X-Git-Url: https://git.saurik.com/apple/javascriptcore.git/blobdiff_plain/14957cd040308e3eeec43d26bae5d76da13fcd85..HEAD:/bytecode/CodeBlock.cpp diff --git a/bytecode/CodeBlock.cpp b/bytecode/CodeBlock.cpp index fc99e90..3ad7527 100644 --- a/bytecode/CodeBlock.cpp +++ b/bytecode/CodeBlock.cpp @@ -1,5 +1,5 @@ /* - * Copyright (C) 2008, 2009, 2010 Apple Inc. All rights reserved. + * Copyright (C) 2008-2010, 2012-2015 Apple Inc. All rights reserved. * Copyright (C) 2008 Cameron Zwarich * * Redistribution and use in source and binary forms, with or without @@ -11,7 +11,7 @@ * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. - * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of + * 3. Neither the name of Apple Inc. ("Apple") nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * @@ -30,69 +30,169 @@ #include "config.h" #include "CodeBlock.h" +#include "BasicBlockLocation.h" #include "BytecodeGenerator.h" +#include "BytecodeUseDef.h" +#include "CallLinkStatus.h" +#include "DFGCapabilities.h" +#include "DFGCommon.h" +#include "DFGDriver.h" +#include "DFGJITCode.h" +#include "DFGWorklist.h" #include "Debugger.h" +#include "FunctionExecutableDump.h" #include "Interpreter.h" #include "JIT.h" -#include "JSActivation.h" +#include "JITStubs.h" +#include "JSCJSValue.h" #include "JSFunction.h" -#include "JSStaticScopeObject.h" -#include "JSValue.h" +#include "JSLexicalEnvironment.h" +#include "JSNameScope.h" +#include "LLIntEntrypoint.h" +#include "LowLevelInterpreter.h" +#include "JSCInlines.h" +#include "PolymorphicGetByIdList.h" +#include "PolymorphicPutByIdList.h" +#include "ProfilerDatabase.h" +#include "ReduceWhitespace.h" +#include "Repatch.h" #include "RepatchBuffer.h" -#include "UStringConcatenate.h" -#include +#include "SlotVisitorInlines.h" +#include "StackVisitor.h" +#include "TypeLocationCache.h" +#include "TypeProfiler.h" +#include "UnlinkedInstructionStream.h" +#include +#include #include +#include +#include -#define DUMP_CODE_BLOCK_STATISTICS 0 +#if ENABLE(DFG_JIT) +#include "DFGOperations.h" +#endif + +#if ENABLE(FTL_JIT) +#include "FTLJITCode.h" +#endif namespace JSC { -#if !defined(NDEBUG) || ENABLE(OPCODE_SAMPLING) +CString CodeBlock::inferredName() const +{ + switch (codeType()) { + case GlobalCode: + return ""; + case EvalCode: + return ""; + case FunctionCode: + return jsCast(ownerExecutable())->inferredName().utf8(); + default: + CRASH(); + return CString("", 0); + } +} + +bool CodeBlock::hasHash() const +{ + return !!m_hash; +} + +bool CodeBlock::isSafeToComputeHash() const +{ + return !isCompilationThread(); +} -static UString escapeQuotes(const UString& str) +CodeBlockHash CodeBlock::hash() const { - UString result = str; - size_t pos = 0; - while ((pos = result.find('\"', pos)) != notFound) { - result = makeUString(result.substringSharingImpl(0, pos), "\"\\\"\"", result.substringSharingImpl(pos + 1)); - pos += 4; + if (!m_hash) { + RELEASE_ASSERT(isSafeToComputeHash()); + m_hash = CodeBlockHash(ownerExecutable()->source(), specializationKind()); } - return result; + return m_hash; +} + +CString CodeBlock::sourceCodeForTools() const +{ + if (codeType() != FunctionCode) + return ownerExecutable()->source().toUTF8(); + + SourceProvider* provider = source(); + FunctionExecutable* executable = jsCast(ownerExecutable()); + UnlinkedFunctionExecutable* unlinked = executable->unlinkedExecutable(); + unsigned unlinkedStartOffset = unlinked->startOffset(); + unsigned linkedStartOffset = executable->source().startOffset(); + int delta = linkedStartOffset - unlinkedStartOffset; + unsigned rangeStart = delta + unlinked->unlinkedFunctionNameStart(); + unsigned rangeEnd = delta + unlinked->startOffset() + unlinked->sourceLength(); + return toCString( + "function ", + provider->source().impl()->utf8ForRange(rangeStart, rangeEnd - rangeStart)); } -static UString valueToSourceString(ExecState* exec, JSValue val) +CString CodeBlock::sourceCodeOnOneLine() const { - if (!val) - return "0"; + return reduceWhitespace(sourceCodeForTools()); +} - if (val.isString()) - return makeUString("\"", escapeQuotes(val.toString(exec)), "\""); +CString CodeBlock::hashAsStringIfPossible() const +{ + if (hasHash() || isSafeToComputeHash()) + return toCString(hash()); + return ""; +} - return val.toString(exec); +void CodeBlock::dumpAssumingJITType(PrintStream& out, JITCode::JITType jitType) const +{ + out.print(inferredName(), "#", hashAsStringIfPossible()); + out.print(":[", RawPointer(this), "->"); + if (!!m_alternative) + out.print(RawPointer(m_alternative.get()), "->"); + out.print(RawPointer(ownerExecutable()), ", ", jitType, codeType()); + + if (codeType() == FunctionCode) + out.print(specializationKind()); + out.print(", ", instructionCount()); + if (this->jitType() == JITCode::BaselineJIT && m_shouldAlwaysBeInlined) + out.print(" (ShouldAlwaysBeInlined)"); + if (ownerExecutable()->neverInline()) + out.print(" (NeverInline)"); + if (ownerExecutable()->didTryToEnterInLoop()) + out.print(" (DidTryToEnterInLoop)"); + if (ownerExecutable()->isStrictMode()) + out.print(" (StrictMode)"); + if (this->jitType() == JITCode::BaselineJIT && m_didFailFTLCompilation) + out.print(" (FTLFail)"); + if (this->jitType() == JITCode::BaselineJIT && m_hasBeenCompiledWithFTL) + out.print(" (HadFTLReplacement)"); + out.print("]"); } -static CString constantName(ExecState* exec, int k, JSValue value) +void CodeBlock::dump(PrintStream& out) const { - return makeUString(valueToSourceString(exec, value), "(@k", UString::number(k - FirstConstantRegisterIndex), ")").utf8(); + dumpAssumingJITType(out, jitType()); } static CString idName(int id0, const Identifier& ident) { - return makeUString(ident.ustring(), "(@id", UString::number(id0), ")").utf8(); + return toCString(ident.impl(), "(@id", id0, ")"); } -CString CodeBlock::registerName(ExecState* exec, int r) const +CString CodeBlock::registerName(int r) const { - if (r == missingThisObjectMarker()) - return ""; - if (isConstantRegisterIndex(r)) - return constantName(exec, r, getConstant(r)); + return constantName(r); + + return toCString(VirtualRegister(r)); +} - return makeUString("r", UString::number(r)).utf8(); +CString CodeBlock::constantName(int index) const +{ + JSValue value = getConstant(index); + return toCString(value, "(", VirtualRegister(index), ")"); } -static UString regexpToSourceString(RegExp* regExp) +static CString regexpToSourceString(RegExp* regExp) { char postfix[5] = { '/', 0, 0, 0, 0 }; int index = 1; @@ -103,19 +203,12 @@ static UString regexpToSourceString(RegExp* regExp) if (regExp->multiline()) postfix[index] = 'm'; - return makeUString("/", regExp->pattern(), postfix); + return toCString("/", regExp->pattern().impl(), postfix); } static CString regexpName(int re, RegExp* regexp) { - return makeUString(regexpToSourceString(regexp), "(@re", UString::number(re), ")").utf8(); -} - -static UString pointerToSourceString(void* p) -{ - char buffer[2 + 2 * sizeof(void*) + 1]; // 0x [two characters per byte] \0 - snprintf(buffer, sizeof(buffer), "%p", p); - return buffer; + return toCString(regexpToSourceString(regexp), "(@re", re, ")"); } NEVER_INLINE static const char* debugHookName(int debugHookID) @@ -135,1123 +228,1396 @@ NEVER_INLINE static const char* debugHookName(int debugHookID) return "didReachBreakpoint"; } - ASSERT_NOT_REACHED(); + RELEASE_ASSERT_NOT_REACHED(); return ""; } -void CodeBlock::printUnaryOp(ExecState* exec, int location, Vector::const_iterator& it, const char* op) const +void CodeBlock::printUnaryOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op) { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; - printf("[%4d] %s\t\t %s, %s\n", location, op, registerName(exec, r0).data(), registerName(exec, r1).data()); + printLocationAndOp(out, exec, location, it, op); + out.printf("%s, %s", registerName(r0).data(), registerName(r1).data()); } -void CodeBlock::printBinaryOp(ExecState* exec, int location, Vector::const_iterator& it, const char* op) const +void CodeBlock::printBinaryOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op) { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; - printf("[%4d] %s\t\t %s, %s, %s\n", location, op, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data()); + printLocationAndOp(out, exec, location, it, op); + out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); } -void CodeBlock::printConditionalJump(ExecState* exec, const Vector::const_iterator&, Vector::const_iterator& it, int location, const char* op) const +void