85997c2 --- /dev/null +++ b/jit/JITOpcodes.cpp @@ -0,0 +1,3033 @@ +/* + * Copyright (C) 2009 Apple Inc. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY + * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY + * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#include "config.h" +#include "JIT.h" + +#if ENABLE(JIT) + +#include "JITInlineMethods.h" +#include "JITStubCall.h" +#include "JSArray.h" +#include "JSCell.h" +#include "JSFunction.h" +#include "LinkBuffer.h" + +namespace JSC { + +#if USE(JSVALUE32_64) + +void JIT::privateCompileCTIMachineTrampolines(RefPtr* executablePool, JSGlobalData* globalData, CodePtr* ctiStringLengthTrampoline, CodePtr* ctiVirtualCallPreLink, CodePtr* ctiVirtualCallLink, CodePtr* ctiVirtualCall, CodePtr* ctiNativeCallThunk) +{ +#if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS) + // (1) This function provides fast property access for string length + Label stringLengthBegin = align(); + + // regT0 holds payload, regT1 holds tag + + Jump string_failureCases1 = branch32(NotEqual, regT1, Imm32(JSValue::CellTag)); + Jump string_failureCases2 = branchPtr(NotEqual, Address(regT0), ImmPtr(m_globalData->jsStringVPtr)); + + // Checks out okay! - get the length from the Ustring. + loadPtr(Address(regT0, OBJECT_OFFSETOF(JSString, m_value) + OBJECT_OFFSETOF(UString, m_rep)), regT2); + load32(Address(regT2, OBJECT_OFFSETOF(UString::Rep, len)), regT2); + + Jump string_failureCases3 = branch32(Above, regT2, Imm32(INT_MAX)); + move(regT2, regT0); + move(Imm32(JSValue::Int32Tag), regT1); + + ret(); +#endif + + // (2) Trampolines for the slow cases of op_call / op_call_eval / op_construct. + +#if ENABLE(JIT_OPTIMIZE_CALL) + /* VirtualCallPreLink Trampoline */ + Label virtualCallPreLinkBegin = align(); + + // regT0 holds callee, regT1 holds argCount. + loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_body)), regT2); + loadPtr(Address(regT2, OBJECT_OFFSETOF(FunctionBodyNode, m_code)), regT2); + Jump hasCodeBlock1 = branchTestPtr(NonZero, regT2); + + // Lazily generate a CodeBlock. + preserveReturnAddressAfterCall(regT3); // return address + restoreArgumentReference(); + Call callJSFunction1 = call(); + move(regT0, regT2); + emitGetJITStubArg(1, regT0); // callee + emitGetJITStubArg(5, regT1); // argCount + restoreReturnAddressBeforeReturn(regT3); // return address + hasCodeBlock1.link(this); + + // regT2 holds codeBlock. + Jump isNativeFunc1 = branch32(Equal, Address(regT2, OBJECT_OFFSETOF(CodeBlock, m_codeType)), Imm32(NativeCode)); + + // Check argCount matches callee arity. + Jump arityCheckOkay1 = branch32(Equal, Address(regT2, OBJECT_OFFSETOF(CodeBlock, m_numParameters)), regT1); + preserveReturnAddressAfterCall(regT3); + emitPutJITStubArg(regT3, 3); // return address + emitPutJITStubArg(regT2, 7); // codeBlock + restoreArgumentReference(); + Call callArityCheck1 = call(); + move(regT1, callFrameRegister); + emitGetJITStubArg(1, regT0); // callee + emitGetJITStubArg(5, regT1); // argCount + restoreReturnAddressBeforeReturn(regT3); // return address + + arityCheckOkay1.link(this); + isNativeFunc1.link(this); + + compileOpCallInitializeCallFrame(); + + preserveReturnAddressAfterCall(regT3); + emitPutJITStubArg(regT3, 3); + restoreArgumentReference(); + Call callDontLazyLinkCall = call(); + restoreReturnAddressBeforeReturn(regT3); + jump(regT0); + + /* VirtualCallLink Trampoline */ + Label virtualCallLinkBegin = align(); + + // regT0 holds callee, regT1 holds argCount. + loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_body)), regT2); + loadPtr(Address(regT2, OBJECT_OFFSETOF(FunctionBodyNode, m_code)), regT2); + Jump hasCodeBlock2 = branchTestPtr(NonZero, regT2); + + // Lazily generate a CodeBlock. + preserveReturnAddressAfterCall(regT3); // return address + restoreArgumentReference(); + Call callJSFunction2 = call(); + move(regT0, regT2); + emitGetJITStubArg(1, regT0); // callee + emitGetJITStubArg(5, regT1); // argCount + restoreReturnAddressBeforeReturn(regT3); // return address + hasCodeBlock2.link(this); + + // regT2 holds codeBlock. + Jump isNativeFunc2 = branch32(Equal, Address(regT2, OBJECT_OFFSETOF(CodeBlock, m_codeType)), Imm32(NativeCode)); + + // Check argCount matches callee arity. + Jump arityCheckOkay2 = branch32(Equal, Address(regT2, OBJECT_OFFSETOF(CodeBlock, m_numParameters)), regT1); + preserveReturnAddressAfterCall(regT3); + emitPutJITStubArg(regT3, 3); // return address + emitPutJITStubArg(regT2, 7); // codeBlock + restoreArgumentReference(); + Call callArityCheck2 = call(); + move(regT1, callFrameRegister); + emitGetJITStubArg(1, regT0); // callee + emitGetJITStubArg(5, regT1); // argCount + restoreReturnAddressBeforeReturn(regT3); // return address + + arityCheckOkay2.link(this); + isNativeFunc2.link(this); + + compileOpCallInitializeCallFrame(); + + preserveReturnAddressAfterCall(regT3); + emitPutJITStubArg(regT3, 3); + restoreArgumentReference(); + Call callLazyLinkCall = call(); + restoreReturnAddressBeforeReturn(regT3); + jump(regT0); +#endif // ENABLE(JIT_OPTIMIZE_CALL) + + /* VirtualCall Trampoline */ + Label virtualCallBegin = align(); + + // regT0 holds callee, regT1 holds argCount. + loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_body)), regT2); + loadPtr(Address(regT2, OBJECT_OFFSETOF(FunctionBodyNode, m_code)), regT2); + Jump hasCodeBlock3 = branchTestPtr(NonZero, regT2); + + // Lazily generate a CodeBlock. + preserveReturnAddressAfterCall(regT3); // return address + restoreArgumentReference(); + Call callJSFunction3 = call(); + move(regT0, regT2); + emitGetJITStubArg(1, regT0); // callee + emitGetJITStubArg(5, regT1); // argCount + restoreReturnAddressBeforeReturn(regT3); // return address + hasCodeBlock3.link(this); + + // regT2 holds codeBlock. + Jump isNativeFunc3 = branch32(Equal, Address(regT2, OBJECT_OFFSETOF(CodeBlock, m_codeType)), Imm32(NativeCode)); + + // Check argCount matches callee. + Jump arityCheckOkay3 = branch32(Equal, Address(regT2, OBJECT_OFFSETOF(CodeBlock, m_numParameters)), regT1); + preserveReturnAddressAfterCall(regT3); + emitPutJITStubArg(regT3, 3); // return address + emitPutJITStubArg(regT2, 7); // codeBlock + restoreArgumentReference(); + Call callArityCheck3 = call(); + move(regT1, callFrameRegister); + emitGetJITStubArg(1, regT0); // callee + emitGetJITStubArg(5, regT1); // argCount + restoreReturnAddressBeforeReturn(regT3); // return address + + arityCheckOkay3.link(this); + isNativeFunc3.link(this); + compileOpCallInitializeCallFrame(); + loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_body)), regT0); + loadPtr(Address(regT0, OBJECT_OFFSETOF(FunctionBodyNode, m_jitCode)), regT0); + jump(regT0); + +#if PLATFORM(X86) + Label nativeCallThunk = align(); + preserveReturnAddressAfterCall(regT0); + emitPutToCallFrameHeader(regT0, RegisterFile::ReturnPC); // Push return address + + // Load caller frame's scope chain into this callframe so that whatever we call can + // get to its global data. + emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, regT1); + emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1, regT1); + emitPutToCallFrameHeader(regT1, RegisterFile::ScopeChain); + + emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, regT0); + + /* We have two structs that we use to describe the stackframe we set up for our + * call to native code. NativeCallFrameStructure describes the how we set up the stack + * in advance of the call. NativeFunctionCalleeSignature describes the callframe + * as the native code expects it. We do this as we are using the fastcall calling + * convention which results in the callee popping its arguments off the stack, but + * not the rest of the callframe so we need a nice way to ensure we increment the + * stack pointer by the right amount after the call. + */ + +#if COMPILER(MSVC) || PLATFORM(LINUX) +#if COMPILER(MSVC) +#pragma pack(push) +#pragma pack(4) +#endif // COMPILER(MSVC) + struct NativeCallFrameStructure { + // CallFrame* callFrame; // passed in EDX + JSObject* callee; + JSValue thisValue; + ArgList* argPointer; + ArgList args; + JSValue result; + }; + struct NativeFunctionCalleeSignature { + JSObject* callee; + JSValue thisValue; + ArgList* argPointer; + }; +#if COMPILER(MSVC) +#pragma pack(pop) +#endif // COMPILER(MSVC) +#else + struct NativeCallFrameStructure { + // CallFrame* callFrame; // passed in ECX + // JSObject* callee; // passed in EDX + JSValue thisValue; + ArgList* argPointer; + ArgList args; + }; + struct NativeFunctionCalleeSignature { + JSValue thisValue; + ArgList* argPointer; + }; +#endif + + const int NativeCallFrameSize = (sizeof(NativeCallFrameStructure) + 15) & ~15; + // Allocate system stack frame + subPtr(Imm32(NativeCallFrameSize), stackPointerRegister); + + // Set up arguments + subPtr(Imm32(1), regT0); // Don't include 'this' in argcount + + // push argcount + storePtr(regT0, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, args) + OBJECT_OFFSETOF(ArgList, m_argCount))); + + // Calculate the start of the callframe header, and store in regT1 + addPtr(Imm32(-RegisterFile::CallFrameHeaderSize * (int)sizeof(Register)), callFrameRegister, regT1); + + // Calculate start of arguments as callframe header - sizeof(Register) * argcount (regT0) + mul32(Imm32(sizeof(Register)), regT0, regT0); + subPtr(regT0, regT1); + storePtr(regT1, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, args) + OBJECT_OFFSETOF(ArgList, m_args))); + + // ArgList is passed by reference so is stackPointerRegister + 4 * sizeof(Register) + addPtr(Imm32(OBJECT_OFFSETOF(NativeCallFrameStructure, args)), stackPointerRegister, regT0); + storePtr(regT0, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, argPointer))); + + // regT1 currently points to the first argument, regT1 - sizeof(Register) points to 'this' + loadPtr(Address(regT1, -(int)sizeof(Register) + OBJECT_OFFSETOF(JSValue, u.asBits.payload)), regT2); + loadPtr(Address(regT1, -(int)sizeof(Register) + OBJECT_OFFSETOF(JSValue, u.asBits.tag)), regT3); + storePtr(regT2, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, thisValue) + OBJECT_OFFSETOF(JSValue, u.asBits.payload))); + storePtr(regT3, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, thisValue) + OBJECT_OFFSETOF(JSValue, u.asBits.tag))); + +#if COMPILER(MSVC) || PLATFORM(LINUX) + // ArgList is passed by reference so is stackPointerRegister + 4 * sizeof(Register) + addPtr(Imm32(OBJECT_OFFSETOF(NativeCallFrameStructure, result)), stackPointerRegister, X86::ecx); + + // Plant callee + emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, X86::eax); + storePtr(X86::eax, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, callee))); + + // Plant callframe + move(callFrameRegister, X86::edx); + + call(Address(X86::eax, OBJECT_OFFSETOF(JSFunction, m_data))); + + // JSValue is a non-POD type, so eax points to it + emitLoad(0, regT1, regT0, X86::eax); +#else + emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, X86::edx); // callee + move(callFrameRegister, X86::ecx); // callFrame + call(Address(X86::edx, OBJECT_OFFSETOF(JSFunction, m_data))); +#endif + + // We've put a few temporaries on the stack in addition to the actual arguments + // so pull them off now + addPtr(Imm32(NativeCallFrameSize - sizeof(NativeFunctionCalleeSignature)), stackPointerRegister); + + // Check for an exception + // FIXME: Maybe we can optimize this comparison to JSValue(). + move(ImmPtr(&globalData->exception), regT2); + Jump sawException1 = branch32(NotEqual, tagFor(0, regT2), Imm32(JSValue::CellTag)); + Jump sawException2 = branch32(NonZero, payloadFor(0, regT2), Imm32(0)); + + // Grab the return address. + emitGetFromCallFrameHeaderPtr(RegisterFile::ReturnPC, regT3); + + // Restore our caller's "r". + emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, callFrameRegister); + + // Return. + restoreReturnAddressBeforeReturn(regT3); + ret(); + + // Handle an exception + sawException1.link(this); + sawException2.link(this); + // Grab the return address. + emitGetFromCallFrameHeaderPtr(RegisterFile::ReturnPC, regT1); + move(ImmPtr(&globalData->exceptionLocation), regT2); + storePtr(regT1, regT2); + move(ImmPtr(reinterpret_cast(ctiVMThrowTrampoline)), regT2); + emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, callFrameRegister); + poke(callFrameRegister, OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof (void*)); + restoreReturnAddressBeforeReturn(regT2); + ret(); + +#elif ENABLE(JIT_OPTIMIZE_NATIVE_CALL) +#error "JIT_OPTIMIZE_NATIVE_CALL not yet supported on this platform." +#else + breakpoint(); +#endif + +#if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS) + Call string_failureCases1Call = makeTailRecursiveCall(string_failureCases1); + Call string_failureCases2Call = makeTailRecursiveCall(string_failureCases2); + Call string_failureCases3Call = makeTailRecursiveCall(string_failureCases3); +#endif + + // All trampolines constructed! copy the code, link up calls, and set the pointers on the Machine object. + LinkBuffer patchBuffer(this, m_globalData->executableAllocator.poolForSize(m_assembler.size())); + +#if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS) + patchBuffer.link(string_failureCases1Call, FunctionPtr(cti_op_get_by_id_string_fail)); + patchBuffer.link(string_failureCases2Call, FunctionPtr(cti_op_get_by_id_string_fail)); + patchBuffer.link(string_failureCases3Call, FunctionPtr(cti_op_get_by_id_string_fail)); +#endif +#if