CodeBlock::printConditionalJump(PrintStream& out, ExecState* exec, const Instruction*, const Instruction*& it, int location, const char* op) { int r0 = (++it)->u.operand; int offset = (++it)->u.operand; - printf("[%4d] %s\t\t %s, %d(->%d)\n", location, op, registerName(exec, r0).data(), offset, location + offset); + printLocationAndOp(out, exec, location, it, op); + out.printf("%s, %d(->%d)", registerName(r0).data(), offset, location + offset); } -void CodeBlock::printGetByIdOp(ExecState* exec, int location, Vector::const_iterator& it, const char* op) const +void CodeBlock::printGetByIdOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it) { + const char* op; + switch (exec->interpreter()->getOpcodeID(it->u.opcode)) { + case op_get_by_id: + op = "get_by_id"; + break; + case op_get_by_id_out_of_line: + op = "get_by_id_out_of_line"; + break; + case op_get_array_length: + op = "array_length"; + break; + default: + RELEASE_ASSERT_NOT_REACHED(); +#if COMPILER_QUIRK(CONSIDERS_UNREACHABLE_CODE) + op = 0; +#endif + } int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int id0 = (++it)->u.operand; - printf("[%4d] %s\t %s, %s, %s\n", location, op, registerName(exec, r0).data(), registerName(exec, r1).data(), idName(id0, m_identifiers[id0]).data()); - it += 4; + printLocationAndOp(out, exec, location, it, op); + out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), idName(id0, identifier(id0)).data()); + it += 4; // Increment up to the value profiler. } -void CodeBlock::printPutByIdOp(ExecState* exec, int location, Vector::const_iterator& it, const char* op) const +static void dumpStructure(PrintStream& out, const char* name, Structure* structure, const Identifier& ident) { - int r0 = (++it)->u.operand; - int id0 = (++it)->u.operand; - int r1 = (++it)->u.operand; - printf("[%4d] %s\t %s, %s, %s\n", location, op, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), registerName(exec, r1).data()); - it += 5; + if (!structure) + return; + + out.printf("%s = %p", name, structure); + + PropertyOffset offset = structure->getConcurrently(ident.impl()); + if (offset != invalidOffset) + out.printf(" (offset = %d)", offset); } -#if ENABLE(JIT) -static bool isGlobalResolve(OpcodeID opcodeID) +static void dumpChain(PrintStream& out, StructureChain* chain, const Identifier& ident) { - return opcodeID == op_resolve_global || opcodeID == op_resolve_global_dynamic; + out.printf("chain = %p: [", chain); + bool first = true; + for (WriteBarrier* currentStructure = chain->head(); + *currentStructure; + ++currentStructure) { + if (first) + first = false; + else + out.printf(", "); + dumpStructure(out, "struct", currentStructure->get(), ident); + } + out.printf("]"); } -static bool isPropertyAccess(OpcodeID opcodeID) +void CodeBlock::printGetByIdCacheStatus(PrintStream& out, ExecState* exec, int location, const StubInfoMap& map) { - switch (opcodeID) { - case op_get_by_id_self: - case op_get_by_id_proto: - case op_get_by_id_chain: - case op_get_by_id_self_list: - case op_get_by_id_proto_list: - case op_put_by_id_transition: - case op_put_by_id_replace: - case op_get_by_id: - case op_put_by_id: - case op_get_by_id_generic: - case op_put_by_id_generic: - case op_get_array_length: - case op_get_string_length: - return true; - default: - return false; + Instruction* instruction = instructions().begin() + location; + + const Identifier& ident = identifier(instruction[3].u.operand); + + UNUSED_PARAM(ident); // tell the compiler to shut up in certain platform configurations. + + if (exec->interpreter()->getOpcodeID(instruction[0].u.opcode) == op_get_array_length) + out.printf(" llint(array_length)"); + else if (Structure* structure = instruction[4].u.structure.get()) { + out.printf(" llint("); + dumpStructure(out, "struct", structure, ident); + out.printf(")"); + } + +#if ENABLE(JIT) + if (StructureStubInfo* stubPtr = map.get(CodeOrigin(location))) { + StructureStubInfo& stubInfo = *stubPtr; + if (stubInfo.resetByGC) + out.print(" (Reset By GC)"); + + if (stubInfo.seen) { + out.printf(" jit("); + + Structure* baseStructure = 0; + Structure* prototypeStructure = 0; + StructureChain* chain = 0; + PolymorphicGetByIdList* list = 0; + + switch (stubInfo.accessType) { + case access_get_by_id_self: + out.printf("self"); + baseStructure = stubInfo.u.getByIdSelf.baseObjectStructure.get(); + break; + case access_get_by_id_list: + out.printf("list"); + list = stubInfo.u.getByIdList.list; + break; + case access_unset: + out.printf("unset"); + break; + default: + RELEASE_ASSERT_NOT_REACHED(); + break; + } + + if (baseStructure) { + out.printf(", "); + dumpStructure(out, "struct", baseStructure, ident); + } + + if (prototypeStructure) { + out.printf(", "); + dumpStructure(out, "prototypeStruct", baseStructure, ident); + } + + if (chain) { + out.printf(", "); + dumpChain(out, chain, ident); + } + + if (list) { + out.printf(", list = %p: [", list); + for (unsigned i = 0; i < list->size(); ++i) { + if (i) + out.printf(", "); + out.printf("("); + dumpStructure(out, "base", list->at(i).structure(), ident); + if (list->at(i).chain()) { + out.printf(", "); + dumpChain(out, list->at(i).chain(), ident); + } + out.printf(")"); + } + out.printf("]"); + } + out.printf(")"); + } } +#else + UNUSED_PARAM(map); +#endif } -static unsigned instructionOffsetForNth(ExecState* exec, const Vector& instructions, int nth, bool (*predicate)(OpcodeID)) +void CodeBlock::printPutByIdCacheStatus(PrintStream& out, ExecState* exec, int location, const StubInfoMap& map) { - size_t i = 0; - while (i < instructions.size()) { - OpcodeID currentOpcode = exec->interpreter()->getOpcodeID(instructions[i].u.opcode); - if (predicate(currentOpcode)) { - if (!--nth) - return i; + Instruction* instruction = instructions().begin() + location; + + const Identifier& ident = identifier(instruction[2].u.operand); + + UNUSED_PARAM(ident); // tell the compiler to shut up in certain platform configurations. + + if (Structure* structure = instruction[4].u.structure.get()) { + switch (exec->interpreter()->getOpcodeID(instruction[0].u.opcode)) { + case op_put_by_id: + case op_put_by_id_out_of_line: + out.print(" llint("); + dumpStructure(out, "struct", structure, ident); + out.print(")"); + break; + + case op_put_by_id_transition_direct: + case op_put_by_id_transition_normal: + case op_put_by_id_transition_direct_out_of_line: + case op_put_by_id_transition_normal_out_of_line: + out.print(" llint("); + dumpStructure(out, "prev", structure, ident); + out.print(", "); + dumpStructure(out, "next", instruction[6].u.structure.get(), ident); + if (StructureChain* chain = instruction[7].u.structureChain.get()) { + out.print(", "); + dumpChain(out, chain, ident); + } + out.print(")"); + break; + + default: + out.print(" llint(unknown)"); + break; } - i += opcodeLengths[currentOpcode]; } - ASSERT_NOT_REACHED(); - return 0; +#if ENABLE(JIT) + if (StructureStubInfo* stubPtr = map.get(CodeOrigin(location))) { + StructureStubInfo& stubInfo = *stubPtr; + if (stubInfo.resetByGC) + out.print(" (Reset By GC)"); + + if (stubInfo.seen) { + out.printf(" jit("); + + switch (stubInfo.accessType) { + case access_put_by_id_replace: + out.print("replace, "); + dumpStructure(out, "struct", stubInfo.u.putByIdReplace.baseObjectStructure.get(), ident); + break; + case access_put_by_id_transition_normal: + case access_put_by_id_transition_direct: + out.print("transition, "); + dumpStructure(out, "prev", stubInfo.u.putByIdTransition.previousStructure.get(), ident); + out.print(", "); + dumpStructure(out, "next", stubInfo.u.putByIdTransition.structure.get(), ident); + if (StructureChain* chain = stubInfo.u.putByIdTransition.chain.get()) { + out.print(", "); + dumpChain(out, chain, ident); + } + break; + case access_put_by_id_list: { + out.printf("list = ["); + PolymorphicPutByIdList* list = stubInfo.u.putByIdList.list; + CommaPrinter comma; + for (unsigned i = 0; i < list->size(); ++i) { + out.print(comma, "("); + const PutByIdAccess& access = list->at(i); + + if (access.isReplace()) { + out.print("replace, "); + dumpStructure(out, "struct", access.oldStructure(), ident); + } else if (access.isSetter()) { + out.print("setter, "); + dumpStructure(out, "struct", access.oldStructure(), ident); + } else if (access.isCustom()) { + out.print("custom, "); + dumpStructure(out, "struct", access.oldStructure(), ident); + } else if (access.isTransition()) { + out.print("transition, "); + dumpStructure(out, "prev", access.oldStructure(), ident); + out.print(", "); + dumpStructure(out, "next", access.newStructure(), ident); + if (access.chain()) { + out.print(", "); + dumpChain(out, access.chain(), ident); + } + } else + out.print("unknown"); + + out.print(")"); + } + out.print("]"); + break; + } + case access_unset: + out.printf("unset"); + break; + default: + RELEASE_ASSERT_NOT_REACHED(); + break; + } + out.printf(")"); + } + } +#else + UNUSED_PARAM(map); +#endif } -static void printGlobalResolveInfo(const GlobalResolveInfo& resolveInfo, unsigned instructionOffset) +void CodeBlock::printCallOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op, CacheDumpMode cacheDumpMode, bool& hasPrintedProfiling, const CallLinkInfoMap& map) { - printf(" [%4d] %s: %s\n", instructionOffset, "resolve_global", pointerToSourceString(resolveInfo.structure).utf8().data()); + int dst = (++it)->u.operand; + int func = (++it)->u.operand; + int argCount = (++it)->u.operand; + int registerOffset = (++it)->u.operand; + printLocationAndOp(out, exec, location, it, op); + out.printf("%s, %s, %d, %d", registerName(dst).data(), registerName(func).data(), argCount, registerOffset); + if (cacheDumpMode == DumpCaches) { + LLIntCallLinkInfo* callLinkInfo = it[1].u.callLinkInfo; + if (callLinkInfo->lastSeenCallee) { + out.printf( + " llint(%p, exec %p)", + callLinkInfo->lastSeenCallee.get(), + callLinkInfo->lastSeenCallee->executable()); + } +#if ENABLE(JIT) + if (CallLinkInfo* info = map.get(CodeOrigin(location))) { + JSFunction* target = info->lastSeenCallee(); + if (target) + out.printf(" jit(%p, exec %p)", target, target->executable()); + } + + if (jitType() != JITCode::FTLJIT) + out.print(" status(", CallLinkStatus::computeFor(this, location, map), ")"); +#else + UNUSED_PARAM(map); +#endif + } + ++it; + ++it; + dumpArrayProfiling(out, it, hasPrintedProfiling); + dumpValueProfiling(out, it, hasPrintedProfiling); } -static void printStructureStubInfo(const StructureStubInfo& stubInfo, unsigned instructionOffset) +void CodeBlock::printPutByIdOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op) { - switch (stubInfo.accessType) { - case access_get_by_id_self: - printf(" [%4d] %s: %s\n", instructionOffset, "get_by_id_self", pointerToSourceString(stubInfo.u.getByIdSelf.baseObjectStructure).utf8().data()); - return; - case access_get_by_id_proto: - printf(" [%4d] %s: %s, %s\n", instructionOffset, "get_by_id_proto", pointerToSourceString(stubInfo.u.getByIdProto.baseObjectStructure).utf8().data(), pointerToSourceString(stubInfo.u.getByIdProto.prototypeStructure).utf8().data()); - return; - case access_get_by_id_chain: - printf(" [%4d] %s: %s, %s\n", instructionOffset, "get_by_id_chain", pointerToSourceString(stubInfo.u.getByIdChain.baseObjectStructure).utf8().data(), pointerToSourceString(stubInfo.u.getByIdChain.chain).utf8().data()); - return; - case access_get_by_id_self_list: - printf(" [%4d] %s: %s (%d)\n", instructionOffset, "op_get_by_id_self_list", pointerToSourceString(stubInfo.u.getByIdSelfList.structureList).utf8().data(), stubInfo.u.getByIdSelfList.listSize); - return; - case access_get_by_id_proto_list: - printf(" [%4d] %s: %s (%d)\n", instructionOffset, "op_get_by_id_proto_list", pointerToSourceString(stubInfo.u.getByIdProtoList.structureList).utf8().data(), stubInfo.u.getByIdProtoList.listSize); - return; - case access_put_by_id_transition: - printf(" [%4d] %s: %s, %s, %s\n", instructionOffset, "put_by_id_transition", pointerToSourceString(stubInfo.u.putByIdTransition.previousStructure).utf8().data(), pointerToSourceString(stubInfo.u.putByIdTransition.structure).utf8().data(), pointerToSourceString(stubInfo.u.putByIdTransition.chain).utf8().data()); - return; - case access_put_by_id_replace: - printf(" [%4d] %s: %s\n", instructionOffset, "put_by_id_replace", pointerToSourceString(stubInfo.u.putByIdReplace.baseObjectStructure).utf8().data()); - return; - case access_get_by_id: - printf(" [%4d] %s\n", instructionOffset, "get_by_id"); - return; - case access_put_by_id: - printf(" [%4d] %s\n", instructionOffset, "put_by_id"); - return; - case access_get_by_id_generic: - printf(" [%4d] %s\n", instructionOffset, "op_get_by_id_generic"); - return; - case access_put_by_id_generic: - printf(" [%4d] %s\n", instructionOffset, "op_put_by_id_generic"); - return; - case access_get_array_length: - printf(" [%4d] %s\n", instructionOffset, "op_get_array_length"); - return; - case access_get_string_length: - printf(" [%4d] %s\n", instructionOffset, "op_get_string_length"); - return; - default: - ASSERT_NOT_REACHED(); - } + int r0 = (++it)->u.operand; + int id0 = (++it)->u.operand; + int r1 = (++it)->u.operand; + printLocationAndOp(out, exec, location, it, op); + out.printf("%s, %s, %s", registerName(r0).data(), idName(id0, identifier(id0)).data(), registerName(r1).data()); + it += 5; } -#endif -void CodeBlock::printStructure(const char* name, const Instruction* vPC, int operand) const +void CodeBlock::dumpSource() { - unsigned instructionOffset = vPC - m_instructions.begin(); - printf(" [%4d] %s: %s\n", instructionOffset, name, pointerToSourceString(vPC[operand].u.structure).utf8().data()); + dumpSource(WTF::dataFile()); } -void CodeBlock::printStructures(const Instruction* vPC) const +void CodeBlock::dumpSource(PrintStream& out) { - Interpreter* interpreter = m_globalData->interpreter; - unsigned instructionOffset = vPC - m_instructions.begin(); - - if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id)) { - printStructure("get_by_id", vPC, 4); - return; - } - if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_self)) { - printStructure("get_by_id_self", vPC, 4); - return; - } - if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_proto)) { - printf(" [%4d] %s: %s, %s\n", instructionOffset, "get_by_id_proto", pointerToSourceString(vPC[4].u.structure).utf8().data(), pointerToSourceString(vPC[5].u.structure).utf8().data()); - return; - } - if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_transition)) { - printf(" [%4d] %s: %s, %s, %s\n", instructionOffset, "put_by_id_transition", pointerToSourceString(vPC[4].u.structure).utf8().data(), pointerToSourceString(vPC[5].u.structure).utf8().data(), pointerToSourceString(vPC[6].u.structureChain).utf8().data()); - return; - } - if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_chain)) { - printf(" [%4d] %s: %s, %s\n", instructionOffset, "get_by_id_chain", pointerToSourceString(vPC[4].u.structure).utf8().data(), pointerToSourceString(vPC[5].u.structureChain).utf8().data()); - return; - } - if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id)) { - printStructure("put_by_id", vPC, 4); - return; - } - if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_replace)) { - printStructure("put_by_id_replace", vPC, 4); - return; - } - if (vPC[0].u.opcode == interpreter->getOpcode(op_resolve_global)) { - printStructure("resolve_global", vPC, 4); - return; - } - if (vPC[0].u.opcode == interpreter->getOpcode(op_resolve_global_dynamic)) { - printStructure("resolve_global_dynamic", vPC, 4); + ScriptExecutable* executable = ownerExecutable(); + if (executable->isFunctionExecutable()) { + FunctionExecutable* functionExecutable = reinterpret_cast(executable); + String source = functionExecutable->source().provider()->getRange( + functionExecutable->parametersStartOffset(), + functionExecutable->typeProfilingEndOffset() + 1); // Type profiling end offset is the character before the '}'. + + out.print("function ", inferredName(), source); return; } - - // These m_instructions doesn't ref Structures. - ASSERT(vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_call) || vPC[0].u.opcode == interpreter->getOpcode(op_call_eval) || vPC[0].u.opcode == interpreter->getOpcode(op_construct)); + out.print(executable->source().toString()); } -void CodeBlock::dump(ExecState* exec) const +void CodeBlock::dumpBytecode() { - if (m_instructions.isEmpty()) { - printf("No instructions available.