ENABLE(JIT_OPTIMIZE_CALL) + patchBuffer.link(callArityCheck1, FunctionPtr(cti_op_call_arityCheck)); + patchBuffer.link(callJSFunction1, FunctionPtr(cti_op_call_JSFunction)); + patchBuffer.link(callArityCheck2, FunctionPtr(cti_op_call_arityCheck)); + patchBuffer.link(callJSFunction2, FunctionPtr(cti_op_call_JSFunction)); + patchBuffer.link(callDontLazyLinkCall, FunctionPtr(cti_vm_dontLazyLinkCall)); + patchBuffer.link(callLazyLinkCall, FunctionPtr(cti_vm_lazyLinkCall)); +#endif + patchBuffer.link(callArityCheck3, FunctionPtr(cti_op_call_arityCheck)); + patchBuffer.link(callJSFunction3, FunctionPtr(cti_op_call_JSFunction)); + + CodeRef finalCode = patchBuffer.finalizeCode(); + *executablePool = finalCode.m_executablePool; + + *ctiVirtualCall = trampolineAt(finalCode, virtualCallBegin); + *ctiNativeCallThunk = trampolineAt(finalCode, nativeCallThunk); +#if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS) + *ctiStringLengthTrampoline = trampolineAt(finalCode, stringLengthBegin); +#else + UNUSED_PARAM(ctiStringLengthTrampoline); +#endif +#if ENABLE(JIT_OPTIMIZE_CALL) + *ctiVirtualCallPreLink = trampolineAt(finalCode, virtualCallPreLinkBegin); + *ctiVirtualCallLink = trampolineAt(finalCode, virtualCallLinkBegin); +#else + UNUSED_PARAM(ctiVirtualCallPreLink); + UNUSED_PARAM(ctiVirtualCallLink); +#endif +} + +void JIT::emit_op_mov(Instruction* currentInstruction) +{ + unsigned dst = currentInstruction[1].u.operand; + unsigned src = currentInstruction[2].u.operand; + + if (m_codeBlock->isConstantRegisterIndex(src)) + emitStore(dst, getConstantOperand(src)); + else { + emitLoad(src, regT1, regT0); + emitStore(dst, regT1, regT0); + map(m_bytecodeIndex + OPCODE_LENGTH(op_mov), dst, regT1, regT0); + } +} + +void JIT::emit_op_end(Instruction* currentInstruction) +{ + if (m_codeBlock->needsFullScopeChain()) + JITStubCall(this, cti_op_end).call(); + ASSERT(returnValueRegister != callFrameRegister); + emitLoad(currentInstruction[1].u.operand, regT1, regT0); + restoreReturnAddressBeforeReturn(Address(callFrameRegister, RegisterFile::ReturnPC * static_cast(sizeof(Register)))); + ret(); +} + +void JIT::emit_op_jmp(Instruction* currentInstruction) +{ + unsigned target = currentInstruction[1].u.operand; + addJump(jump(), target + 1); +} + +void JIT::emit_op_loop(Instruction* currentInstruction) +{ + unsigned target = currentInstruction[1].u.operand; + emitTimeoutCheck(); + addJump(jump(), target + 1); +} + +void JIT::emit_op_loop_if_less(Instruction* currentInstruction) +{ + unsigned op1 = currentInstruction[1].u.operand; + unsigned op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emitTimeoutCheck(); + + if (isOperandConstantImmediateInt(op1)) { + emitLoad(op2, regT1, regT0); + addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); + addJump(branch32(GreaterThan, regT0, Imm32(getConstantOperand(op1).asInt32())), target + 3); + return; + } + + if (isOperandConstantImmediateInt(op2)) { + emitLoad(op1, regT1, regT0); + addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); + addJump(branch32(LessThan, regT0, Imm32(getConstantOperand(op2).asInt32())), target + 3); + return; + } + + emitLoad2(op1, regT1, regT0, op2, regT3, regT2); + addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); + addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); + addJump(branch32(LessThan, regT0, regT2), target + 3); +} + +void JIT::emitSlow_op_loop_if_less(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned op1 = currentInstruction[1].u.operand; + unsigned op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) + linkSlowCase(iter); // int32 check + linkSlowCase(iter); // int32 check + + JITStubCall stubCall(this, cti_op_loop_if_less); + stubCall.addArgument(op1); + stubCall.addArgument(op2); + stubCall.call(); + emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 3); +} + +void JIT::emit_op_loop_if_lesseq(Instruction* currentInstruction) +{ + unsigned op1 = currentInstruction[1].u.operand; + unsigned op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emitTimeoutCheck(); + + if (isOperandConstantImmediateInt(op1)) { + emitLoad(op2, regT1, regT0); + addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); + addJump(branch32(GreaterThanOrEqual, regT0, Imm32(getConstantOperand(op1).asInt32())), target + 3); + return; + } + + if (isOperandConstantImmediateInt(op2)) { + emitLoad(op1, regT1, regT0); + addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); + addJump(branch32(LessThanOrEqual, regT0, Imm32(getConstantOperand(op2).asInt32())), target + 3); + return; + } + + emitLoad2(op1, regT1, regT0, op2, regT3, regT2); + addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); + addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); + addJump(branch32(LessThanOrEqual, regT0, regT2), target + 3); +} + +void JIT::emitSlow_op_loop_if_lesseq(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned op1 = currentInstruction[1].u.operand; + unsigned op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) + linkSlowCase(iter); // int32 check + linkSlowCase(iter); // int32 check + + JITStubCall stubCall(this, cti_op_loop_if_lesseq); + stubCall.addArgument(op1); + stubCall.addArgument(op2); + stubCall.call(); + emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 3); +} + +void JIT::emit_op_new_object(Instruction* currentInstruction) +{ + JITStubCall(this, cti_op_new_object).call(currentInstruction[1].u.operand); +} + +void JIT::emit_op_instanceof(Instruction* currentInstruction) +{ + unsigned dst = currentInstruction[1].u.operand; + unsigned value = currentInstruction[2].u.operand; + unsigned baseVal = currentInstruction[3].u.operand; + unsigned proto = currentInstruction[4].u.operand; + + // Load the operands (baseVal, proto, and value respectively) into registers. + // We use regT0 for baseVal since we will be done with this first, and we can then use it for the result. + emitLoadPayload(proto, regT1); + emitLoadPayload(baseVal, regT0); + emitLoadPayload(value, regT2); + + // Check that baseVal & proto are cells. + emitJumpSlowCaseIfNotJSCell(proto); + emitJumpSlowCaseIfNotJSCell(baseVal); + + // Check that baseVal is an object, that it 'ImplementsHasInstance' but that it does not 'OverridesHasInstance'. + loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT0); + addSlowCase(branch32(NotEqual, Address(regT0, OBJECT_OFFSETOF(Structure, m_typeInfo.m_type)), Imm32(ObjectType))); // FIXME: Maybe remove this test. + addSlowCase(branchTest32(Zero, Address(regT0, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(ImplementsHasInstance))); // FIXME: TOT checks ImplementsDefaultHasInstance. + + // If value is not an Object, return false. + emitLoadTag(value, regT0); + Jump valueIsImmediate = branch32(NotEqual, regT0, Imm32(JSValue::CellTag)); + loadPtr(Address(regT2, OBJECT_OFFSETOF(JSCell, m_structure)), regT0); + Jump valueIsNotObject = branch32(NotEqual, Address(regT0, OBJECT_OFFSETOF(Structure, m_typeInfo.m_type)), Imm32(ObjectType)); // FIXME: Maybe remove this test. + + // Check proto is object. + loadPtr(Address(regT1, OBJECT_OFFSETOF(JSCell, m_structure)), regT0); + addSlowCase(branch32(NotEqual, Address(regT0, OBJECT_OFFSETOF(Structure, m_typeInfo.m_type)), Imm32(ObjectType))); + + // Optimistically load the result true, and start looping. + // Initially, regT1 still contains proto and regT2 still contains value. + // As we loop regT2 will be updated with its prototype, recursively walking the prototype chain. + move(Imm32(JSValue::TrueTag), regT0); + Label loop(this); + + // Load the prototype of the object in regT2. If this is equal to regT1 - WIN! + // Otherwise, check if we've hit null - if we have then drop out of the loop, if not go again. + loadPtr(Address(regT2, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); + load32(Address(regT2, OBJECT_OFFSETOF(Structure, m_prototype) + OBJECT_OFFSETOF(JSValue, u.asBits.payload)), regT2); + Jump isInstance = branchPtr(Equal, regT2, regT1); + branch32(NotEqual, regT2, Imm32(0), loop); + + // We get here either by dropping out of the loop, or if value was not an Object. Result is false. + valueIsImmediate.link(this); + valueIsNotObject.link(this); + move(Imm32(JSValue::FalseTag), regT0); + + // isInstance jumps right down to here, to skip setting the result to false (it has already set true). + isInstance.link(this); + emitStoreBool(dst, regT0); +} + +void JIT::emitSlow_op_instanceof(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned dst = currentInstruction[1].u.operand; + unsigned value = currentInstruction[2].u.operand; + unsigned baseVal = currentInstruction[3].u.operand; + unsigned proto = currentInstruction[4].u.operand; + + linkSlowCaseIfNotJSCell(iter, baseVal); + linkSlowCaseIfNotJSCell(iter, proto); + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); + + JITStubCall stubCall(this, cti_op_instanceof); + stubCall.addArgument(value); + stubCall.addArgument(baseVal); + stubCall.addArgument(proto); + stubCall.call(dst); +} + +void JIT::emit_op_new_func(Instruction* currentInstruction) +{ + JITStubCall stubCall(this, cti_op_new_func); + stubCall.addArgument(ImmPtr(m_codeBlock->function(currentInstruction[2].u.operand))); + stubCall.call(currentInstruction[1].u.operand); +} + +void JIT::emit_op_get_global_var(Instruction* currentInstruction) +{ + int dst = currentInstruction[1].u.operand; + JSGlobalObject* globalObject = static_cast(currentInstruction[2].u.jsCell); + ASSERT(globalObject->isGlobalObject()); + int index = currentInstruction[3].u.operand; + + loadPtr(&globalObject->d()->registers, regT2); + + emitLoad(index, regT1, regT0, regT2); + emitStore(dst, regT1, regT0); + map(m_bytecodeIndex + OPCODE_LENGTH(op_get_global_var), dst, regT1, regT0); +} + +void JIT::emit_op_put_global_var(Instruction* currentInstruction) +{ + JSGlobalObject* globalObject = static_cast(currentInstruction[1].u.jsCell); + ASSERT(globalObject->isGlobalObject()); + int index = currentInstruction[2].u.operand; + int value = currentInstruction[3].u.operand; + + emitLoad(value, regT1, regT0); + + loadPtr(&globalObject->d()->registers, regT2); + emitStore(index, regT1, regT0, regT2); + map(m_bytecodeIndex + OPCODE_LENGTH(op_put_global_var), value, regT1, regT0); +} + +void JIT::emit_op_get_scoped_var(Instruction* currentInstruction) +{ + int dst = currentInstruction[1].u.operand; + int index = currentInstruction[2].u.operand; + int skip = currentInstruction[3].u.operand + m_codeBlock->needsFullScopeChain(); + + emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT2); + while (skip--) + loadPtr(Address(regT2, OBJECT_OFFSETOF(ScopeChainNode, next)), regT2); + + loadPtr(Address(regT2, OBJECT_OFFSETOF(ScopeChainNode, object)), regT2); + loadPtr(Address(regT2, OBJECT_OFFSETOF(JSVariableObject, d)), regT2); + loadPtr(Address(regT2, OBJECT_OFFSETOF(JSVariableObject::JSVariableObjectData, registers)), regT2); + + emitLoad(index, regT1, regT0, regT2); + emitStore(dst, regT1, regT0); + map(m_bytecodeIndex + OPCODE_LENGTH(op_get_scoped_var), dst, regT1, regT0); +} + +void JIT::emit_op_put_scoped_var(Instruction* currentInstruction) +{ + int index = currentInstruction[1].u.operand; + int skip = currentInstruction[2].u.operand + m_codeBlock->needsFullScopeChain(); + int value = currentInstruction[3].u.operand; + + emitLoad(value, regT1, regT0); + + emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT2); + while (skip--) + loadPtr(Address(regT2, OBJECT_OFFSETOF(ScopeChainNode, next)), regT2); + + loadPtr(Address(regT2, OBJECT_OFFSETOF(ScopeChainNode, object)), regT2); + loadPtr(Address(regT2, OBJECT_OFFSETOF(JSVariableObject, d)), regT2); + loadPtr(Address(regT2, OBJECT_OFFSETOF(JSVariableObject::JSVariableObjectData, registers)), regT2); + + emitStore(index, regT1, regT0, regT2); + map(m_bytecodeIndex + OPCODE_LENGTH(op_put_scoped_var), value, regT1, regT0); +} + +void JIT::emit_op_tear_off_activation(Instruction* currentInstruction) +{ + JITStubCall stubCall(this, cti_op_tear_off_activation); + stubCall.addArgument(currentInstruction[1].u.operand); + stubCall.call(); +} + +void JIT::emit_op_tear_off_arguments(Instruction*) +{ + JITStubCall(this, cti_op_tear_off_arguments).call(); +} + +void JIT::emit_op_new_array(Instruction* currentInstruction) +{ + JITStubCall stubCall(this, cti_op_new_array); + stubCall.addArgument(Imm32(currentInstruction[2].u.operand)); + stubCall.addArgument(Imm32(currentInstruction[3].u.operand)); + stubCall.call(currentInstruction[1].u.operand); +} + +void JIT::emit_op_resolve(Instruction* currentInstruction) +{ + JITStubCall stubCall(this, cti_op_resolve); + stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); + stubCall.call(currentInstruction[1].u.operand); +} + +void JIT::emit_op_to_primitive(Instruction* currentInstruction) +{ + int dst = currentInstruction[1].u.operand; + int src = currentInstruction[2].u.operand; + + emitLoad(src, regT1, regT0); + + Jump isImm = branch32(NotEqual, regT1, Imm32(JSValue::CellTag)); + addSlowCase(branchPtr(NotEqual, Address(regT0), ImmPtr(m_globalData->jsStringVPtr))); + isImm.link(this); + + if (dst != src) + emitStore(dst, regT1, regT0); + map(m_bytecodeIndex + OPCODE_LENGTH(op_to_primitive), dst, regT1, regT0); +} + +void JIT::emitSlow_op_to_primitive(Instruction* currentInstruction, Vector::iterator& iter) +{ + int dst = currentInstruction[1].u.operand; + + linkSlowCase(iter); + + JITStubCall stubCall(this, cti_op_to_primitive); + stubCall.addArgument(regT1, regT0); + stubCall.call(dst); +} + +void JIT::emit_op_strcat(Instruction* currentInstruction) +{ + JITStubCall stubCall(this, cti_op_strcat); + stubCall.addArgument(Imm32(currentInstruction[2].u.operand)); + stubCall.addArgument(Imm32(currentInstruction[3].u.operand)); + stubCall.call(currentInstruction[1].u.operand); +} + +void JIT::emit_op_loop_if_true(Instruction* currentInstruction) +{ + unsigned cond = currentInstruction[1].u.operand; + unsigned target = currentInstruction[2].u.operand; + + emitTimeoutCheck(); + + emitLoad(cond, regT1, regT0); + + Jump isNotInteger = branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)); + addJump(branch32(NotEqual, regT0, Imm32(0)), target + 2); + Jump isNotZero = jump(); + + isNotInteger.link(this); + + addJump(branch32(Equal, regT1, Imm32(JSValue::TrueTag)), target + 2); + addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::FalseTag))); + + isNotZero.link(this); +} + +void JIT::emitSlow_op_loop_if_true(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned cond = currentInstruction[1].u.operand; + unsigned target = currentInstruction[2].u.operand; + + linkSlowCase(iter); + + JITStubCall stubCall(this, cti_op_jtrue); + stubCall.addArgument(cond); + stubCall.call(); + emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 2); +} + +void JIT::emit_op_resolve_base(Instruction* currentInstruction) +{ + JITStubCall stubCall(this, cti_op_resolve_base); + stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); + stubCall.call(currentInstruction[1].u.operand); +} + +void JIT::emit_op_resolve_skip(Instruction* currentInstruction) +{ + JITStubCall stubCall(this, cti_op_resolve_skip); + stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); + stubCall.addArgument(Imm32(currentInstruction[3].u.operand + m_codeBlock->needsFullScopeChain())); + stubCall.call(currentInstruction[1].u.operand); +} + +void JIT::emit_op_resolve_global(Instruction* currentInstruction) +{ + // FIXME: Optimize to use patching instead of so many memory accesses. + + unsigned dst = currentInstruction[1].u.operand; + void* globalObject = currentInstruction[2].u.jsCell; + + unsigned currentIndex = m_globalResolveInfoIndex++; + void* structureAddress = &(m_codeBlock->globalResolveInfo(currentIndex).structure); + void* offsetAddr = &(m_codeBlock->globalResolveInfo(currentIndex).offset); + + // Verify structure. + move(ImmPtr(globalObject), regT0); + loadPtr(structureAddress, regT1); + addSlowCase(branchPtr(NotEqual, regT1, Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)))); + + // Load property. + loadPtr(Address(regT0, OBJECT_OFFSETOF(JSGlobalObject, m_externalStorage)), regT2); + load32(offsetAddr, regT3); + load32(BaseIndex(regT2, regT3, TimesEight), regT0); // payload + load32(BaseIndex(regT2, regT3, TimesEight, 4), regT1); // tag + emitStore(dst, regT1, regT0); + map(m_bytecodeIndex + OPCODE_LENGTH(op_resolve_global), dst, regT1, regT0); +} + +void JIT::emitSlow_op_resolve_global(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned dst = currentInstruction[1].u.operand; + void* globalObject = currentInstruction[2].u.jsCell; + Identifier* ident = &m_codeBlock->identifier(currentInstruction[3].u.operand); + + unsigned currentIndex = m_globalResolveInfoIndex++; + + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_resolve_global); + stubCall.addArgument(ImmPtr(globalObject)); + stubCall.addArgument(ImmPtr(ident)); + stubCall.addArgument(Imm32(currentIndex)); + stubCall.call(dst); +} + +void JIT::emit_op_not(Instruction* currentInstruction) +{ + unsigned dst = currentInstruction[1].u.operand; + unsigned src = currentInstruction[2].u.operand; + + emitLoadTag(src, regT0); + + xor32(Imm32(JSValue::FalseTag), regT0); + addSlowCase(branchTest32(NonZero, regT0, Imm32(~1))); + xor32(Imm32(JSValue::TrueTag), regT0); + + emitStoreBool(dst, regT0, (dst == src)); +} + +void JIT::emitSlow_op_not(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned dst = currentInstruction[1].u.operand; + unsigned src = currentInstruction[2].u.operand; + + linkSlowCase(iter); + + JITStubCall stubCall(this, cti_op_not); + stubCall.addArgument(src); + stubCall.call(dst); +} + +void JIT::emit_op_jfalse(Instruction* currentInstruction) +{ + unsigned cond = currentInstruction[1].u.operand; + unsigned target = currentInstruction[2].u.operand; + + emitLoad(cond, regT1, regT0); + + Jump isTrue = branch32(Equal, regT1, Imm32(JSValue::TrueTag)); + addJump(branch32(Equal, regT1, Imm32(JSValue::FalseTag)), target + 2); + + Jump isNotInteger = branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)); + Jump isTrue2 = branch32(NotEqual, regT0, Imm32(0)); + addJump(jump(), target + 2); + + if (supportsFloatingPoint()) { + isNotInteger.link(this); + + addSlowCase(branch32(Above, regT1, Imm32(JSValue::LowestTag))); + + zeroDouble(fpRegT0); + emitLoadDouble(cond, fpRegT1); + addJump(branchDouble(DoubleEqual, fpRegT0, fpRegT1), target + 2); + } else + addSlowCase(isNotInteger); + + isTrue.link(this); + isTrue2.link(this); +} + +void JIT::emitSlow_op_jfalse(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned cond = currentInstruction[1].u.operand; + unsigned target = currentInstruction[2].u.operand; + + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_jtrue); + stubCall.addArgument(cond); + stubCall.call(); + emitJumpSlowToHot(branchTest32(Zero, regT0), target + 2); // Inverted. +} + +void JIT::emit_op_jtrue(Instruction* currentInstruction) +{ + unsigned cond = currentInstruction[1].u.operand; + unsigned target = currentInstruction[2].u.operand; + + emitLoad(cond, regT1, regT0); + + Jump isFalse = branch32(Equal, regT1, Imm32(JSValue::FalseTag)); + addJump(branch32(Equal, regT1, Imm32(JSValue::TrueTag)), target + 2); + + Jump isNotInteger = branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)); + Jump isFalse2 = branch32(Equal, regT0, Imm32(0)); + addJump(jump(), target + 2); + + if (supportsFloatingPoint()) { + isNotInteger.link(this); + + addSlowCase(branch32(Above, regT1, Imm32(JSValue::LowestTag))); + + zeroDouble(fpRegT0); + emitLoadDouble(cond, fpRegT1); + addJump(branchDouble(DoubleNotEqual, fpRegT0, fpRegT1), target + 2); + } else + addSlowCase(isNotInteger); + + isFalse.link(this); + isFalse2.link(this); +} + +void JIT::emitSlow_op_jtrue(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned cond = currentInstruction[1].u.operand; + unsigned target = currentInstruction[2].u.operand; + + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_jtrue); + stubCall.addArgument(cond); + stubCall.call(); + emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 2); +} + +void JIT::emit_op_jeq_null(Instruction* currentInstruction) +{ + unsigned src = currentInstruction[1].u.operand; + unsigned target = currentInstruction[2].u.operand; + + emitLoad(src, regT1, regT0); + + Jump isImmediate = branch32(NotEqual, regT1, Imm32(JSValue::CellTag)); + + // First, handle JSCell cases - check MasqueradesAsUndefined bit on the structure. + loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); + addJump(branchTest32(NonZero, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined)), target + 2); + + Jump wasNotImmediate = jump(); + + // Now handle the immediate cases - undefined & null + isImmediate.link(this); + + set32(Equal, regT1, Imm32(JSValue::NullTag), regT2); + set32(Equal, regT1, Imm32(JSValue::UndefinedTag), regT1); + or32(regT2, regT1); + + addJump(branchTest32(NonZero, regT1), target + 2); + + wasNotImmediate.link(this); +} + +void JIT::emit_op_jneq_null(Instruction* currentInstruction) +{ + unsigned src = currentInstruction[1].u.operand; + unsigned target = currentInstruction[2].u.operand; + + emitLoad(src, regT1, regT0); + + Jump isImmediate = branch32(NotEqual, regT1, Imm32(JSValue::CellTag)); + + // First, handle JSCell cases - check MasqueradesAsUndefined bit on the structure. + loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); + addJump(branchTest32(Zero, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined)), target + 2); + + Jump wasNotImmediate = jump(); + + // Now handle the immediate cases - undefined & null + isImmediate.link(this); + + set32(Equal, regT1, Imm32(JSValue::NullTag), regT2); + set32(Equal, regT1, Imm32(JSValue::UndefinedTag), regT1); + or32(regT2, regT1); + + addJump(branchTest32(Zero, regT1), target + 2); + + wasNotImmediate.link(this); +} + +void JIT::emit_op_jneq_ptr(Instruction* currentInstruction) +{ + unsigned src = currentInstruction[1].u.operand; + JSCell* ptr = currentInstruction[2].u.jsCell; + unsigned target = currentInstruction[3].u.operand; + + emitLoad(src, regT1, regT0); + addJump(branch32(NotEqual, regT1, Imm32(JSValue::CellTag)), target + 3); + addJump(branchPtr(NotEqual, regT0, ImmPtr(ptr)), target + 3); +} + +void JIT::emit_op_jsr(Instruction* currentInstruction) +{ + int retAddrDst = currentInstruction[1].u.operand; + int target = currentInstruction[2].u.operand; + DataLabelPtr storeLocation = storePtrWithPatch(ImmPtr(0), Address(callFrameRegister, sizeof(Register) * retAddrDst)); + addJump(jump(), target + 2); + m_jsrSites.append(JSRInfo(storeLocation, label())); +} + +void JIT::emit_op_sret(Instruction* currentInstruction) +{ + jump(Address(callFrameRegister, sizeof(Register) * currentInstruction[1].u.operand)); +} + +void JIT::emit_op_eq(Instruction* currentInstruction) +{ + unsigned dst = currentInstruction[1].u.operand; + unsigned src1 = currentInstruction[2].u.operand; + unsigned src2 = currentInstruction[3].u.operand; + + emitLoad2(src1, regT1, regT0, src2, regT3, regT2); + addSlowCase(branch32(NotEqual, regT1, regT3)); + addSlowCase(branch32(Equal, regT1, Imm32(JSValue::CellTag))); + addSlowCase(branch32(Below, regT1, Imm32(JSValue::LowestTag))); + + set8(Equal, regT0, regT2, regT0); + or32(Imm32(JSValue::FalseTag), regT0); + + emitStoreBool(dst, regT0); +} + +void JIT::emitSlow_op_eq(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned dst = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + + JumpList storeResult; + JumpList genericCase; + + genericCase.append(getSlowCase(iter)); // tags not equal + + linkSlowCase(iter); // tags equal and JSCell + genericCase.append(branchPtr(NotEqual, Address(regT0), ImmPtr(m_globalData->jsStringVPtr))); + genericCase.append(branchPtr(NotEqual, Address(regT2), ImmPtr(m_globalData->jsStringVPtr))); + + // String case. + JITStubCall stubCallEqStrings(this, cti_op_eq_strings); + stubCallEqStrings.addArgument(regT0); + stubCallEqStrings.addArgument(regT2); + stubCallEqStrings.call(); + storeResult.append(jump()); + + // Generic case. + genericCase.append(getSlowCase(iter)); // doubles + genericCase.link(this); + JITStubCall stubCallEq(this, cti_op_eq); + stubCallEq.addArgument(op1); + stubCallEq.addArgument(op2); + stubCallEq.call(regT0); + + storeResult.link(this); + or32(Imm32(JSValue::FalseTag), regT0); + emitStoreBool(dst, regT0); +} + +void JIT::emit_op_neq(Instruction* currentInstruction) +{ + unsigned dst = currentInstruction[1].u.operand; + unsigned src1 = currentInstruction[2].u.operand; + unsigned src2 = currentInstruction[3].u.operand; + + emitLoad2(src1, regT1, regT0, src2, regT3, regT2); + addSlowCase(branch32(NotEqual, regT1, regT3)); + addSlowCase(branch32(Equal, regT1, Imm32(JSValue::CellTag))); + addSlowCase(branch32(Below, regT1, Imm32(JSValue::LowestTag))); + + set8(NotEqual, regT0, regT2, regT0); + or32(Imm32(JSValue::FalseTag), regT0); + + emitStoreBool(dst, regT0); +} + +void JIT::emitSlow_op_neq(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned dst = currentInstruction[1].u.operand; + + JumpList storeResult; + JumpList genericCase; + + genericCase.append(getSlowCase(iter)); // tags not equal + + linkSlowCase(iter); // tags equal and JSCell + genericCase.append(branchPtr(NotEqual, Address(regT0), ImmPtr(m_globalData->jsStringVPtr))); + genericCase.append(branchPtr(NotEqual, Address(regT2), ImmPtr(m_globalData->jsStringVPtr))); + + // String case. + JITStubCall stubCallEqStrings(this, cti_op_eq_strings); + stubCallEqStrings.addArgument(regT0); + stubCallEqStrings.addArgument(regT2); + stubCallEqStrings.call(regT0); + storeResult.append(jump()); + + // Generic case. + genericCase.append(getSlowCase(iter)); // doubles + genericCase.link(this); + JITStubCall stubCallEq(this, cti_op_eq); + stubCallEq.addArgument(regT1, regT0); + stubCallEq.addArgument(regT3, regT2); + stubCallEq.call(regT0); + + storeResult.link(this); + xor32(Imm32(0x1), regT0); + or32(Imm32(JSValue::FalseTag), regT0); + emitStoreBool(dst, regT0); +} + +void JIT::compileOpStrictEq(Instruction* currentInstruction, CompileOpStrictEqType type) +{ + unsigned dst = currentInstruction[1].u.operand; + unsigned src1 = currentInstruction[2].u.operand; + unsigned src2 = currentInstruction[3].u.operand; + + emitLoadTag(src1, regT0); + emitLoadTag(src2, regT1); + + // Jump to a slow case if either operand is double, or if both operands are + // cells and/or Int32s. + move(regT0, regT2); + and32(regT1, regT2); + addSlowCase(branch32(Below, regT2, Imm32(JSValue::LowestTag))); + addSlowCase(branch32(AboveOrEqual, regT2, Imm32(JSValue::CellTag))); + + if (type == OpStrictEq) + set8(Equal, regT0, regT1, regT0); + else + set8(NotEqual, regT0, regT1, regT0); + + or32(Imm32(JSValue::FalseTag), regT0); + + emitStoreBool(dst, regT0); +} + +void JIT::emit_op_stricteq(Instruction* currentInstruction) +{ + compileOpStrictEq(currentInstruction, OpStrictEq); +} + +void JIT::emitSlow_op_stricteq(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned dst = currentInstruction[1].u.operand; + unsigned src1 = currentInstruction[2].u.operand; + unsigned src2 = currentInstruction[3].u.operand; + + linkSlowCase(iter); + linkSlowCase(iter); + + JITStubCall stubCall(this, cti_op_stricteq); + stubCall.addArgument(src1); + stubCall.addArgument(src2); + stubCall.call(dst); +} + +void