\n"); - return; - } + dumpBytecode(WTF::dataFile()); +} +void CodeBlock::dumpBytecode(PrintStream& out) +{ + // We only use the ExecState* for things that don't actually lead to JS execution, + // like converting a JSString to a String. Hence the globalExec is appropriate. + ExecState* exec = m_globalObject->globalExec(); + size_t instructionCount = 0; - for (size_t i = 0; i < m_instructions.size(); i += opcodeLengths[exec->interpreter()->getOpcodeID(m_instructions[i].u.opcode)]) + for (size_t i = 0; i < instructions().size(); i += opcodeLengths[exec->interpreter()->getOpcodeID(instructions()[i].u.opcode)]) ++instructionCount; - printf("%lu m_instructions; %lu bytes at %p; %d parameter(s); %d callee register(s)\n\n", - static_cast(instructionCount), - static_cast(m_instructions.size() * sizeof(Instruction)), - this, m_numParameters, m_numCalleeRegisters); - - Vector::const_iterator begin = m_instructions.begin(); - Vector::const_iterator end = m_instructions.end(); - for (Vector::const_iterator it = begin; it != end; ++it) - dump(exec, begin, it); - - if (!m_identifiers.isEmpty()) { - printf("\nIdentifiers:\n"); + out.print(*this); + out.printf( + ": %lu m_instructions; %lu bytes; %d parameter(s); %d callee register(s); %d variable(s)", + static_cast(instructions().size()), + static_cast(instructions().size() * sizeof(Instruction)), + m_numParameters, m_numCalleeRegisters, m_numVars); + if (needsActivation() && codeType() == FunctionCode) + out.printf("; lexical environment in r%d", activationRegister().offset()); + out.printf("\n"); + + StubInfoMap stubInfos; + CallLinkInfoMap callLinkInfos; + getStubInfoMap(stubInfos); + getCallLinkInfoMap(callLinkInfos); + + const Instruction* begin = instructions().begin(); + const Instruction* end = instructions().end(); + for (const Instruction* it = begin; it != end; ++it) + dumpBytecode(out, exec, begin, it, stubInfos, callLinkInfos); + + if (numberOfIdentifiers()) { + out.printf("\nIdentifiers:\n"); size_t i = 0; do { - printf(" id%u = %s\n", static_cast(i), m_identifiers[i].ustring().utf8().data()); + out.printf(" id%u = %s\n", static_cast(i), identifier(i).string().utf8().data()); ++i; - } while (i != m_identifiers.size()); + } while (i != numberOfIdentifiers()); } if (!m_constantRegisters.isEmpty()) { - printf("\nConstants:\n"); - unsigned registerIndex = m_numVars; + out.printf("\nConstants:\n"); size_t i = 0; do { - printf(" k%u = %s\n", registerIndex, valueToSourceString(exec, m_constantRegisters[i].get()).utf8().data()); + const char* sourceCodeRepresentationDescription = nullptr; + switch (m_constantsSourceCodeRepresentation[i]) { + case SourceCodeRepresentation::Double: + sourceCodeRepresentationDescription = ": in source as double"; + break; + case SourceCodeRepresentation::Integer: + sourceCodeRepresentationDescription = ": in source as integer"; + break; + case SourceCodeRepresentation::Other: + sourceCodeRepresentationDescription = ""; + break; + } + out.printf(" k%u = %s%s\n", static_cast(i), toCString(m_constantRegisters[i].get()).data(), sourceCodeRepresentationDescription); ++i; - ++registerIndex; } while (i < m_constantRegisters.size()); } - if (m_rareData && !m_rareData->m_regexps.isEmpty()) { - printf("\nm_regexps:\n"); + if (size_t count = m_unlinkedCode->numberOfRegExps()) { + out.printf("\nm_regexps:\n"); size_t i = 0; do { - printf(" re%u = %s\n", static_cast(i), regexpToSourceString(m_rareData->m_regexps[i].get()).utf8().data()); + out.printf(" re%u = %s\n", static_cast(i), regexpToSourceString(m_unlinkedCode->regexp(i)).data()); ++i; - } while (i < m_rareData->m_regexps.size()); - } - -#if ENABLE(JIT) - if (!m_globalResolveInfos.isEmpty() || !m_structureStubInfos.isEmpty()) - printf("\nStructures:\n"); - - if (!m_globalResolveInfos.isEmpty()) { - size_t i = 0; - do { - printGlobalResolveInfo(m_globalResolveInfos[i], instructionOffsetForNth(exec, m_instructions, i + 1, isGlobalResolve)); - ++i; - } while (i < m_globalResolveInfos.size()); - } - if (!m_structureStubInfos.isEmpty()) { - size_t i = 0; - do { - printStructureStubInfo(m_structureStubInfos[i], instructionOffsetForNth(exec, m_instructions, i + 1, isPropertyAccess)); - ++i; - } while (i < m_structureStubInfos.size()); - } -#endif -#if ENABLE(INTERPRETER) - if (!m_globalResolveInstructions.isEmpty() || !m_propertyAccessInstructions.isEmpty()) - printf("\nStructures:\n"); - - if (!m_globalResolveInstructions.isEmpty()) { - size_t i = 0; - do { - printStructures(&m_instructions[m_globalResolveInstructions[i]]); - ++i; - } while (i < m_globalResolveInstructions.size()); - } - if (!m_propertyAccessInstructions.isEmpty()) { - size_t i = 0; - do { - printStructures(&m_instructions[m_propertyAccessInstructions[i]]); - ++i; - } while (i < m_propertyAccessInstructions.size()); + } while (i < count); } -#endif if (m_rareData && !m_rareData->m_exceptionHandlers.isEmpty()) { - printf("\nException Handlers:\n"); + out.printf("\nException Handlers:\n"); unsigned i = 0; do { - printf("\t %d: { start: [%4d] end: [%4d] target: [%4d] }\n", i + 1, m_rareData->m_exceptionHandlers[i].start, m_rareData->m_exceptionHandlers[i].end, m_rareData->m_exceptionHandlers[i].target); + HandlerInfo& handler = m_rareData->m_exceptionHandlers[i]; + out.printf("\t %d: { start: [%4d] end: [%4d] target: [%4d] depth: [%4d] } %s\n", + i + 1, handler.start, handler.end, handler.target, handler.scopeDepth, handler.typeName()); ++i; } while (i < m_rareData->m_exceptionHandlers.size()); } - if (m_rareData && !m_rareData->m_immediateSwitchJumpTables.isEmpty()) { - printf("Immediate Switch Jump Tables:\n"); + if (m_rareData && !m_rareData->m_switchJumpTables.isEmpty()) { + out.printf("Switch Jump Tables:\n"); unsigned i = 0; do { - printf(" %1d = {\n", i); + out.printf(" %1d = {\n", i); int entry = 0; - Vector::const_iterator end = m_rareData->m_immediateSwitchJumpTables[i].branchOffsets.end(); - for (Vector::const_iterator iter = m_rareData->m_immediateSwitchJumpTables[i].branchOffsets.begin(); iter != end; ++iter, ++entry) { + Vector::const_iterator end = m_rareData->m_switchJumpTables[i].branchOffsets.end(); + for (Vector::const_iterator iter = m_rareData->m_switchJumpTables[i].branchOffsets.begin(); iter != end; ++iter, ++entry) { if (!*iter) continue; - printf("\t\t%4d => %04d\n", entry + m_rareData->m_immediateSwitchJumpTables[i].min, *iter); + out.printf("\t\t%4d => %04d\n", entry + m_rareData->m_switchJumpTables[i].min, *iter); } - printf(" }\n"); - ++i; - } while (i < m_rareData->m_immediateSwitchJumpTables.size()); - } - - if (m_rareData && !m_rareData->m_characterSwitchJumpTables.isEmpty()) { - printf("\nCharacter Switch Jump Tables:\n"); - unsigned i = 0; - do { - printf(" %1d = {\n", i); - int entry = 0; - Vector::const_iterator end = m_rareData->m_characterSwitchJumpTables[i].branchOffsets.end(); - for (Vector::const_iterator iter = m_rareData->m_characterSwitchJumpTables[i].branchOffsets.begin(); iter != end; ++iter, ++entry) { - if (!*iter) - continue; - ASSERT(!((i + m_rareData->m_characterSwitchJumpTables[i].min) & ~0xFFFF)); - UChar ch = static_cast(entry + m_rareData->m_characterSwitchJumpTables[i].min); - printf("\t\t\"%s\" => %04d\n", UString(&ch, 1).utf8().data(), *iter); - } - printf(" }\n"); + out.printf(" }\n"); ++i; - } while (i < m_rareData->m_characterSwitchJumpTables.size()); + } while (i < m_rareData->m_switchJumpTables.size()); } if (m_rareData && !m_rareData->m_stringSwitchJumpTables.isEmpty()) { - printf("\nString Switch Jump Tables:\n"); + out.printf("\nString Switch Jump Tables:\n"); unsigned i = 0; do { - printf(" %1d = {\n", i); + out.printf(" %1d = {\n", i); StringJumpTable::StringOffsetTable::const_iterator end = m_rareData->m_stringSwitchJumpTables[i].offsetTable.end(); for (StringJumpTable::StringOffsetTable::const_iterator iter = m_rareData->m_stringSwitchJumpTables[i].offsetTable.begin(); iter != end; ++iter) - printf("\t\t\"%s\" => %04d\n", UString(iter->first).utf8().data(), iter->second.branchOffset); - printf(" }\n"); + out.printf("\t\t\"%s\" => %04d\n", iter->key->utf8().data(), iter->value.branchOffset); + out.printf(" }\n"); ++i; } while (i < m_rareData->m_stringSwitchJumpTables.size()); } - printf("\n"); + out.printf("\n"); +} + +void CodeBlock::beginDumpProfiling(PrintStream& out, bool& hasPrintedProfiling) +{ + if (hasPrintedProfiling) { + out.print("; "); + return; + } + + out.print(" "); + hasPrintedProfiling = true; +} + +void CodeBlock::dumpValueProfiling(PrintStream& out, const Instruction*& it, bool& hasPrintedProfiling) +{ + ConcurrentJITLocker locker(m_lock); + + ++it; + CString description = it->u.profile->briefDescription(locker); + if (!description.length()) + return; + beginDumpProfiling(out, hasPrintedProfiling); + out.print(description); +} + +void CodeBlock::dumpArrayProfiling(PrintStream& out, const Instruction*& it, bool& hasPrintedProfiling) +{ + ConcurrentJITLocker locker(m_lock); + + ++it; + if (!it->u.arrayProfile) + return; + CString description = it->u.arrayProfile->briefDescription(locker, this); + if (!description.length()) + return; + beginDumpProfiling(out, hasPrintedProfiling); + out.print(description); +} + +void CodeBlock::dumpRareCaseProfile(PrintStream& out, const