JIT::emit_op_nstricteq(Instruction* currentInstruction) +{ + compileOpStrictEq(currentInstruction, OpNStrictEq); +} + +void JIT::emitSlow_op_nstricteq(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned dst = currentInstruction[1].u.operand; + unsigned src1 = currentInstruction[2].u.operand; + unsigned src2 = currentInstruction[3].u.operand; + + linkSlowCase(iter); + linkSlowCase(iter); + + JITStubCall stubCall(this, cti_op_nstricteq); + stubCall.addArgument(src1); + stubCall.addArgument(src2); + stubCall.call(dst); +} + +void JIT::emit_op_eq_null(Instruction* currentInstruction) +{ + unsigned dst = currentInstruction[1].u.operand; + unsigned src = currentInstruction[2].u.operand; + + emitLoad(src, regT1, regT0); + Jump isImmediate = branch32(NotEqual, regT1, Imm32(JSValue::CellTag)); + + loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT1); + setTest8(NonZero, Address(regT1, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined), regT1); + + Jump wasNotImmediate = jump(); + + isImmediate.link(this); + + set8(Equal, regT1, Imm32(JSValue::NullTag), regT2); + set8(Equal, regT1, Imm32(JSValue::UndefinedTag), regT1); + or32(regT2, regT1); + + wasNotImmediate.link(this); + + or32(Imm32(JSValue::FalseTag), regT1); + + emitStoreBool(dst, regT1); +} + +void JIT::emit_op_neq_null(Instruction* currentInstruction) +{ + unsigned dst = currentInstruction[1].u.operand; + unsigned src = currentInstruction[2].u.operand; + + emitLoad(src, regT1, regT0); + Jump isImmediate = branch32(NotEqual, regT1, Imm32(JSValue::CellTag)); + + loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT1); + setTest8(Zero, Address(regT1, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined), regT1); + + Jump wasNotImmediate = jump(); + + isImmediate.link(this); + + set8(NotEqual, regT1, Imm32(JSValue::NullTag), regT2); + set8(NotEqual, regT1, Imm32(JSValue::UndefinedTag), regT1); + and32(regT2, regT1); + + wasNotImmediate.link(this); + + or32(Imm32(JSValue::FalseTag), regT1); + + emitStoreBool(dst, regT1); +} + +void JIT::emit_op_resolve_with_base(Instruction* currentInstruction) +{ + JITStubCall stubCall(this, cti_op_resolve_with_base); + stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[3].u.operand))); + stubCall.addArgument(Imm32(currentInstruction[1].u.operand)); + stubCall.call(currentInstruction[2].u.operand); +} + +void JIT::emit_op_new_func_exp(Instruction* currentInstruction) +{ + JITStubCall stubCall(this, cti_op_new_func_exp); + stubCall.addArgument(ImmPtr(m_codeBlock->functionExpression(currentInstruction[2].u.operand))); + stubCall.call(currentInstruction[1].u.operand); +} + +void JIT::emit_op_new_regexp(Instruction* currentInstruction) +{ + JITStubCall stubCall(this, cti_op_new_regexp); + stubCall.addArgument(ImmPtr(m_codeBlock->regexp(currentInstruction[2].u.operand))); + stubCall.call(currentInstruction[1].u.operand); +} + +void JIT::emit_op_throw(Instruction* currentInstruction) +{ + unsigned exception = currentInstruction[1].u.operand; + JITStubCall stubCall(this, cti_op_throw); + stubCall.addArgument(exception); + stubCall.call(); + +#ifndef NDEBUG + // cti_op_throw always changes it's return address, + // this point in the code should never be reached. + breakpoint(); +#endif +} + +void JIT::emit_op_next_pname(Instruction* currentInstruction) +{ + int dst = currentInstruction[1].u.operand; + int iter = currentInstruction[2].u.operand; + int target = currentInstruction[3].u.operand; + + load32(Address(callFrameRegister, (iter * sizeof(Register))), regT0); + + JITStubCall stubCall(this, cti_op_next_pname); + stubCall.addArgument(regT0); + stubCall.call(); + + Jump endOfIter = branchTestPtr(Zero, regT0); + emitStore(dst, regT1, regT0); + map(m_bytecodeIndex + OPCODE_LENGTH(op_next_pname), dst, regT1, regT0); + addJump(jump(), target + 3); + endOfIter.link(this); +} + +void JIT::emit_op_push_scope(Instruction* currentInstruction) +{ + JITStubCall stubCall(this, cti_op_push_scope); + stubCall.addArgument(currentInstruction[1].u.operand); + stubCall.call(currentInstruction[1].u.operand); +} + +void JIT::emit_op_pop_scope(Instruction*) +{ + JITStubCall(this, cti_op_pop_scope).call(); +} + +void JIT::emit_op_to_jsnumber(Instruction* currentInstruction) +{ + int dst = currentInstruction[1].u.operand; + int src = currentInstruction[2].u.operand; + + emitLoad(src, regT1, regT0); + + Jump isInt32 = branch32(Equal, regT1, Imm32(JSValue::Int32Tag)); + addSlowCase(branch32(AboveOrEqual, regT1, Imm32(JSValue::DeletedValueTag))); + isInt32.link(this); + + if (src != dst) + emitStore(dst, regT1, regT0); + map(m_bytecodeIndex + OPCODE_LENGTH(op_to_jsnumber), dst, regT1, regT0); +} + +void JIT::emitSlow_op_to_jsnumber(Instruction* currentInstruction, Vector::iterator& iter) +{ + int dst = currentInstruction[1].u.operand; + + linkSlowCase(iter); + + JITStubCall stubCall(this, cti_op_to_jsnumber); + stubCall.addArgument(regT1, regT0); + stubCall.call(dst); +} + +void JIT::emit_op_push_new_scope(Instruction* currentInstruction) +{ + JITStubCall stubCall(this, cti_op_push_new_scope); + stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); + stubCall.addArgument(currentInstruction[3].u.operand); + stubCall.call(currentInstruction[1].u.operand); +} + +void JIT::emit_op_catch(Instruction* currentInstruction) +{ + unsigned exception = currentInstruction[1].u.operand; + + // This opcode only executes after a return from cti_op_throw. + + // cti_op_throw may have taken us to a call frame further up the stack; reload + // the call frame pointer to adjust. + peek(callFrameRegister, OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof (void*)); + + // Now store the exception returned by cti_op_throw. + emitStore(exception, regT1, regT0); + map(m_bytecodeIndex + OPCODE_LENGTH(op_catch), exception, regT1, regT0); +} + +void JIT::emit_op_jmp_scopes(Instruction* currentInstruction) +{ + JITStubCall stubCall(this, cti_op_jmp_scopes); + stubCall.addArgument(Imm32(currentInstruction[1].u.operand)); + stubCall.call(); + addJump(jump(), currentInstruction[2].u.operand + 2); +} + +void JIT::emit_op_switch_imm(Instruction* currentInstruction) +{ + unsigned tableIndex = currentInstruction[1].u.operand; + unsigned defaultOffset = currentInstruction[2].u.operand; + unsigned scrutinee = currentInstruction[3].u.operand; + + // create jump table for switch destinations, track this switch statement. + SimpleJumpTable* jumpTable = &m_codeBlock->immediateSwitchJumpTable(tableIndex); + m_switches.append(SwitchRecord(jumpTable, m_bytecodeIndex, defaultOffset, SwitchRecord::Immediate)); + jumpTable->ctiOffsets.grow(jumpTable->branchOffsets.size()); + + JITStubCall stubCall(this, cti_op_switch_imm); + stubCall.addArgument(scrutinee); + stubCall.addArgument(Imm32(tableIndex)); + stubCall.call(); + jump(regT0); +} + +void JIT::emit_op_switch_char(Instruction* currentInstruction) +{ + unsigned tableIndex = currentInstruction[1].u.operand; + unsigned defaultOffset = currentInstruction[2].u.operand; + unsigned scrutinee = currentInstruction[3].u.operand; + + // create jump table for switch destinations, track this switch statement. + SimpleJumpTable* jumpTable = &m_codeBlock->characterSwitchJumpTable(tableIndex); + m_switches.append(SwitchRecord(jumpTable, m_bytecodeIndex, defaultOffset, SwitchRecord::Character)); + jumpTable->ctiOffsets.grow(jumpTable->branchOffsets.size()); + + JITStubCall stubCall(this, cti_op_switch_char); + stubCall.addArgument(scrutinee); + stubCall.addArgument(Imm32(tableIndex)); + stubCall.call(); + jump(regT0); +} + +void JIT::emit_op_switch_string(Instruction* currentInstruction) +{ + unsigned tableIndex = currentInstruction[1].u.operand; + unsigned defaultOffset = currentInstruction[2].u.operand; + unsigned scrutinee = currentInstruction[3].u.operand; + + // create jump table for switch destinations, track this switch statement. + StringJumpTable* jumpTable = &m_codeBlock->stringSwitchJumpTable(tableIndex); + m_switches.append(SwitchRecord(jumpTable, m_bytecodeIndex, defaultOffset)); + + JITStubCall stubCall(this, cti_op_switch_string); + stubCall.addArgument(scrutinee); + stubCall.addArgument(Imm32(tableIndex)); + stubCall.call(); + jump(regT0); +} + +void JIT::emit_op_new_error(Instruction* currentInstruction) +{ + unsigned dst = currentInstruction[1].u.operand; + unsigned type = currentInstruction[2].u.operand; + unsigned message = currentInstruction[3].u.operand; + + JITStubCall stubCall(this, cti_op_new_error); + stubCall.addArgument(Imm32(type)); + stubCall.addArgument(m_codeBlock->getConstant(message)); + stubCall.addArgument(Imm32(m_bytecodeIndex)); + stubCall.call(dst); +} + +void JIT::emit_op_debug(Instruction* currentInstruction) +{ + JITStubCall stubCall(this, cti_op_debug); + stubCall.addArgument(Imm32(currentInstruction[1].u.operand)); + stubCall.addArgument(Imm32(currentInstruction[2].u.operand)); + stubCall.addArgument(Imm32(currentInstruction[3].u.operand)); + stubCall.call(); +} + + +void JIT::emit_op_enter(Instruction*) +{ + // Even though JIT code doesn't use them, we initialize our constant + // registers to zap stale pointers, to avoid unnecessarily prolonging + // object lifetime and increasing GC pressure. + for (int i = 0; i < m_codeBlock->m_numVars; ++i) + emitStore(i, jsUndefined()); +} + +void JIT::emit_op_enter_with_activation(Instruction* currentInstruction) +{ + emit_op_enter(currentInstruction); + + JITStubCall(this, cti_op_push_activation).call(currentInstruction[1].u.operand); +} + +void JIT::emit_op_create_arguments(Instruction*) +{ + Jump argsNotCell = branch32(NotEqual, tagFor(RegisterFile::ArgumentsRegister, callFrameRegister), Imm32(JSValue::CellTag)); + Jump argsNotNull = branchTestPtr(NonZero, payloadFor(RegisterFile::ArgumentsRegister, callFrameRegister)); + + // If we get here the arguments pointer is a null cell - i.e. arguments need lazy creation. + if (m_codeBlock->m_numParameters == 1) + JITStubCall(this, cti_op_create_arguments_no_params).call(); + else + JITStubCall(this, cti_op_create_arguments).call(); + + argsNotCell.link(this); + argsNotNull.link(this); +} + +void JIT::emit_op_init_arguments(Instruction*) +{ + emitStore(RegisterFile::ArgumentsRegister, JSValue(), callFrameRegister); +} + +void JIT::emit_op_convert_this(Instruction* currentInstruction) +{ + unsigned thisRegister = currentInstruction[1].u.operand; + + emitLoad(thisRegister, regT1, regT0); + + addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::CellTag))); + + loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); + addSlowCase(branchTest32(NonZero, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(NeedsThisConversion))); + + map(m_bytecodeIndex + OPCODE_LENGTH(op_convert_this), thisRegister, regT1, regT0); +} + +void JIT::emitSlow_op_convert_this(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned thisRegister = currentInstruction[1].u.operand; + + linkSlowCase(iter); + linkSlowCase(iter); + + JITStubCall stubCall(this, cti_op_convert_this); + stubCall.addArgument(regT1, regT0); + stubCall.call(thisRegister); +} + +void JIT::emit_op_profile_will_call(Instruction* currentInstruction) +{ + peek(regT2, OBJECT_OFFSETOF(JITStackFrame, enabledProfilerReference) / sizeof (void*)); + Jump noProfiler = branchTestPtr(Zero, Address(regT2)); + + JITStubCall stubCall(this, cti_op_profile_will_call); + stubCall.addArgument(currentInstruction[1].u.operand); + stubCall.call(); + noProfiler.link(this); +} + +void JIT::emit_op_profile_did_call(Instruction* currentInstruction) +{ + peek(regT2, OBJECT_OFFSETOF(JITStackFrame, enabledProfilerReference) / sizeof (void*)); + Jump noProfiler = branchTestPtr(Zero, Address(regT2)); + + JITStubCall stubCall(this, cti_op_profile_did_call); + stubCall.addArgument(currentInstruction[1].u.operand); + stubCall.call(); + noProfiler.link(this); +} + +#else // USE(JSVALUE32_64) + +#define RECORD_JUMP_TARGET(targetOffset) \ + do { m_labels[m_bytecodeIndex + (targetOffset)].used(); } while (false) + +void JIT::privateCompileCTIMachineTrampolines(RefPtr* executablePool, JSGlobalData* globalData, CodePtr* ctiStringLengthTrampoline, CodePtr* ctiVirtualCallPreLink, CodePtr* ctiVirtualCallLink, CodePtr* ctiVirtualCall, CodePtr* ctiNativeCallThunk) +{ +#if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS) + // (2) The second function provides fast property access for string length + Label stringLengthBegin = align(); + + // Check eax is a string + Jump string_failureCases1 = emitJumpIfNotJSCell(regT0); + Jump string_failureCases2 = branchPtr(NotEqual, Address(regT0), ImmPtr(m_globalData->jsStringVPtr)); + + // Checks out okay! - get the length from the Ustring. + loadPtr(Address(regT0, OBJECT_OFFSETOF(JSString, m_value) + OBJECT_OFFSETOF(UString, m_rep)), regT0); + load32(Address(regT0, OBJECT_OFFSETOF(UString::Rep, len)), regT0); + + Jump string_failureCases3 = branch32(Above, regT0, Imm32(JSImmediate::maxImmediateInt)); + + // regT0 contains a 64 bit value (is positive, is zero extended) so we don't need sign extend here. + emitFastArithIntToImmNoCheck(regT0, regT0); + + ret(); +#endif + + // (3) Trampolines for the slow cases of op_call / op_call_eval / op_construct. + COMPILE_ASSERT(sizeof(CodeType) == 4, CodeTypeEnumMustBe32Bit); + + Label virtualCallPreLinkBegin = align(); + + // Load the callee CodeBlock* into eax + loadPtr(Address(regT2, OBJECT_OFFSETOF(JSFunction, m_body)), regT3); + loadPtr(Address(regT3, OBJECT_OFFSETOF(FunctionBodyNode, m_code)), regT0); + Jump hasCodeBlock1 = branchTestPtr(NonZero, regT0); + preserveReturnAddressAfterCall(regT3); + restoreArgumentReference(); + Call callJSFunction1 = call(); + emitGetJITStubArg(1, regT2); + emitGetJITStubArg(3, regT1); + restoreReturnAddressBeforeReturn(regT3); + hasCodeBlock1.link(this); + + Jump isNativeFunc1 = branch32(Equal, Address(regT0, OBJECT_OFFSETOF(CodeBlock, m_codeType)), Imm32(NativeCode)); + + // Check argCount matches callee arity. + Jump arityCheckOkay1 = branch32(Equal, Address(regT0, OBJECT_OFFSETOF(CodeBlock, m_numParameters)), regT1); + preserveReturnAddressAfterCall(regT3); + emitPutJITStubArg(regT3, 2); + emitPutJITStubArg(regT0, 4); + restoreArgumentReference(); + Call callArityCheck1 = call(); + move(regT1, callFrameRegister); + emitGetJITStubArg(1, regT2); + emitGetJITStubArg(3, regT1); + restoreReturnAddressBeforeReturn(regT3); + arityCheckOkay1.link(this); + isNativeFunc1.link(this); + + compileOpCallInitializeCallFrame(); + + preserveReturnAddressAfterCall(regT3); + emitPutJITStubArg(regT3, 2); + restoreArgumentReference(); + Call callDontLazyLinkCall = call(); + emitGetJITStubArg(1, regT2); + restoreReturnAddressBeforeReturn(regT3); + + jump(regT0); + + Label virtualCallLinkBegin = align(); + + // Load the callee CodeBlock* into eax + loadPtr(Address(regT2, OBJECT_OFFSETOF(JSFunction, m_body)), regT3); + loadPtr(Address(regT3, OBJECT_OFFSETOF(FunctionBodyNode, m_code)), regT0); + Jump hasCodeBlock2 = branchTestPtr(NonZero, regT0); + preserveReturnAddressAfterCall(regT3); + restoreArgumentReference(); + Call callJSFunction2 = call(); + emitGetJITStubArg(1, regT2); + emitGetJITStubArg(3, regT1); + restoreReturnAddressBeforeReturn(regT3); + hasCodeBlock2.link(this); + + Jump isNativeFunc2 = branch32(Equal, Address(regT0, OBJECT_OFFSETOF(CodeBlock, m_codeType)), Imm32(NativeCode)); + + // Check argCount matches callee arity. + Jump arityCheckOkay2 = branch32(Equal, Address(regT0, OBJECT_OFFSETOF(CodeBlock, m_numParameters)), regT1); + preserveReturnAddressAfterCall(regT3); + emitPutJITStubArg(regT3, 2); + emitPutJITStubArg(regT0, 4); + restoreArgumentReference(); + Call callArityCheck2 = call(); + move(regT1, callFrameRegister); + emitGetJITStubArg(1, regT2); + emitGetJITStubArg(3, regT1); + restoreReturnAddressBeforeReturn(regT3); + arityCheckOkay2.link(this); + isNativeFunc2.link(this); + + compileOpCallInitializeCallFrame(); + + preserveReturnAddressAfterCall(regT3); + emitPutJITStubArg(regT3, 2); + restoreArgumentReference(); + Call callLazyLinkCall = call(); + restoreReturnAddressBeforeReturn(regT3); + + jump(regT0); + + Label virtualCallBegin = align(); + + // Load the callee CodeBlock* into eax + loadPtr(Address(regT2, OBJECT_OFFSETOF(JSFunction, m_body)), regT3); + loadPtr(Address(regT3, OBJECT_OFFSETOF(FunctionBodyNode, m_code)), regT0); + Jump hasCodeBlock3 = branchTestPtr(NonZero, regT0); + preserveReturnAddressAfterCall(regT3); + restoreArgumentReference(); + Call callJSFunction3 = call(); + emitGetJITStubArg(1, regT2); + emitGetJITStubArg(3, regT1); + restoreReturnAddressBeforeReturn(regT3); + loadPtr(Address(regT2, OBJECT_OFFSETOF(JSFunction, m_body)), regT3); // reload the function body nody, so we can reload the code pointer. + hasCodeBlock3.link(this); + + Jump isNativeFunc3 = branch32(Equal, Address(regT0, OBJECT_OFFSETOF(CodeBlock, m_codeType)), Imm32(NativeCode)); + + // Check argCount matches callee arity. + Jump arityCheckOkay3 = branch32(Equal, Address(regT0, OBJECT_OFFSETOF(CodeBlock, m_numParameters)), regT1); + preserveReturnAddressAfterCall(regT3); + emitPutJITStubArg(regT3, 2); + emitPutJITStubArg(regT0, 4); + restoreArgumentReference(); + Call callArityCheck3 = call(); + move(regT1, callFrameRegister); + emitGetJITStubArg(1, regT2); + emitGetJITStubArg(3, regT1); + restoreReturnAddressBeforeReturn(regT3); + loadPtr(Address(regT2, OBJECT_OFFSETOF(JSFunction, m_body)), regT3); // reload the function body nody, so we can reload the code pointer. + arityCheckOkay3.link(this); + isNativeFunc3.link(this); + + // load ctiCode from the new codeBlock. + loadPtr(Address(regT3, OBJECT_OFFSETOF(FunctionBodyNode, m_jitCode)), regT0); + + compileOpCallInitializeCallFrame(); + jump(regT0); + + + Label nativeCallThunk = align(); + preserveReturnAddressAfterCall(regT0); + emitPutToCallFrameHeader(regT0, RegisterFile::ReturnPC); // Push return address + + // Load caller frame's scope chain into this callframe so that whatever we call can + // get to its global data. + emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, regT1); + emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1, regT1); + emitPutToCallFrameHeader(regT1, RegisterFile::ScopeChain); + + +#if PLATFORM(X86_64) + emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, X86::ecx); + + // Allocate stack space for our arglist + subPtr(Imm32(sizeof(ArgList)), stackPointerRegister); + COMPILE_ASSERT((sizeof(ArgList) & 0xf) == 0, ArgList_should_by_16byte_aligned); + + // Set up arguments + subPtr(Imm32(1), X86::ecx); // Don't include 'this' in argcount + + // Push argcount + storePtr(X86::ecx, Address(stackPointerRegister, OBJECT_OFFSETOF(ArgList, m_argCount))); + + // Calculate the start of the callframe header, and store in edx + addPtr(Imm32(-RegisterFile::CallFrameHeaderSize * (int32_t)sizeof(Register)), callFrameRegister, X86::edx); + + // Calculate start of arguments as callframe header - sizeof(Register) * argcount (ecx) + mul32(Imm32(sizeof(Register)), X86::ecx, X86::ecx); + subPtr(X86::ecx, X86::edx); + + // push pointer to arguments + storePtr(X86::edx, Address(stackPointerRegister, OBJECT_OFFSETOF(ArgList, m_args))); + + // ArgList is passed by reference so is stackPointerRegister + move(stackPointerRegister, X86::ecx); + + // edx currently points to the first argument, edx-sizeof(Register) points to 'this' + loadPtr(Address(X86::edx, -(int32_t)sizeof(Register)), X86::edx); + + emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, X86::esi); + + move(callFrameRegister, X86::edi); + + call(Address(X86::esi, OBJECT_OFFSETOF(JSFunction, m_data))); + + addPtr(Imm32(sizeof(ArgList)), stackPointerRegister); +#elif PLATFORM(X86) + emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, regT0); + + /* We have two structs that we use to describe the stackframe we set up for our + * call to native code. NativeCallFrameStructure describes the how we set up the stack + * in advance of the call. NativeFunctionCalleeSignature describes the callframe + * as the native code expects it. We do this as we are using the fastcall calling + * convention which results in the callee popping its arguments off the stack, but + * not the rest of the callframe so we need a nice way to ensure we increment the + * stack pointer by the right amount after the call. + */ +#if COMPILER(MSVC) || PLATFORM(LINUX) + struct NativeCallFrameStructure { + // CallFrame* callFrame; // passed in EDX + JSObject* callee; + JSValue thisValue; + ArgList* argPointer; + ArgList args; + JSValue result; + }; + struct NativeFunctionCalleeSignature { + JSObject* callee; + JSValue thisValue; + ArgList* argPointer; + }; +#else + struct NativeCallFrameStructure { + // CallFrame* callFrame; // passed in ECX + // JSObject* callee; // passed in EDX + JSValue thisValue; + ArgList* argPointer; + ArgList args; + }; + struct NativeFunctionCalleeSignature { + JSValue thisValue; + ArgList* argPointer; + }; +#endif + const int NativeCallFrameSize = (sizeof(NativeCallFrameStructure) + 15) & ~15; + // Allocate system stack frame + subPtr(Imm32(NativeCallFrameSize), stackPointerRegister); + + // Set up arguments + subPtr(Imm32(1), regT0); // Don't include 'this' in argcount + + // push argcount + storePtr(regT0, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, args) + OBJECT_OFFSETOF(ArgList, m_argCount))); + + // Calculate the start of the callframe header, and store in regT1 + addPtr(Imm32(-RegisterFile::CallFrameHeaderSize * (int)sizeof(Register)), callFrameRegister, regT1); + + // Calculate start of arguments as callframe header - sizeof(Register) * argcount (regT0) + mul32(Imm32(sizeof(Register)), regT0, regT0); + subPtr(regT0, regT1); + storePtr(regT1, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, args) + OBJECT_OFFSETOF(ArgList, m_args))); + + // ArgList is passed by reference so is stackPointerRegister + 4 * sizeof(Register) + addPtr(Imm32(OBJECT_OFFSETOF(NativeCallFrameStructure, args)), stackPointerRegister, regT0); + storePtr(regT0, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, argPointer))); + + // regT1 currently points to the first argument, regT1 - sizeof(Register) points to 'this' + loadPtr(Address(regT1, -(int)sizeof(Register)), regT1); + storePtr(regT1, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, thisValue))); + +#if COMPILER(MSVC) || PLATFORM(LINUX) + // ArgList is passed by reference so is stackPointerRegister + 4 * sizeof(Register) + addPtr(Imm32(OBJECT_OFFSETOF(NativeCallFrameStructure, result)), stackPointerRegister, X86::ecx); + + // Plant callee + emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, X86::eax); + storePtr(X86::eax, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, callee))); + + // Plant callframe + move(callFrameRegister, X86::edx); + + call(Address(X86::eax, OBJECT_OFFSETOF(JSFunction, m_data))); + + // JSValue is a non-POD type + loadPtr(Address(X86::eax), X86::eax); +#else + // Plant callee + emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, X86::edx); + + // Plant callframe + move(callFrameRegister, X86::ecx); + call(Address(X86::edx, OBJECT_OFFSETOF(JSFunction, m_data))); +#endif + + // We've put a few temporaries on the stack in addition to the actual arguments + // so pull them off now + addPtr(Imm32(NativeCallFrameSize - sizeof(NativeFunctionCalleeSignature)), stackPointerRegister); + +#elif ENABLE(JIT_OPTIMIZE_NATIVE_CALL) +#error "JIT_OPTIMIZE_NATIVE_CALL not yet supported on this platform." +#else + breakpoint(); +#endif + + // Check for an exception + loadPtr(&(globalData->exception), regT2); + Jump exceptionHandler = branchTestPtr(NonZero, regT2); + + // Grab the return address. + emitGetFromCallFrameHeaderPtr(RegisterFile::ReturnPC, regT1); + + // Restore our caller's "r". + emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, callFrameRegister); + + // Return. + restoreReturnAddressBeforeReturn(regT1); + ret(); + + // Handle an exception + exceptionHandler.link(this); + // Grab the return address. + emitGetFromCallFrameHeaderPtr(RegisterFile::ReturnPC, regT1); + move(ImmPtr(&globalData->exceptionLocation), regT2); + storePtr(regT1, regT2); + move(ImmPtr(reinterpret_cast(ctiVMThrowTrampoline)), regT2); + emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, callFrameRegister); + poke(callFrameRegister, OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof (void*)); + restoreReturnAddressBeforeReturn(regT2); + ret(); + + +#if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS) + Call string_failureCases1Call = makeTailRecursiveCall(string_failureCases1); + Call string_failureCases2Call = makeTailRecursiveCall(string_failureCases2); + Call string_failureCases3Call = makeTailRecursiveCall(string_failureCases3); +#endif + + // All trampolines constructed! copy the code, link up calls, and set the pointers on the Machine object. + LinkBuffer patchBuffer(this, m_globalData->executableAllocator.poolForSize(m_assembler.size())); + +#if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS) + patchBuffer.link(string_failureCases1Call, FunctionPtr(cti_op_get_by_id_string_fail)); + patchBuffer.link(string_failureCases2Call, FunctionPtr(cti_op_get_by_id_string_fail)); + patchBuffer.link(string_failureCases3Call, FunctionPtr(cti_op_get_by_id_string_fail)); +#endif + patchBuffer.link(callArityCheck1, FunctionPtr(cti_op_call_arityCheck)); + patchBuffer.link(callArityCheck2, FunctionPtr(cti_op_call_arityCheck)); + patchBuffer.link(callArityCheck3, FunctionPtr(cti_op_call_arityCheck)); + patchBuffer.link(callJSFunction1, FunctionPtr(cti_op_call_JSFunction)); + patchBuffer.link(callJSFunction2, FunctionPtr(cti_op_call_JSFunction)); + patchBuffer.link(callJSFunction3, FunctionPtr(cti_op_call_JSFunction)); + patchBuffer.link(callDontLazyLinkCall, FunctionPtr(cti_vm_dontLazyLinkCall)); + patchBuffer.link(callLazyLinkCall, FunctionPtr(cti_vm_lazyLinkCall)); + + CodeRef finalCode = patchBuffer.finalizeCode(); + *executablePool = finalCode.m_executablePool; + + *ctiVirtualCallPreLink = trampolineAt(finalCode, virtualCallPreLinkBegin); + *ctiVirtualCallLink = trampolineAt(finalCode, virtualCallLinkBegin); + *ctiVirtualCall = trampolineAt(finalCode, virtualCallBegin); + *ctiNativeCallThunk = trampolineAt(finalCode, nativeCallThunk); +#if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS) + *ctiStringLengthTrampoline = trampolineAt(finalCode, stringLengthBegin); +#else + UNUSED_PARAM(ctiStringLengthTrampoline); +#endif +} + +void JIT::emit_op_mov(Instruction* currentInstruction) +{ + int dst = currentInstruction[1].u.operand; + int src = currentInstruction[2].u.operand; + + if (m_codeBlock->isConstantRegisterIndex(src)) { + storePtr(ImmPtr(JSValue::encode(getConstantOperand(src))), Address(callFrameRegister, dst * sizeof(Register))); + if (dst == m_lastResultBytecodeRegister) + killLastResultRegister(); + } else if ((src == m_lastResultBytecodeRegister) || (dst == m_lastResultBytecodeRegister)) { + // If either the src or dst is the cached register go though + // get/put registers to make sure we track this correctly. + emitGetVirtualRegister(src, regT0); + emitPutVirtualRegister(dst); + } else { + // Perform the copy via regT1; do not disturb any mapping in regT0. + loadPtr(Address(callFrameRegister, src * sizeof(Register)), regT1); + storePtr(regT1, Address(callFrameRegister, dst * sizeof(Register))); + } +} + +void JIT::emit_op_end(Instruction* currentInstruction) +{ + if (m_codeBlock->needsFullScopeChain()) + JITStubCall(this, cti_op_end).call(); + ASSERT(returnValueRegister != callFrameRegister); + emitGetVirtualRegister(currentInstruction[1].u.operand, returnValueRegister); + restoreReturnAddressBeforeReturn(Address(callFrameRegister, RegisterFile::ReturnPC * static_cast(sizeof(Register)))); + ret(); +} + +void JIT::emit_op_jmp(Instruction* currentInstruction) +{ + unsigned target = currentInstruction[1].u.operand; + addJump(jump(), target + 1); + RECORD_JUMP_TARGET(target + 1); +} + +void JIT::emit_op_loop(Instruction* currentInstruction) +{ + emitTimeoutCheck(); + + unsigned target = currentInstruction[1].u.operand; + addJump(jump(), target + 1); +} + +void JIT::emit_op_loop_if_less(Instruction* currentInstruction) +{ + emitTimeoutCheck(); + + unsigned op1 = currentInstruction[1].u.operand; + unsigned op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + if (isOperandConstantImmediateInt(op2)) { + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); +#if USE(JSVALUE64) + int32_t op2imm = getConstantOperandImmediateInt(op2); +#else + int32_t op2imm = static_cast(JSImmediate::rawValue(getConstantOperand(op2))); +#endif + addJump(branch32(LessThan, regT0, Imm32(op2imm)), target + 3); + } else if (isOperandConstantImmediateInt(op1)) { + emitGetVirtualRegister(op2, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); +#if USE(JSVALUE64) + int32_t op1imm = getConstantOperandImmediateInt(op1); +#else + int32_t op1imm = static_cast(JSImmediate::rawValue(getConstantOperand(op1))); +#endif + addJump(branch32(GreaterThan, regT0, Imm32(op1imm)), target + 3); + } else { + emitGetVirtualRegisters(op1, regT0, op2, regT1); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT1); + addJump(branch32(LessThan, regT0, regT1), target + 3); + } +} + +void JIT::emit_op_loop_if_lesseq(Instruction* currentInstruction) +{ + emitTimeoutCheck(); + + unsigned op1 = currentInstruction[1].u.operand; + unsigned op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + if (isOperandConstantImmediateInt(op2)) { + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); +#if USE(JSVALUE64) + int32_t op2imm = getConstantOperandImmediateInt(op2); +#else + int32_t op2imm = static_cast(JSImmediate::rawValue(getConstantOperand(op2))); +#endif + addJump(branch32(LessThanOrEqual, regT0, Imm32(op2imm)), target + 3); + } else { + emitGetVirtualRegisters(op1, regT0, op2, regT1); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT1); + addJump(branch32(LessThanOrEqual, regT0, regT1), target + 3); + } +} + +void JIT::emit_op_new_object(Instruction* currentInstruction) +{ + JITStubCall(this, cti_op_new_object).call(currentInstruction[1].u.operand); +} + +void JIT::emit_op_instanceof(Instruction* currentInstruction) +{ + // Load the operands (baseVal, proto, and value respectively) into registers. + // We use regT0 for baseVal since we will be done with this first, and we can then use it for the result. + emitGetVirtualRegister(currentInstruction[3].u.operand, regT0); + emitGetVirtualRegister(currentInstruction[4].u.operand, regT1); + emitGetVirtualRegister(currentInstruction[2].u.operand, regT2); + + // Check that baseVal & proto are cells. + emitJumpSlowCaseIfNotJSCell(regT0); + emitJumpSlowCaseIfNotJSCell(regT1); + + // Check that baseVal is an object, that it 'ImplementsHasInstance' but that it does not 'OverridesHasInstance'. + loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT0); + addSlowCase(branch32(NotEqual, Address(regT0, OBJECT_OFFSETOF(Structure, m_typeInfo.m_type)), Imm32(ObjectType))); + addSlowCase(branchTest32(Zero, Address(regT0, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(ImplementsDefaultHasInstance))); + + // If value is not an Object, return false. + Jump valueIsImmediate = emitJumpIfNotJSCell(regT2); + loadPtr(Address(regT2, OBJECT_OFFSETOF(JSCell, m_structure)), regT0); + Jump valueIsNotObject = branch32(NotEqual, Address(regT0, OBJECT_OFFSETOF(Structure, m_typeInfo.m_type)), Imm32(ObjectType)); + + // Check proto is object. + loadPtr(Address(regT1, OBJECT_OFFSETOF(JSCell, m_structure)), regT0); + addSlowCase(branch32(NotEqual, Address(regT0, OBJECT_OFFSETOF(Structure, m_typeInfo.m_type)), Imm32(ObjectType))); + + // Optimistically load the result true, and start looping. + // Initially, regT1 still contains proto and regT2 still contains value. + // As we loop regT2 will be updated with its prototype, recursively walking the prototype chain. + move(ImmPtr(JSValue::encode(jsBoolean(true))), regT0); + Label loop(this); + + // Load the prototype of the object in regT2. If this is equal to regT1 - WIN! + // Otherwise, check if we've hit null - if we have then drop out of the loop, if not go again. + loadPtr(Address(regT2, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); + loadPtr(Address(regT2, OBJECT_OFFSETOF(Structure, m_prototype)), regT2); + Jump isInstance = branchPtr(Equal, regT2, regT1); + branchPtr(NotEqual, regT2, ImmPtr(JSValue::encode(jsNull())), loop); + + // We get here either by dropping out of the loop, or if value was not an Object. Result is false. + valueIsImmediate.link(this); + valueIsNotObject.link(this); + move(ImmPtr(JSValue::encode(jsBoolean(false))), regT0); + + // isInstance jumps right down to here, to skip setting the result to false (it has already set true). + isInstance.link(this); + emitPutVirtualRegister(currentInstruction[1].u.operand); +} + +void JIT::emit_op_new_func(Instruction* currentInstruction) +{ + JITStubCall stubCall(this, cti_op_new_func); + stubCall.addArgument(ImmPtr(m_codeBlock->function(currentInstruction[2].u.operand))); + stubCall.call(currentInstruction[1].u.operand); +} + +void JIT::emit_op_call(Instruction* currentInstruction) +{ + compileOpCall(op_call, currentInstruction, m_callLinkInfoIndex++); +} + +void JIT::emit_op_call_eval(Instruction* currentInstruction) +{ + compileOpCall(op_call_eval, currentInstruction, m_callLinkInfoIndex++); +} + +void JIT::emit_op_load_varargs(Instruction* currentInstruction) +{ + int argCountDst = currentInstruction[1].u.operand; + int argsOffset = currentInstruction[2].u.operand; + + JITStubCall stubCall(this, cti_op_load_varargs); + stubCall.addArgument(Imm32(argsOffset)); + stubCall.call(); + // Stores a naked int32 in the register file. + store32(returnValueRegister, Address(callFrameRegister, argCountDst * sizeof(Register))); +} + +void JIT::emit_op_call_varargs(Instruction* currentInstruction) +{ + compileOpCallVarargs(currentInstruction); +} + +void JIT::emit_op_construct(Instruction* currentInstruction) +{ + compileOpCall(op_construct, currentInstruction, m_callLinkInfoIndex++); +} + +void JIT::emit_op_get_global_var(Instruction* currentInstruction) +{ + JSVariableObject* globalObject = static_cast(currentInstruction[2].u.jsCell); + move(ImmPtr(globalObject), regT0); + emitGetVariableObjectRegister(regT0, currentInstruction[3].u.operand, regT0); + emitPutVirtualRegister(currentInstruction[1].u.operand); +} + +void JIT::emit_op_put_global_var(Instruction* currentInstruction) +{ + emitGetVirtualRegister(currentInstruction[3].u.operand, regT1); + JSVariableObject* globalObject = static_cast(currentInstruction[1].u.jsCell); + move(ImmPtr(globalObject), regT0); + emitPutVariableObjectRegister(regT1, regT0, currentInstruction[2].u.operand); +} + +void JIT::emit_op_get_scoped_var(Instruction* currentInstruction) +{ + int skip = currentInstruction[3].u.operand + m_codeBlock->needsFullScopeChain(); + + emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT0); + while (skip--) + loadPtr(Address(regT0, OBJECT_OFFSETOF(ScopeChainNode, next)), regT0); + + loadPtr(Address(regT0, OBJECT_OFFSETOF(ScopeChainNode, object)), regT0); + emitGetVariableObjectRegister(regT0, currentInstruction[2].u.operand, regT0); + emitPutVirtualRegister(currentInstruction[1].u.operand); +} + +void JIT::emit_op_put_scoped_var(Instruction* currentInstruction) +{ + int skip = currentInstruction[2].u.operand + m_codeBlock->needsFullScopeChain(); + + emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1); + emitGetVirtualRegister(currentInstruction[3].u.operand, regT0); + while (skip--) + loadPtr(Address(regT1, OBJECT_OFFSETOF(ScopeChainNode, next)), regT1); + + loadPtr(Address(regT1, OBJECT_OFFSETOF(ScopeChainNode, object)), regT1); + emitPutVariableObjectRegister(regT0, regT1, currentInstruction[1].u.operand); +} + +void JIT::emit_op_tear_off_activation(Instruction* currentInstruction) +{ + JITStubCall stubCall(this, cti_op_tear_off_activation); + stubCall.addArgument(currentInstruction[1].u.operand, regT2); + stubCall.call(); +} + +void JIT::emit_op_tear_off_arguments(Instruction*) +{ + JITStubCall(this, cti_op_tear_off_arguments).call(); +} + +void JIT::emit_op_ret(Instruction* currentInstruction) +{ + // We could JIT generate the deref, only calling out to C when the refcount hits zero. + if (m_codeBlock->needsFullScopeChain()) + JITStubCall(this, cti_op_ret_scopeChain).call(); + + ASSERT(callFrameRegister != regT1); + ASSERT(regT1 != returnValueRegister); + ASSERT(returnValueRegister != callFrameRegister); + + // Return the result in %eax. + emitGetVirtualRegister(currentInstruction[1].u.operand, returnValueRegister); + + // Grab the return address. + emitGetFromCallFrameHeaderPtr(RegisterFile::ReturnPC, regT1); + + // Restore our caller's "r". + emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, callFrameRegister); + + // Return. + restoreReturnAddressBeforeReturn(regT1); + ret(); +} + +void JIT::emit_op_new_array(Instruction* currentInstruction) +{ + JITStubCall stubCall(this, cti_op_new_array); + stubCall.addArgument(Imm32(currentInstruction[2].u.operand)); + stubCall.addArgument(Imm32(currentInstruction[3].u.operand)); + stubCall.call(currentInstruction[1].u.operand); +} + +void JIT::emit_op_resolve(Instruction* currentInstruction) +{ + JITStubCall stubCall(this, cti_op_resolve); + stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); + stubCall.call(currentInstruction[1].u.operand); +} + +void JIT::emit_op_construct_verify(Instruction* currentInstruction) +{ + emitGetVirtualRegister(currentInstruction[1].u.operand, regT0); + + emitJumpSlowCaseIfNotJSCell(regT0); + loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); + addSlowCase(branch32(NotEqual, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo) + OBJECT_OFFSETOF(TypeInfo, m_type)), Imm32(ObjectType))); + +} + +void JIT::emit_op_to_primitive(Instruction* currentInstruction) +{ + int dst = currentInstruction[1].u.operand; + int src = currentInstruction[2].u.operand; + + emitGetVirtualRegister(src, regT0); + + Jump isImm = emitJumpIfNotJSCell(regT0); + addSlowCase(branchPtr(NotEqual, Address(regT0), ImmPtr(m_globalData->jsStringVPtr))); + isImm.link(this); + + if (dst != src) + emitPutVirtualRegister(dst); + +} + +void JIT::emit_op_strcat(Instruction* currentInstruction) +{ + JITStubCall stubCall(this, cti_op_strcat); + stubCall.addArgument(Imm32(currentInstruction[2].u.operand)); + stubCall.addArgument(Imm32(currentInstruction[3].u.operand)); + stubCall.call(currentInstruction[1].u.operand); +} + +void JIT::emit_op_loop_if_true(Instruction* currentInstruction) +{ + emitTimeoutCheck(); + + unsigned target = currentInstruction[2].u.operand; + emitGetVirtualRegister(currentInstruction[1].u.operand, regT0); + + Jump isZero = branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsNumber(m_globalData, 0)))); + addJump(emitJumpIfImmediateInteger(regT0), target + 2); + + addJump(branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsBoolean(true)))), target + 2); + addSlowCase(branchPtr(NotEqual, regT0, ImmPtr(JSValue::encode(jsBoolean(false))))); + + isZero.link(this); +}; +void JIT::emit_op_resolve_base(Instruction* currentInstruction) +{ + JITStubCall stubCall(this, cti_op_resolve_base); + stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); + stubCall.call(currentInstruction[1].u.operand); +} + +void JIT::emit_op_resolve_skip(Instruction* currentInstruction) +{ + JITStubCall stubCall(this, cti_op_resolve_skip); + stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); + stubCall.addArgument(Imm32(currentInstruction[3].u.operand + m_codeBlock->needsFullScopeChain())); + stubCall.call(currentInstruction[1].u.operand); +} + +void JIT::emit_op_resolve_global(Instruction* currentInstruction) +{ + // Fast case + void* globalObject = currentInstruction[2].u.jsCell; + Identifier* ident = &m_codeBlock->identifier(currentInstruction[3].u.operand); + + unsigned currentIndex = m_globalResolveInfoIndex++; + void* structureAddress = &(m_codeBlock->globalResolveInfo(currentIndex).structure); + void* offsetAddr = &(m_codeBlock->globalResolveInfo(currentIndex).offset); + + // Check Structure of global object + move(ImmPtr(globalObject), regT0); + loadPtr(structureAddress, regT1); + Jump noMatch = branchPtr(NotEqual, regT1, Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure))); // Structures don't match + + // Load cached property + // Assume that the global object always uses external storage. + loadPtr(Address(regT0, OBJECT_OFFSETOF(JSGlobalObject, m_externalStorage)), regT0); + load32(offsetAddr, regT1); + loadPtr(BaseIndex(regT0, regT1, ScalePtr), regT0); + emitPutVirtualRegister(currentInstruction[1].u.operand); + Jump