char* name, RareCaseProfile* profile, bool& hasPrintedProfiling) +{ + if (!profile || !profile->m_counter) + return; + + beginDumpProfiling(out, hasPrintedProfiling); + out.print(name, profile->m_counter); +} + +void CodeBlock::printLocationAndOp(PrintStream& out, ExecState*, int location, const Instruction*&, const char* op) +{ + out.printf("[%4d] %-17s ", location, op); +} + +void CodeBlock::printLocationOpAndRegisterOperand(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op, int operand) +{ + printLocationAndOp(out, exec, location, it, op); + out.printf("%s", registerName(operand).data()); } -void CodeBlock::dump(ExecState* exec, const Vector::const_iterator& begin, Vector::const_iterator& it) const +void CodeBlock::dumpBytecode( + PrintStream& out, ExecState* exec, const Instruction* begin, const Instruction*& it, + const StubInfoMap& stubInfos, const CallLinkInfoMap& callLinkInfos) { int location = it - begin; - switch (exec->interpreter()->getOpcodeID(it->u.opcode)) { + bool hasPrintedProfiling = false; + OpcodeID opcode = exec->interpreter()->getOpcodeID(it->u.opcode); + switch (opcode) { case op_enter: { - printf("[%4d] enter\n", location); + printLocationAndOp(out, exec, location, it, "enter"); break; } - case op_create_activation: { + case op_create_lexical_environment: { int r0 = (++it)->u.operand; - printf("[%4d] create_activation %s\n", location, registerName(exec, r0).data()); + int r1 = (++it)->u.operand; + printLocationAndOp(out, exec, location, it, "create_lexical_environment"); + out.printf("%s, %s", registerName(r0).data(), registerName(r1).data()); + break; + } + case op_get_scope: { + int r0 = (++it)->u.operand; + printLocationOpAndRegisterOperand(out, exec, location, it, "get_scope", r0); break; } - case op_create_arguments: { + case op_create_direct_arguments: { int r0 = (++it)->u.operand; - printf("[%4d] create_arguments\t %s\n", location, registerName(exec, r0).data()); + printLocationAndOp(out, exec, location, it, "create_direct_arguments"); + out.printf("%s", registerName(r0).data()); break; } - case op_init_lazy_reg: { + case op_create_scoped_arguments: { int r0 = (++it)->u.operand; - printf("[%4d] init_lazy_reg\t %s\n", location, registerName(exec, r0).data()); + int r1 = (++it)->u.operand; + printLocationAndOp(out, exec, location, it, "create_scoped_arguments"); + out.printf("%s, %s", registerName(r0).data(), registerName(r1).data()); break; } - case op_get_callee: { + case op_create_out_of_band_arguments: { int r0 = (++it)->u.operand; - printf("[%4d] op_get_callee %s\n", location, registerName(exec, r0).data()); + printLocationAndOp(out, exec, location, it, "create_out_of_band_arguments"); + out.printf("%s", registerName(r0).data()); break; } case op_create_this: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; - printf("[%4d] create_this %s %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data()); + unsigned inferredInlineCapacity = (++it)->u.operand; + unsigned cachedFunction = (++it)->u.operand; + printLocationAndOp(out, exec, location, it, "create_this"); + out.printf("%s, %s, %u, %u", registerName(r0).data(), registerName(r1).data(), inferredInlineCapacity, cachedFunction); break; } - case op_convert_this: { + case op_to_this: { int r0 = (++it)->u.operand; - printf("[%4d] convert_this %s\n", location, registerName(exec, r0).data()); + printLocationOpAndRegisterOperand(out, exec, location, it, "to_this", r0); + Structure* structure = (++it)->u.structure.get(); + if (structure) + out.print(", cache(struct = ", RawPointer(structure), ")"); + out.print(", ", (++it)->u.toThisStatus); break; } - case op_convert_this_strict: { + case op_check_tdz: { int r0 = (++it)->u.operand; - printf("[%4d] convert_this_strict %s\n", location, registerName(exec, r0).data()); + printLocationOpAndRegisterOperand(out, exec, location, it, "op_check_tdz", r0); break; } case op_new_object: { int r0 = (++it)->u.operand; - printf("[%4d] new_object\t %s\n", location, registerName(exec, r0).data()); + unsigned inferredInlineCapacity = (++it)->u.operand; + printLocationAndOp(out, exec, location, it, "new_object"); + out.printf("%s, %u", registerName(r0).data(), inferredInlineCapacity); + ++it; // Skip object allocation profile. break; } case op_new_array: { int dst = (++it)->u.operand; int argv = (++it)->u.operand; int argc = (++it)->u.operand; - printf("[%4d] new_array\t %s, %s, %d\n", location, registerName(exec, dst).data(), registerName(exec, argv).data(), argc); + printLocationAndOp(out, exec, location, it, "new_array"); + out.printf("%s, %s, %d", registerName(dst).data(), registerName(argv).data(), argc); + ++it; // Skip array allocation profile. + break; + } + case op_new_array_with_size: { + int dst = (++it)->u.operand; + int length = (++it)->u.operand; + printLocationAndOp(out, exec, location, it, "new_array_with_size"); + out.printf("%s, %s", registerName(dst).data(), registerName(length).data()); + ++it; // Skip array allocation profile. break; } case op_new_array_buffer: { int dst = (++it)->u.operand; int argv = (++it)->u.operand; int argc = (++it)->u.operand; - printf("[%4d] new_array_buffer %s, %d, %d\n", location, registerName(exec, dst).data(), argv, argc); + printLocationAndOp(out, exec, location, it, "new_array_buffer"); + out.printf("%s, %d, %d", registerName(dst).data(), argv, argc); + ++it; // Skip array allocation profile. break; } case op_new_regexp: { int r0 = (++it)->u.operand; int re0 = (++it)->u.operand; - printf("[%4d] new_regexp\t %s, %s\n", location, registerName(exec, r0).data(), regexpName(re0, regexp(re0)).data()); + printLocationAndOp(out, exec, location, it, "new_regexp"); + out.printf("%s, ", registerName(r0).data()); + if (r0 >=0 && r0 < (int)m_unlinkedCode->numberOfRegExps()) + out.printf("%s", regexpName(re0, regexp(re0)).data()); + else + out.printf("bad_regexp(%d)", re0); break; } case op_mov: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; - printf("[%4d] mov\t\t %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data()); + printLocationAndOp(out, exec, location, it, "mov"); + out.printf("%s, %s", registerName(r0).data(), registerName(r1).data()); + break; + } + case op_profile_type: { + int r0 = (++it)->u.operand; + ++it; + ++it; + ++it; + ++it; + printLocationAndOp(out, exec, location, it, "op_profile_type"); + out.printf("%s", registerName(r0).data()); + break; + } + case op_profile_control_flow: { + BasicBlockLocation* basicBlockLocation = (++it)->u.basicBlockLocation; + printLocationAndOp(out, exec, location, it, "profile_control_flow"); + out.printf("[%d, %d]", basicBlockLocation->startOffset(), basicBlockLocation->endOffset()); break; } case op_not: { - printUnaryOp(exec, location, it, "not"); + printUnaryOp(out, exec, location, it, "not"); break; } case op_eq: { - printBinaryOp(exec, location, it, "eq"); + printBinaryOp(out, exec, location, it, "eq"); break; } case op_eq_null: { - printUnaryOp(exec, location, it, "eq_null"); + printUnaryOp(out, exec, location, it, "eq_null"); break; } case op_neq: { - printBinaryOp(exec, location, it, "neq"); + printBinaryOp(out, exec, location, it, "neq"); break; } case op_neq_null: { - printUnaryOp(exec, location, it, "neq_null"); + printUnaryOp(out, exec, location, it, "neq_null"); break; } case op_stricteq: { - printBinaryOp(exec, location, it, "stricteq"); + printBinaryOp(out, exec, location, it, "stricteq"); break; } case op_nstricteq: { - printBinaryOp(exec, location, it, "nstricteq"); + printBinaryOp(out, exec, location, it, "nstricteq"); break; } case op_less: { - printBinaryOp(exec, location, it, "less"); + printBinaryOp(out, exec, location, it, "less"); break; } case op_lesseq: { - printBinaryOp(exec, location, it, "lesseq"); + printBinaryOp(out, exec, location, it, "lesseq"); break; } - case op_pre_inc: { - int r0 = (++it)->u.operand; - printf("[%4d] pre_inc\t\t %s\n", location, registerName(exec, r0).data()); + case op_greater: { + printBinaryOp(out, exec, location, it, "greater"); + break; + } + case op_greatereq: { + printBinaryOp(out, exec, location, it, "greatereq"); break; } - case op_pre_dec: { + case op_inc: { int r0 = (++it)->u.operand; - printf("[%4d] pre_dec\t\t %s\n", location, registerName(exec, r0).data()); + printLocationOpAndRegisterOperand(out, exec, location, it, "inc", r0); break; } - case op_post_inc: { - printUnaryOp(exec, location, it, "post_inc"); + case op_dec: { + int r0 = (++it)->u.operand; + printLocationOpAndRegisterOperand(out, exec, location, it, "dec", r0); break; } - case op_post_dec: { - printUnaryOp(exec, location, it, "post_dec"); + case op_to_number: { + printUnaryOp(out, exec, location, it, "to_number"); break; } - case op_to_jsnumber: { - printUnaryOp(exec, location, it, "to_jsnumber"); + case op_to_string: { + printUnaryOp(out, exec, location, it, "to_string"); break; } case op_negate: { - printUnaryOp(exec, location, it, "negate"); + printUnaryOp(out, exec, location, it, "negate"); break; } case op_add: { - printBinaryOp(exec, location, it, "add"); + printBinaryOp(out, exec, location, it, "add"); ++it; break; } case op_mul: { - printBinaryOp(exec, location, it, "mul"); + printBinaryOp(out, exec, location, it, "mul"); ++it; break; } case op_div: { - printBinaryOp(exec, location, it, "div"); + printBinaryOp(out, exec, location, it, "div"); ++it; break; } case op_mod: { - printBinaryOp(exec, location, it, "mod"); + printBinaryOp(out, exec, location, it, "mod"); break; } case op_sub: { - printBinaryOp(exec, location, it, "sub"); + printBinaryOp(out, exec, location, it, "sub"); ++it; break; } case op_lshift: { - printBinaryOp(exec, location, it, "lshift"); + printBinaryOp(out, exec, location, it, "lshift"); break; } case op_rshift: { - printBinaryOp(exec, location, it, "rshift"); + printBinaryOp(out, exec, location, it, "rshift"); break; } case op_urshift: { - printBinaryOp(exec, location, it, "urshift"); + printBinaryOp(out, exec, location, it, "urshift"); break; } case op_bitand: { - printBinaryOp(exec, location, it, "bitand"); + printBinaryOp(out, exec, location, it, "bitand"); ++it; break; } case op_bitxor: { - printBinaryOp(exec, location, it, "bitxor"); + printBinaryOp(out, exec, location, it, "bitxor"); ++it; break; } case op_bitor: { - printBinaryOp(exec, location, it, "bitor"); + printBinaryOp(out, exec, location, it, "bitor"); ++it; break; } - case op_bitnot: { - printUnaryOp(exec, location, it, "bitnot"); - break; - } case op_check_has_instance: { - int base = (++it)->u.operand; - printf("[%4d] check_has_instance\t\t %s\n", location, registerName(exec, base).data()); + int r0 = (++it)->u.operand; + int r1 = (++it)->u.operand; + int r2 = (++it)->u.operand; + int offset = (++it)->u.operand; + printLocationAndOp(out, exec, location, it, "check_has_instance"); + out.printf("%s, %s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), registerName(r2).data(), offset, location + offset); break; } case op_instanceof: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; - int r3 = (++it)->u.operand; - printf("[%4d] instanceof\t\t %s, %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data(), registerName(exec, r3).data()); + printLocationAndOp(out, exec, location, it, "instanceof"); + out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); + break; + } + case op_unsigned: { + printUnaryOp(out, exec, location, it, "unsigned"); break; } case op_typeof: { - printUnaryOp(exec, location, it, "typeof"); + printUnaryOp(out, exec, location, it, "typeof"); break; } case op_is_undefined: { - printUnaryOp(exec, location, it, "is_undefined"); + printUnaryOp(out, exec, location, it, "is_undefined"); break; } case op_is_boolean: { - printUnaryOp(exec, location, it, "is_boolean"); + printUnaryOp(out, exec, location, it, "is_boolean"); break; } case op_is_number: { - printUnaryOp(exec, location, it, "is_number"); + printUnaryOp(out, exec, location, it, "is_number"); break; } case op_is_string: { - printUnaryOp(exec, location, it, "is_string"); + printUnaryOp(out, exec, location, it, "is_string"); break; } case op_is_object: { - printUnaryOp(exec, location, it, "is_object"); + printUnaryOp(out, exec, location, it, "is_object"); + break; + } + case op_is_object_or_null: { + printUnaryOp(out, exec, location, it, "is_object_or_null"); break; } case op_is_function: { - printUnaryOp(exec, location, it, "is_function"); + printUnaryOp(out, exec, location, it, "is_function"); break; } case op_in: { - printBinaryOp(exec, location, it, "in"); + printBinaryOp(out, exec, location, it, "in"); break; } - case op_resolve: { - int r0 = (++it)->u.operand; - int id0 = (++it)->u.operand; - printf("[%4d] resolve\t\t %s, %s\n", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data()); + case op_init_global_const_nop: { + printLocationAndOp(out, exec, location, it, "init_global_const_nop"); + it++; + it++; + it++; + it++; break; } - case op_resolve_skip: { + case op_init_global_const: { + WriteBarrier* variablePointer = (++it)->u.variablePointer; int r0 = (++it)->u.operand; - int id0 = (++it)->u.operand; - int skipLevels = (++it)->u.operand; - printf("[%4d] resolve_skip\t %s, %s, %d\n", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), skipLevels); + printLocationAndOp(out, exec, location, it, "init_global_const"); + out.printf("g%d(%p), %s", m_globalObject->findVariableIndex(variablePointer).offset(), variablePointer, registerName(r0).data()); + it++; + it++; break; } - case op_resolve_global: { - int r0 = (++it)->u.operand; - int id0 = (++it)->u.operand; - printf("[%4d] resolve_global\t %s, %s\n", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data()); - it += 2; + case op_get_by_id: + case op_get_by_id_out_of_line: + case op_get_array_length: { + printGetByIdOp(out, exec, location, it); + printGetByIdCacheStatus(out, exec, location, stubInfos); + dumpValueProfiling(out, it, hasPrintedProfiling); break; } - case op_resolve_global_dynamic: { - int r0 = (++it)->u.operand; - int id0 = (++it)->u.operand; - JSValue scope = JSValue((++it)->u.jsCell.get()); - ++it; - int depth = (++it)->u.operand; - printf("[%4d] resolve_global_dynamic\t %s, %s, %s, %d\n", location, registerName(exec, r0).data(), valueToSourceString(exec, scope).utf8().data(), idName(id0, m_identifiers[id0]).data(), depth); + case op_put_by_id: { + printPutByIdOp(out, exec, location, it, "put_by_id"); + printPutByIdCacheStatus(out, exec, location, stubInfos); break; } - case op_get_scoped_var: { - int r0 = (++it)->u.operand; - int index = (++it)->u.operand; - int skipLevels = (++it)->u.operand; - printf("[%4d] get_scoped_var\t %s, %d, %d\n", location, registerName(exec, r0).data(), index, skipLevels); + case op_put_by_id_out_of_line: { + printPutByIdOp(out, exec, location, it, "put_by_id_out_of_line"); + printPutByIdCacheStatus(out, exec, location, stubInfos); break; } - case op_put_scoped_var: { - int index = (++it)->u.operand; - int skipLevels = (++it)->u.operand; - int r0 = (++it)->u.operand; - printf("[%4d] put_scoped_var\t %d, %d, %s\n", location, index, skipLevels, registerName(exec, r0).data()); + case op_put_by_id_transition_direct: { + printPutByIdOp(out, exec, location, it, "put_by_id_transition_direct"); + printPutByIdCacheStatus(out, exec, location, stubInfos); break; } - case op_get_global_var: { - int r0 = (++it)->u.operand; - int index = (++it)->u.operand; - printf("[%4d] get_global_var\t %s, %d\n", location, registerName(exec, r0).data(), index); + case op_put_by_id_transition_direct_out_of_line: { + printPutByIdOp(out, exec, location, it, "put_by_id_transition_direct_out_of_line"); + printPutByIdCacheStatus(out, exec, location, stubInfos); break; } - case op_put_global_var: { - int index = (++it)->u.operand; - int r0 = (++it)->u.operand; - printf("[%4d] put_global_var\t %d, %s\n", location, index, registerName(exec, r0).data()); + case op_put_by_id_transition_normal: { + printPutByIdOp(out, exec, location, it, "put_by_id_transition_normal"); + printPutByIdCacheStatus(out, exec, location, stubInfos); break; } - case op_resolve_base: { - int r0 = (++it)->u.operand; - int id0 = (++it)->u.operand; - int isStrict = (++it)->u.operand; - printf("[%4d] resolve_base%s\t %s, %s\n", location, isStrict ? "_strict" : "", registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data()); + case op_put_by_id_transition_normal_out_of_line: { + printPutByIdOp(out, exec, location, it, "put_by_id_transition_normal_out_of_line"); + printPutByIdCacheStatus(out, exec, location, stubInfos); break; } - case op_ensure_property_exists: { + case op_put_getter_by_id: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; - printf("[%4d] ensure_property_exists\t %s, %s\n", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data()); + int r1 = (++it)->u.operand; + printLocationAndOp(out, exec, location, it, "put_getter_by_id"); + out.printf("%s, %s, %s", registerName(r0).data(), idName(id0, identifier(id0)).data(), registerName(r1).data()); break; } - case op_resolve_with_base: { - int r0 = (++it)->u.operand; - int r1 = (++it)->u.operand; - int id0 = (++it)->u.operand; - printf("[%4d] resolve_with_base %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), idName(id0, m_identifiers[id0]).data()); - break; - } - case op_get_by_id: { - printGetByIdOp(exec, location, it, "get_by_id"); - break; - } - case op_get_by_id_self: { - printGetByIdOp(exec, location, it, "get_by_id_self"); - break; - } - case op_get_by_id_self_list: { - printGetByIdOp(exec, location, it, "get_by_id_self_list"); - break; - } - case op_get_by_id_proto: { - printGetByIdOp(exec, location, it, "get_by_id_proto"); - break; - } - case op_get_by_id_proto_list: { - printGetByIdOp(exec, location, it, "op_get_by_id_proto_list"); - break; - } - case op_get_by_id_chain: { - printGetByIdOp(exec, location, it, "get_by_id_chain"); - break; - } - case op_get_by_id_getter_self: { - printGetByIdOp(exec, location, it, "get_by_id_getter_self"); - break; - } - case op_get_by_id_getter_self_list: { - printGetByIdOp(exec, location, it, "get_by_id_getter_self_list"); - break; - } - case op_get_by_id_getter_proto: { - printGetByIdOp(exec, location, it, "get_by_id_getter_proto"); - break; - } - case op_get_by_id_getter_proto_list: { - printGetByIdOp(exec, location, it, "get_by_id_getter_proto_list"); - break; - } - case op_get_by_id_getter_chain: { - printGetByIdOp(exec, location, it, "get_by_id_getter_chain"); - break; - } - case op_get_by_id_custom_self: { - printGetByIdOp(exec, location, it, "get_by_id_custom_self"); - break; - } - case op_get_by_id_custom_self_list: { - printGetByIdOp(exec, location, it, "get_by_id_custom_self_list"); - break; - } - case op_get_by_id_custom_proto: { - printGetByIdOp(exec, location, it, "get_by_id_custom_proto"); - break; - } - case op_get_by_id_custom_proto_list: { - printGetByIdOp(exec, location, it, "get_by_id_custom_proto_list"); - break; - } - case op_get_by_id_custom_chain: { - printGetByIdOp(exec, location, it, "get_by_id_custom_chain"); - break; - } - case op_get_by_id_generic: { - printGetByIdOp(exec, location, it, "get_by_id_generic"); - break; - } - case op_get_array_length: { - printGetByIdOp(exec, location, it, "get_array_length"); - break; - } - case op_get_string_length: { - printGetByIdOp(exec, location, it, "get_string_length"); - break; - } - case op_get_arguments_length: { - printUnaryOp(exec, location, it, "get_arguments_length"); - it++; - break; - } - case op_put_by_id: { - printPutByIdOp(exec, location, it, "put_by_id"); - break; - } - case op_put_by_id_replace: { - printPutByIdOp(exec, location, it, "put_by_id_replace"); - break; - } - case op_put_by_id_transition: { - printPutByIdOp(exec, location, it, "put_by_id_transition"); - break; - } - case op_put_by_id_generic: { - printPutByIdOp(exec, location, it, "put_by_id_generic"); - break; - } - case op_put_getter: { + case op_put_setter_by_id: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; int r1 = (++it)->u.operand; - printf("[%4d] put_getter\t %s, %s, %s\n", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), registerName(exec, r1).data()); + printLocationAndOp(out, exec, location, it, "put_setter_by_id"); + out.printf("%s, %s, %s", registerName(r0).data(), idName(id0, identifier(id0)).data(), registerName(r1).data()); break; } - case op_put_setter: { + case op_put_getter_setter: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; int r1 = (++it)->u.operand; - printf("[%4d] put_setter\t %s, %s, %s\n", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), registerName(exec, r1).data()); - break; - } - case op_method_check: { - printf("[%4d] method_check\n", location); + int r2 = (++it)->u.operand; + printLocationAndOp(out, exec, location, it, "put_getter_setter"); + out.printf("%s, %s, %s, %s", registerName(r0).data(), idName(id0, identifier(id0)).data(), registerName(r1).data(), registerName(r2).data()); break; } case op_del_by_id: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int id0 = (++it)->u.operand; - printf("[%4d] del_by_id\t %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), idName(id0, m_identifiers[id0]).data()); + printLocationAndOp(out, exec, location, it, "del_by_id"); + out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), idName(id0, identifier(id0)).data()); break; } case op_get_by_val: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; - printf("[%4d] get_by_val\t %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data()); - break; - } - case op_get_argument_by_val: { - int r0 = (++it)->u.operand; - int r1 = (++it)->u.operand; - int r2 = (++it)->u.operand; - printf("[%4d] get_argument_by_val\t %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data()); + printLocationAndOp(out, exec, location, it, "get_by_val"); + out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); + dumpArrayProfiling(out, it, hasPrintedProfiling); + dumpValueProfiling(out, it, hasPrintedProfiling); break; } - case op_get_by_pname: { + case op_put_by_val: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; - int r3 = (++it)->u.operand; - int r4 = (++it)->u.operand; - int r5 = (++it)->u.operand; - printf("[%4d] get_by_pname\t %s, %s, %s, %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data(), registerName(exec, r3).data(), registerName(exec, r4).data(), registerName(exec, r5).data()); + printLocationAndOp(out, exec, location, it, "put_by_val"); + out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); + dumpArrayProfiling(out, it, hasPrintedProfiling); break; } - case op_put_by_val: { + case op_put_by_val_direct: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; - printf("[%4d] put_by_val\t %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data()); + printLocationAndOp(out, exec, location, it, "put_by_val_direct"); + out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); + dumpArrayProfiling(out, it, hasPrintedProfiling); break; } case op_del_by_val: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; - printf("[%4d] del_by_val\t %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data()); + printLocationAndOp(out, exec, location, it, "del_by_val"); + out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); break; } case op_put_by_index: { int r0 = (++it)->u.operand; unsigned n0 = (++it)->u.operand; int r1 = (++it)->u.operand; - printf("[%4d] put_by_index\t %s, %u, %s\n", location, registerName(exec, r0).data(), n0, registerName(exec, r1).data()); + printLocationAndOp(out, exec, location, it, "put_by_index"); + out.printf("%s, %u, %s", registerName(r0).data(), n0, registerName(r1).data()); break; } case op_jmp: { int offset = (++it)->u.operand; - printf("[%4d] jmp\t\t %d(->%d)\n", location, offset, location + offset); - break; - } - case op_loop: { - int offset = (++it)->u.operand; - printf("[%4d] loop\t\t %d(->%d)\n", location, offset, location + offset); + printLocationAndOp(out, exec, location, it, "jmp"); + out.printf("%d(->%d)", offset, location + offset); break; } case op_jtrue: { - printConditionalJump(exec, begin, it, location, "jtrue"); - break; - } - case op_loop_if_true: { - printConditionalJump(exec, begin, it, location, "loop_if_true"); - break; - } - case op_loop_if_false: { - printConditionalJump(exec, begin, it, location, "loop_if_false"); + printConditionalJump(out, exec, begin, it, location, "jtrue"); break; } case op_jfalse: { - printConditionalJump(exec, begin, it, location, "jfalse"); + printConditionalJump(out, exec, begin, it, location, "jfalse"); break; } case op_jeq_null: { - printConditionalJump(exec, begin, it, location, "jeq_null"); + printConditionalJump(out, exec, begin, it, location, "jeq_null"); break; } case op_jneq_null: { - printConditionalJump(exec, begin, it, location, "jneq_null"); + printConditionalJump(out, exec, begin, it, location, "jneq_null"); break; } case op_jneq_ptr: { + int r0 = (++it)->u.operand; + Special::Pointer pointer = (++it)->u.specialPointer; + int offset = (++it)->u.operand; + printLocationAndOp(out, exec, location, it, "jneq_ptr"); + out.printf("%s, %d (%p), %d(->%d)", registerName(r0).data(), pointer, m_globalObject->actualPointerFor(pointer), offset, location + offset); + break; + } + case op_jless: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; - printf("[%4d] jneq_ptr\t\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); + printLocationAndOp(out, exec, location, it, "jless"); + out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); break; } - case op_jnless: { + case op_jlesseq: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; - printf("[%4d] jnless\t\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); + printLocationAndOp(out, exec, location, it, "jlesseq"); + out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); break; } - case