end = jump(); + + // Slow case + noMatch.link(this); + JITStubCall stubCall(this, cti_op_resolve_global); + stubCall.addArgument(ImmPtr(globalObject)); + stubCall.addArgument(ImmPtr(ident)); + stubCall.addArgument(Imm32(currentIndex)); + stubCall.call(currentInstruction[1].u.operand); + end.link(this); +} + +void JIT::emit_op_not(Instruction* currentInstruction) +{ + emitGetVirtualRegister(currentInstruction[2].u.operand, regT0); + xorPtr(Imm32(static_cast(JSImmediate::FullTagTypeBool)), regT0); + addSlowCase(branchTestPtr(NonZero, regT0, Imm32(static_cast(~JSImmediate::ExtendedPayloadBitBoolValue)))); + xorPtr(Imm32(static_cast(JSImmediate::FullTagTypeBool | JSImmediate::ExtendedPayloadBitBoolValue)), regT0); + emitPutVirtualRegister(currentInstruction[1].u.operand); +} + +void JIT::emit_op_jfalse(Instruction* currentInstruction) +{ + unsigned target = currentInstruction[2].u.operand; + emitGetVirtualRegister(currentInstruction[1].u.operand, regT0); + + addJump(branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsNumber(m_globalData, 0)))), target + 2); + Jump isNonZero = emitJumpIfImmediateInteger(regT0); + + addJump(branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsBoolean(false)))), target + 2); + addSlowCase(branchPtr(NotEqual, regT0, ImmPtr(JSValue::encode(jsBoolean(true))))); + + isNonZero.link(this); + RECORD_JUMP_TARGET(target + 2); +}; +void JIT::emit_op_jeq_null(Instruction* currentInstruction) +{ + unsigned src = currentInstruction[1].u.operand; + unsigned target = currentInstruction[2].u.operand; + + emitGetVirtualRegister(src, regT0); + Jump isImmediate = emitJumpIfNotJSCell(regT0); + + // First, handle JSCell cases - check MasqueradesAsUndefined bit on the structure. + loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); + addJump(branchTest32(NonZero, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined)), target + 2); + Jump wasNotImmediate = jump(); + + // Now handle the immediate cases - undefined & null + isImmediate.link(this); + andPtr(Imm32(~JSImmediate::ExtendedTagBitUndefined), regT0); + addJump(branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsNull()))), target + 2); + + wasNotImmediate.link(this); + RECORD_JUMP_TARGET(target + 2); +}; +void JIT::emit_op_jneq_null(Instruction* currentInstruction) +{ + unsigned src = currentInstruction[1].u.operand; + unsigned target = currentInstruction[2].u.operand; + + emitGetVirtualRegister(src, regT0); + Jump isImmediate = emitJumpIfNotJSCell(regT0); + + // First, handle JSCell cases - check MasqueradesAsUndefined bit on the structure. + loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); + addJump(branchTest32(Zero, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined)), target + 2); + Jump wasNotImmediate = jump(); + + // Now handle the immediate cases - undefined & null + isImmediate.link(this); + andPtr(Imm32(~JSImmediate::ExtendedTagBitUndefined), regT0); + addJump(branchPtr(NotEqual, regT0, ImmPtr(JSValue::encode(jsNull()))), target + 2); + + wasNotImmediate.link(this); + RECORD_JUMP_TARGET(target + 2); +} + +void JIT::emit_op_jneq_ptr(Instruction* currentInstruction) +{ + unsigned src = currentInstruction[1].u.operand; + JSCell* ptr = currentInstruction[2].u.jsCell; + unsigned target = currentInstruction[3].u.operand; + + emitGetVirtualRegister(src, regT0); + addJump(branchPtr(NotEqual, regT0, ImmPtr(JSValue::encode(JSValue(ptr)))), target + 3); + + RECORD_JUMP_TARGET(target + 3); +} + +void JIT::emit_op_jsr(Instruction* currentInstruction) +{ + int retAddrDst = currentInstruction[1].u.operand; + int target = currentInstruction[2].u.operand; + DataLabelPtr storeLocation = storePtrWithPatch(ImmPtr(0), Address(callFrameRegister, sizeof(Register) * retAddrDst)); + addJump(jump(), target + 2); + m_jsrSites.append(JSRInfo(storeLocation, label())); + killLastResultRegister(); + RECORD_JUMP_TARGET(target + 2); +} + +void JIT::emit_op_sret(Instruction* currentInstruction) +{ + jump(Address(callFrameRegister, sizeof(Register) * currentInstruction[1].u.operand)); + killLastResultRegister(); +} + +void JIT::emit_op_eq(Instruction* currentInstruction) +{ + emitGetVirtualRegisters(currentInstruction[2].u.operand, regT0, currentInstruction[3].u.operand, regT1); + emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2); + set32(Equal, regT1, regT0, regT0); + emitTagAsBoolImmediate(regT0); + emitPutVirtualRegister(currentInstruction[1].u.operand); +} + +void JIT::emit_op_bitnot(Instruction* currentInstruction) +{ + emitGetVirtualRegister(currentInstruction[2].u.operand, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); +#if USE(JSVALUE64) + not32(regT0); + emitFastArithIntToImmNoCheck(regT0, regT0); +#else + xorPtr(Imm32(~JSImmediate::TagTypeNumber), regT0); +#endif + emitPutVirtualRegister(currentInstruction[1].u.operand); +} + +void JIT::emit_op_resolve_with_base(Instruction* currentInstruction) +{ + JITStubCall stubCall(this, cti_op_resolve_with_base); + stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[3].u.operand))); + stubCall.addArgument(Imm32(currentInstruction[1].u.operand)); + stubCall.call(currentInstruction[2].u.operand); +} + +void JIT::emit_op_new_func_exp(Instruction* currentInstruction) +{ + JITStubCall stubCall(this, cti_op_new_func_exp); + stubCall.addArgument(ImmPtr(m_codeBlock->functionExpression(currentInstruction[2].u.operand))); + stubCall.call(currentInstruction[1].u.operand); +} + +void JIT::emit_op_jtrue(Instruction* currentInstruction) +{ + unsigned target = currentInstruction[2].u.operand; + emitGetVirtualRegister(currentInstruction[1].u.operand, regT0); + + Jump isZero = branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsNumber(m_globalData, 0)))); + addJump(emitJumpIfImmediateInteger(regT0), target + 2); + + addJump(branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsBoolean(true)))), target + 2); + addSlowCase(branchPtr(NotEqual, regT0, ImmPtr(JSValue::encode(jsBoolean(false))))); + + isZero.link(this); + RECORD_JUMP_TARGET(target + 2); +} + +void JIT::emit_op_neq(Instruction* currentInstruction) +{ + emitGetVirtualRegisters(currentInstruction[2].u.operand, regT0, currentInstruction[3].u.operand, regT1); + emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2); + set32(NotEqual, regT1, regT0, regT0); + emitTagAsBoolImmediate(regT0); + + emitPutVirtualRegister(currentInstruction[1].u.operand); + +} + +void JIT::emit_op_bitxor(Instruction* currentInstruction) +{ + emitGetVirtualRegisters(currentInstruction[2].u.operand, regT0, currentInstruction[3].u.operand, regT1); + emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2); + xorPtr(regT1, regT0); + emitFastArithReTagImmediate(regT0, regT0); + emitPutVirtualRegister(currentInstruction[1].u.operand); +} + +void JIT::emit_op_new_regexp(Instruction* currentInstruction) +{ + JITStubCall stubCall(this, cti_op_new_regexp); + stubCall.addArgument(ImmPtr(m_codeBlock->regexp(currentInstruction[2].u.operand))); + stubCall.call(currentInstruction[1].u.operand); +} + +void JIT::emit_op_bitor(Instruction* currentInstruction) +{ + emitGetVirtualRegisters(currentInstruction[2].u.operand, regT0, currentInstruction[3].u.operand, regT1); + emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2); + orPtr(regT1, regT0); + emitPutVirtualRegister(currentInstruction[1].u.operand); +} + +void JIT::emit_op_throw(Instruction* currentInstruction) +{ + JITStubCall stubCall(this, cti_op_throw); + stubCall.addArgument(currentInstruction[1].u.operand, regT2); + stubCall.call(); + ASSERT(regT0 == returnValueRegister); +#ifndef NDEBUG + // cti_op_throw always changes it's return address, + // this point in the code should never be reached. + breakpoint(); +#endif +} + +void JIT::emit_op_next_pname(Instruction* currentInstruction) +{ + JITStubCall stubCall(this, cti_op_next_pname); + stubCall.addArgument(currentInstruction[2].u.operand, regT2); + stubCall.call(); + Jump endOfIter = branchTestPtr(Zero, regT0); + emitPutVirtualRegister(currentInstruction[1].u.operand); + addJump(jump(), currentInstruction[3].u.operand + 3); + endOfIter.link(this); +} + +void JIT::emit_op_push_scope(Instruction* currentInstruction) +{ + JITStubCall stubCall(this, cti_op_push_scope); + stubCall.addArgument(currentInstruction[1].u.operand, regT2); + stubCall.call(currentInstruction[1].u.operand); +} + +void JIT::emit_op_pop_scope(Instruction*) +{ + JITStubCall(this, cti_op_pop_scope).call(); +} + +void JIT::compileOpStrictEq(Instruction* currentInstruction, CompileOpStrictEqType type) +{ + unsigned dst = currentInstruction[1].u.operand; + unsigned src1 = currentInstruction[2].u.operand; + unsigned src2 = currentInstruction[3].u.operand; + + emitGetVirtualRegisters(src1, regT0, src2, regT1); + + // Jump to a slow case if either operand is a number, or if both are JSCell*s. + move(regT0, regT2); + orPtr(regT1, regT2); + addSlowCase(emitJumpIfJSCell(regT2)); + addSlowCase(emitJumpIfImmediateNumber(regT2)); + + if (type == OpStrictEq) + set32(Equal, regT1, regT0, regT0); + else + set32(NotEqual, regT1, regT0, regT0); + emitTagAsBoolImmediate(regT0); + + emitPutVirtualRegister(dst); +} + +void JIT::emit_op_stricteq(Instruction* currentInstruction) +{ + compileOpStrictEq(currentInstruction, OpStrictEq); +} + +void JIT::emit_op_nstricteq(Instruction* currentInstruction) +{ + compileOpStrictEq(currentInstruction, OpNStrictEq); +} + +void JIT::emit_op_to_jsnumber(Instruction* currentInstruction) +{ + int srcVReg = currentInstruction[2].u.operand; + emitGetVirtualRegister(srcVReg, regT0); + + Jump wasImmediate = emitJumpIfImmediateInteger(regT0); + + emitJumpSlowCaseIfNotJSCell(regT0, srcVReg); + loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); + addSlowCase(branch32(NotEqual, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_type)), Imm32(NumberType))); + + wasImmediate.link(this); + + emitPutVirtualRegister(currentInstruction[1].u.operand); +} + +void JIT::emit_op_push_new_scope(Instruction* currentInstruction) +{ + JITStubCall stubCall(this, cti_op_push_new_scope); + stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); + stubCall.addArgument(currentInstruction[3].u.operand, regT2); + stubCall.call(currentInstruction[1].u.operand); +} + +void JIT::emit_op_catch(Instruction* currentInstruction) +{ + killLastResultRegister(); // FIXME: Implicitly treat op_catch as a labeled statement, and remove this line of code. + peek(callFrameRegister, OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof (void*)); + emitPutVirtualRegister(currentInstruction[1].u.operand); +} + +void JIT::emit_op_jmp_scopes(Instruction* currentInstruction) +{ + JITStubCall stubCall(this, cti_op_jmp_scopes); + stubCall.addArgument(Imm32(currentInstruction[1].u.operand)); + stubCall.call(); + addJump(jump(), currentInstruction[2].u.operand + 2); + RECORD_JUMP_TARGET(currentInstruction[2].u.operand + 2); +} + +void JIT::emit_op_switch_imm(Instruction* currentInstruction) +{ + unsigned tableIndex = currentInstruction[1].u.operand; + unsigned defaultOffset = currentInstruction[2].u.operand; + unsigned scrutinee = currentInstruction[3].u.operand; + + // create jump table for switch destinations, track this switch statement. + SimpleJumpTable* jumpTable = &m_codeBlock->immediateSwitchJumpTable(tableIndex); + m_switches.append(SwitchRecord(jumpTable, m_bytecodeIndex, defaultOffset, SwitchRecord::Immediate)); + jumpTable->ctiOffsets.grow(jumpTable->branchOffsets.size()); + + JITStubCall stubCall(this, cti_op_switch_imm); + stubCall.addArgument(scrutinee, regT2); + stubCall.addArgument(Imm32(tableIndex)); + stubCall.call(); + jump(regT0); +} + +void JIT::emit_op_switch_char(Instruction* currentInstruction) +{ + unsigned tableIndex = currentInstruction[1].u.operand; + unsigned defaultOffset = currentInstruction[2].u.operand; + unsigned scrutinee = currentInstruction[3].u.operand; + + // create jump table for switch destinations, track this switch statement. + SimpleJumpTable* jumpTable = &m_codeBlock->characterSwitchJumpTable(tableIndex); + m_switches.append(SwitchRecord(jumpTable, m_bytecodeIndex, defaultOffset, SwitchRecord::Character)); + jumpTable->ctiOffsets.grow(jumpTable->branchOffsets.size()); + + JITStubCall stubCall(this, cti_op_switch_char); + stubCall.addArgument(scrutinee, regT2); + stubCall.addArgument(Imm32(tableIndex)); + stubCall.call(); + jump(regT0); +} + +void JIT::emit_op_switch_string(Instruction* currentInstruction) +{ + unsigned tableIndex = currentInstruction[1].u.operand; + unsigned defaultOffset = currentInstruction[2].u.operand; + unsigned scrutinee = currentInstruction[3].u.operand; + + // create jump table for switch destinations, track this switch statement. + StringJumpTable* jumpTable = &m_codeBlock->stringSwitchJumpTable(tableIndex); + m_switches.append(SwitchRecord(jumpTable, m_bytecodeIndex, defaultOffset)); + + JITStubCall stubCall(this, cti_op_switch_string); + stubCall.addArgument(scrutinee, regT2); + stubCall.addArgument(Imm32(tableIndex)); + stubCall.call(); + jump(regT0); +} + +void JIT::emit_op_new_error(Instruction* currentInstruction) +{ + JITStubCall stubCall(this, cti_op_new_error); + stubCall.addArgument(Imm32(currentInstruction[2].u.operand)); + stubCall.addArgument(ImmPtr(JSValue::encode(m_codeBlock->getConstant(currentInstruction[3].u.operand)))); + stubCall.addArgument(Imm32(m_bytecodeIndex)); + stubCall.call(currentInstruction[1].u.operand); +} + +void JIT::emit_op_debug(Instruction* currentInstruction) +{ + JITStubCall stubCall(this, cti_op_debug); + stubCall.addArgument(Imm32(currentInstruction[1].u.operand)); + stubCall.addArgument(Imm32(currentInstruction[2].u.operand)); + stubCall.addArgument(Imm32(currentInstruction[3].u.operand)); + stubCall.call(); +} + +void JIT::emit_op_eq_null(Instruction* currentInstruction) +{ + unsigned dst = currentInstruction[1].u.operand; + unsigned src1 = currentInstruction[2].u.operand; + + emitGetVirtualRegister(src1, regT0); + Jump isImmediate = emitJumpIfNotJSCell(regT0); + + loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); + setTest32(NonZero, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined), regT0); + + Jump wasNotImmediate = jump(); + + isImmediate.link(this); + + andPtr(Imm32(~JSImmediate::ExtendedTagBitUndefined), regT0); + setPtr(Equal, regT0, Imm32(JSImmediate::FullTagTypeNull), regT0); + + wasNotImmediate.link(this); + + emitTagAsBoolImmediate(regT0); + emitPutVirtualRegister(dst); + +} + +void JIT::emit_op_neq_null(Instruction* currentInstruction) +{ + unsigned dst = currentInstruction[1].u.operand; + unsigned src1 = currentInstruction[2].u.operand; + + emitGetVirtualRegister(src1, regT0); + Jump isImmediate = emitJumpIfNotJSCell(regT0); + + loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); + setTest32(Zero, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined), regT0); + + Jump wasNotImmediate = jump(); + + isImmediate.link(this); + + andPtr(Imm32(~JSImmediate::ExtendedTagBitUndefined), regT0); + setPtr(NotEqual, regT0, Imm32(JSImmediate::FullTagTypeNull), regT0); + + wasNotImmediate.link(this); + + emitTagAsBoolImmediate(regT0); + emitPutVirtualRegister(dst); + +} + +void JIT::emit_op_enter(Instruction*) +{ + // Even though CTI doesn't use them, we initialize our constant + // registers to zap stale pointers, to avoid unnecessarily prolonging + // object lifetime and increasing GC pressure. + size_t count = m_codeBlock->m_numVars; + for (size_t j = 0; j < count; ++j) + emitInitRegister(j); + +} + +void JIT::emit_op_enter_with_activation(Instruction* currentInstruction) +{ + // Even though CTI doesn't use them, we initialize our constant + // registers to zap stale pointers, to avoid unnecessarily prolonging + // object lifetime and increasing GC pressure. + size_t count = m_codeBlock->m_numVars; + for (size_t j = 0; j < count; ++j) + emitInitRegister(j); + + JITStubCall(this, cti_op_push_activation).call(currentInstruction[1].u.operand); +} + +void JIT::emit_op_create_arguments(Instruction*) +{ + Jump argsCreated = branchTestPtr(NonZero, Address(callFrameRegister, sizeof(Register) * RegisterFile::ArgumentsRegister)); + if (m_codeBlock->m_numParameters == 1) + JITStubCall(this, cti_op_create_arguments_no_params).call(); + else + JITStubCall(this, cti_op_create_arguments).call(); + argsCreated.link(this); +} + +void JIT::emit_op_init_arguments(Instruction*) +{ + storePtr(ImmPtr(0), Address(callFrameRegister, sizeof(Register) * RegisterFile::ArgumentsRegister)); +} + +void JIT::emit_op_convert_this(Instruction* currentInstruction) +{ + emitGetVirtualRegister(currentInstruction[1].u.operand, regT0); + + emitJumpSlowCaseIfNotJSCell(regT0); + loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT1); + addSlowCase(branchTest32(NonZero, Address(regT1, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(NeedsThisConversion))); + +} + +void JIT::emit_op_profile_will_call(Instruction* currentInstruction) +{ + peek(regT1, OBJECT_OFFSETOF(JITStackFrame, enabledProfilerReference) / sizeof (void*)); + Jump noProfiler = branchTestPtr(Zero, Address(regT1)); + + JITStubCall stubCall(this, cti_op_profile_will_call); + stubCall.addArgument(currentInstruction[1].u.operand, regT1); + stubCall.call(); + noProfiler.link(this); + +} + +void JIT::emit_op_profile_did_call(Instruction* currentInstruction) +{ + peek(regT1, OBJECT_OFFSETOF(JITStackFrame, enabledProfilerReference) / sizeof (void*)); + Jump noProfiler = branchTestPtr(Zero, Address(regT1)); + + JITStubCall stubCall(this, cti_op_profile_did_call); + stubCall.addArgument(currentInstruction[1].u.operand, regT1); + stubCall.call(); + noProfiler.link(this); +} + + +// Slow cases + +void JIT::emitSlow_op_convert_this(Instruction* currentInstruction, Vector::iterator& iter) +{ + linkSlowCase(iter); + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_convert_this); + stubCall.addArgument(regT0); + stubCall.call(currentInstruction[1].u.operand); +} + +void JIT::emitSlow_op_construct_verify(Instruction* currentInstruction, Vector::iterator& iter) +{ + linkSlowCase(iter); + linkSlowCase(iter); + emitGetVirtualRegister(currentInstruction[2].u.operand, regT0); + emitPutVirtualRegister(currentInstruction[1].u.operand); +} + +void JIT::emitSlow_op_to_primitive(Instruction* currentInstruction, Vector::iterator& iter) +{ + linkSlowCase(iter); + + JITStubCall stubCall(this, cti_op_to_primitive); + stubCall.addArgument(regT0); + stubCall.call(currentInstruction[1].u.operand); +} + +void JIT::emitSlow_op_get_by_val(Instruction* currentInstruction, Vector::iterator& iter) +{ + // The slow void JIT::emitSlow_that handles accesses to arrays (below) may jump back up to here. + Label beginGetByValSlow(this); + + Jump notImm = getSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); + emitFastArithIntToImmNoCheck(regT1, regT1); + + notImm.link(this); + JITStubCall stubCall(this, cti_op_get_by_val); + stubCall.addArgument(regT0); + stubCall.addArgument(regT1); + stubCall.call(currentInstruction[1].u.operand); + emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_get_by_val)); + + // This is slow void JIT::emitSlow_that handles accesses to arrays above the fast cut-off. + // First, check if this is an access to the vector + linkSlowCase(iter); + branch32(AboveOrEqual, regT1, Address(regT2, OBJECT_OFFSETOF(ArrayStorage, m_vectorLength)), beginGetByValSlow); + + // okay, missed the fast region, but it is still in the vector. Get the value. + loadPtr(BaseIndex(regT2, regT1, ScalePtr, OBJECT_OFFSETOF(ArrayStorage, m_vector[0])), regT2); + // Check whether the value loaded is zero; if so we need to return undefined. + branchTestPtr(Zero, regT2, beginGetByValSlow); + move(regT2, regT0); + emitPutVirtualRegister(currentInstruction[1].u.operand, regT0); +} + +void JIT::emitSlow_op_loop_if_less(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned op1 = currentInstruction[1].u.operand; + unsigned op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + if (isOperandConstantImmediateInt(op2)) { + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_loop_if_less); + stubCall.addArgument(regT0); + stubCall.addArgument(op2, regT2); + stubCall.call(); + emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 3); + } else if (isOperandConstantImmediateInt(op1)) { + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_loop_if_less); + stubCall.addArgument(op1, regT2); + stubCall.addArgument(regT0); + stubCall.call(); + emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 3); + } else { + linkSlowCase(iter); + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_loop_if_less); + stubCall.addArgument(regT0); + stubCall.addArgument(regT1); + stubCall.call(); + emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 3); + } +} + +void JIT::emitSlow_op_loop_if_lesseq(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + if (isOperandConstantImmediateInt(op2)) { + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_loop_if_lesseq); + stubCall.addArgument(regT0); + stubCall.addArgument(currentInstruction[2].u.operand, regT2); + stubCall.call(); + emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 3); + } else { + linkSlowCase(iter); + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_loop_if_lesseq); + stubCall.addArgument(regT0); + stubCall.addArgument(regT1); + stubCall.call(); + emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 3); + } +} + +void JIT::emitSlow_op_put_by_val(Instruction* currentInstruction, Vector::iterator& iter) +{ + // Normal slow cases - either is not an immediate imm, or is an array. + Jump notImm = getSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); + emitFastArithIntToImmNoCheck(regT1, regT1); + + notImm.link(this); { + JITStubCall stubCall(this, cti_op_put_by_val); + stubCall.addArgument(regT0); + stubCall.addArgument(regT1); + stubCall.addArgument(currentInstruction[3].u.operand, regT2); + stubCall.call(); + emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_put_by_val)); + } + + // slow cases for immediate int accesses to arrays + linkSlowCase(iter); + linkSlowCase(iter); { + JITStubCall stubCall(this, cti_op_put_by_val_array); + stubCall.addArgument(regT0); + stubCall.addArgument(regT1); + stubCall.addArgument(currentInstruction[3].u.operand, regT2); + stubCall.call(); + } +} + +void JIT::emitSlow_op_loop_if_true(Instruction* currentInstruction, Vector::iterator& iter) +{ + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_jtrue); + stubCall.addArgument(regT0); + stubCall.call(); + emitJumpSlowToHot(branchTest32(NonZero, regT0), currentInstruction[2].u.operand + 2); +} + +void JIT::emitSlow_op_not(Instruction* currentInstruction, Vector::iterator& iter) +{ + linkSlowCase(iter); + xorPtr(Imm32(static_cast(JSImmediate::FullTagTypeBool)), regT0); + JITStubCall stubCall(this, cti_op_not); + stubCall.addArgument(regT0); + stubCall.call(currentInstruction[1].u.operand); +} + +void JIT::emitSlow_op_jfalse(Instruction* currentInstruction, Vector::iterator& iter) +{ + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_jtrue); + stubCall.addArgument(regT0); + stubCall.call(); + emitJumpSlowToHot(branchTest32(Zero, regT0), currentInstruction[2].u.operand + 2); // inverted! +} + +void JIT::emitSlow_op_bitnot(Instruction* currentInstruction, Vector::iterator& iter) +{ + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_bitnot); + stubCall.addArgument(regT0); + stubCall.call(currentInstruction[1].u.operand); +} + +void JIT::emitSlow_op_jtrue(Instruction* currentInstruction, Vector::iterator& iter) +{ + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_jtrue); + stubCall.addArgument(regT0); + stubCall.call(); + emitJumpSlowToHot(branchTest32(NonZero, regT0), currentInstruction[2].u.operand + 2); +} + +void JIT::emitSlow_op_bitxor(Instruction* currentInstruction, Vector::iterator& iter) +{ + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_bitxor); + stubCall.addArgument(regT0); + stubCall.addArgument(regT1); + stubCall.call(currentInstruction[1].u.operand); +} + +void JIT::emitSlow_op_bitor(Instruction* currentInstruction, Vector::iterator& iter) +{ + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_bitor); + stubCall.addArgument(regT0); + stubCall.addArgument(regT1); + stubCall.call(currentInstruction[1].u.operand); +} + +void JIT::emitSlow_op_eq(Instruction* currentInstruction, Vector::iterator& iter) +{ + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_eq); + stubCall.addArgument(regT0); + stubCall.addArgument(regT1); + stubCall.call(); + emitTagAsBoolImmediate(regT0); + emitPutVirtualRegister(currentInstruction[1].u.operand); +} + +void JIT::emitSlow_op_neq(Instruction* currentInstruction, Vector::iterator& iter) +{ + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_eq); + stubCall.addArgument(regT0); + stubCall.addArgument(regT1); + stubCall.call(); + xor32(Imm32(0x1), regT0); + emitTagAsBoolImmediate(regT0); + emitPutVirtualRegister(currentInstruction[1].u.operand); +} + +void JIT::emitSlow_op_stricteq(Instruction* currentInstruction, Vector::iterator& iter) +{ + linkSlowCase(iter); + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_stricteq); + stubCall.addArgument(regT0); + stubCall.addArgument(regT1); + stubCall.call(currentInstruction[1].u.operand); +} + +void JIT::emitSlow_op_nstricteq(Instruction* currentInstruction, Vector::iterator& iter) +{ + linkSlowCase(iter); + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_nstricteq); + stubCall.addArgument(regT0); + stubCall.addArgument(regT1); + stubCall.call(currentInstruction[1].u.operand); +} + +void JIT::emitSlow_op_instanceof(Instruction* currentInstruction, Vector::iterator& iter) +{ + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_instanceof); + stubCall.addArgument(currentInstruction[2].u.operand, regT2); + stubCall.addArgument(currentInstruction[3].u.operand, regT2); + stubCall.addArgument(currentInstruction[4].u.operand, regT2); + stubCall.call(currentInstruction[1].u.operand); +} + +void JIT::emitSlow_op_call(Instruction* currentInstruction, Vector::iterator& iter) +{ + compileOpCallSlowCase(currentInstruction, iter, m_callLinkInfoIndex++, op_call); +} + +void JIT::emitSlow_op_call_eval(Instruction* currentInstruction, Vector::iterator& iter) +{ + compileOpCallSlowCase(currentInstruction, iter, m_callLinkInfoIndex++, op_call_eval); +} + +void JIT::emitSlow_op_call_varargs(Instruction* currentInstruction, Vector::iterator& iter) +{ + compileOpCallVarargsSlowCase(currentInstruction, iter); +} + +void JIT::emitSlow_op_construct(Instruction* currentInstruction, Vector::iterator& iter) +{ + compileOpCallSlowCase(currentInstruction, iter, m_callLinkInfoIndex++, op_construct); +} + +void JIT::emitSlow_op_to_jsnumber(Instruction* currentInstruction, Vector::iterator& iter) +{ + linkSlowCaseIfNotJSCell(iter, currentInstruction[2].u.operand); + linkSlowCase(iter); + + JITStubCall stubCall(this, cti_op_to_jsnumber); + stubCall.addArgument(regT0); + stubCall.call(currentInstruction[1].u.operand); +} + +#endif // USE(JSVALUE32_64) + +} // namespace JSC + +#endif // ENABLE(JIT)