op_jnlesseq: { + case op_jgreater: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; - printf("[%4d] jnlesseq\t\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); + printLocationAndOp(out, exec, location, it, "jgreater"); + out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); break; } - case op_loop_if_less: { + case op_jgreatereq: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; - printf("[%4d] loop_if_less\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); + printLocationAndOp(out, exec, location, it, "jgreatereq"); + out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); break; } - case op_jless: { + case op_jnless: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; - printf("[%4d] jless\t\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); + printLocationAndOp(out, exec, location, it, "jnless"); + out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); break; } - case op_jlesseq: { + case op_jnlesseq: { + int r0 = (++it)->u.operand; + int r1 = (++it)->u.operand; + int offset = (++it)->u.operand; + printLocationAndOp(out, exec, location, it, "jnlesseq"); + out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); + break; + } + case op_jngreater: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; - printf("[%4d] jlesseq\t\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); + printLocationAndOp(out, exec, location, it, "jngreater"); + out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); break; } - case op_loop_if_lesseq: { + case op_jngreatereq: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; - printf("[%4d] loop_if_lesseq\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); + printLocationAndOp(out, exec, location, it, "jngreatereq"); + out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); + break; + } + case op_loop_hint: { + printLocationAndOp(out, exec, location, it, "loop_hint"); break; } case op_switch_imm: { int tableIndex = (++it)->u.operand; int defaultTarget = (++it)->u.operand; int scrutineeRegister = (++it)->u.operand; - printf("[%4d] switch_imm\t %d, %d(->%d), %s\n", location, tableIndex, defaultTarget, location + defaultTarget, registerName(exec, scrutineeRegister).data()); + printLocationAndOp(out, exec, location, it, "switch_imm"); + out.printf("%d, %d(->%d), %s", tableIndex, defaultTarget, location + defaultTarget, registerName(scrutineeRegister).data()); break; } case op_switch_char: { int tableIndex = (++it)->u.operand; int defaultTarget = (++it)->u.operand; int scrutineeRegister = (++it)->u.operand; - printf("[%4d] switch_char\t %d, %d(->%d), %s\n", location, tableIndex, defaultTarget, location + defaultTarget, registerName(exec, scrutineeRegister).data()); + printLocationAndOp(out, exec, location, it, "switch_char"); + out.printf("%d, %d(->%d), %s", tableIndex, defaultTarget, location + defaultTarget, registerName(scrutineeRegister).data()); break; } case op_switch_string: { int tableIndex = (++it)->u.operand; int defaultTarget = (++it)->u.operand; int scrutineeRegister = (++it)->u.operand; - printf("[%4d] switch_string\t %d, %d(->%d), %s\n", location, tableIndex, defaultTarget, location + defaultTarget, registerName(exec, scrutineeRegister).data()); + printLocationAndOp(out, exec, location, it, "switch_string"); + out.printf("%d, %d(->%d), %s", tableIndex, defaultTarget, location + defaultTarget, registerName(scrutineeRegister).data()); break; } case op_new_func: { int r0 = (++it)->u.operand; + int r1 = (++it)->u.operand; int f0 = (++it)->u.operand; - int shouldCheck = (++it)->u.operand; - printf("[%4d] new_func\t\t %s, f%d, %s\n", location, registerName(exec, r0).data(), f0, shouldCheck ? "" : ""); + printLocationAndOp(out, exec, location, it, "new_func"); + out.printf("%s, %s, f%d", registerName(r0).data(), registerName(r1).data(), f0); break; } case op_new_func_exp: { int r0 = (++it)->u.operand; + int r1 = (++it)->u.operand; int f0 = (++it)->u.operand; - printf("[%4d] new_func_exp\t %s, f%d\n", location, registerName(exec, r0).data(), f0); + printLocationAndOp(out, exec, location, it, "new_func_exp"); + out.printf("%s, %s, f%d", registerName(r0).data(), registerName(r1).data(), f0); break; } case op_call: { - int func = (++it)->u.operand; - int argCount = (++it)->u.operand; - int registerOffset = (++it)->u.operand; - printf("[%4d] call\t\t %s, %d, %d\n", location, registerName(exec, func).data(), argCount, registerOffset); + printCallOp(out, exec, location, it, "call", DumpCaches, hasPrintedProfiling, callLinkInfos); break; } case op_call_eval: { - int func = (++it)->u.operand; - int argCount = (++it)->u.operand; - int registerOffset = (++it)->u.operand; - printf("[%4d] call_eval\t %s, %d, %d\n", location, registerName(exec, func).data(), argCount, registerOffset); + printCallOp(out, exec, location, it, "call_eval", DontDumpCaches, hasPrintedProfiling, callLinkInfos); break; } + + case op_construct_varargs: case op_call_varargs: { - int func = (++it)->u.operand; - int argCount = (++it)->u.operand; - int registerOffset = (++it)->u.operand; - printf("[%4d] call_varargs\t %s, %s, %d\n", location, registerName(exec, func).data(), registerName(exec, argCount).data(), registerOffset); + int result = (++it)->u.operand; + int callee = (++it)->u.operand; + int thisValue = (++it)->u.operand; + int arguments = (++it)->u.operand; + int firstFreeRegister = (++it)->u.operand; + int varArgOffset = (++it)->u.operand; + ++it; + printLocationAndOp(out, exec, location, it, opcode == op_call_varargs ? "call_varargs" : "construct_varargs"); + out.printf("%s, %s, %s, %s, %d, %d", registerName(result).data(), registerName(callee).data(), registerName(thisValue).data(), registerName(arguments).data(), firstFreeRegister, varArgOffset); + dumpValueProfiling(out, it, hasPrintedProfiling); + break; + } + + case op_ret: { + int r0 = (++it)->u.operand; + printLocationOpAndRegisterOperand(out, exec, location, it, "ret", r0); break; } - case op_load_varargs: { - printUnaryOp(exec, location, it, "load_varargs"); + case op_construct: { + printCallOp(out, exec, location, it, "construct", DumpCaches, hasPrintedProfiling, callLinkInfos); break; } - case op_tear_off_activation: { + case op_strcat: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; - printf("[%4d] tear_off_activation\t %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data()); + int count = (++it)->u.operand; + printLocationAndOp(out, exec, location, it, "strcat"); + out.printf("%s, %s, %d", registerName(r0).data(), registerName(r1).data(), count); break; } - case op_tear_off_arguments: { + case op_to_primitive: { int r0 = (++it)->u.operand; - printf("[%4d] tear_off_arguments\t %s\n", location, registerName(exec, r0).data()); + int r1 = (++it)->u.operand; + printLocationAndOp(out, exec, location, it, "to_primitive"); + out.printf("%s, %s", registerName(r0).data(), registerName(r1).data()); break; } - case op_ret: { - int r0 = (++it)->u.operand; - printf("[%4d] ret\t\t %s\n", location, registerName(exec, r0).data()); + case op_get_enumerable_length: { + int dst = it[1].u.operand; + int base = it[2].u.operand; + printLocationAndOp(out, exec, location, it, "op_get_enumerable_length"); + out.printf("%s, %s", registerName(dst).data(), registerName(base).data()); + it += OPCODE_LENGTH(op_get_enumerable_length) - 1; break; } - case op_call_put_result: { - int r0 = (++it)->u.operand; - printf("[%4d] op_call_put_result\t\t %s\n", location, registerName(exec, r0).data()); + case op_has_indexed_property: { + int dst = it[1].u.operand; + int base = it[2].u.operand; + int propertyName = it[3].u.operand; + ArrayProfile* arrayProfile = it[4].u.arrayProfile; + printLocationAndOp(out, exec, location, it, "op_has_indexed_property"); + out.printf("%s, %s, %s, %p", registerName(dst).data(), registerName(base).data(), registerName(propertyName).data(), arrayProfile); + it += OPCODE_LENGTH(op_has_indexed_property) - 1; break; } - case op_ret_object_or_this: { - int r0 = (++it)->u.operand; - int r1 = (++it)->u.operand; - printf("[%4d] constructor_ret\t\t %s %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data()); + case op_has_structure_property: { + int dst = it[1].u.operand; + int base = it[2].u.operand; + int propertyName = it[3].u.operand; + int enumerator = it[4].u.operand; + printLocationAndOp(out, exec, location, it, "op_has_structure_property"); + out.printf("%s, %s, %s, %s", registerName(dst).data(), registerName(base).data(), registerName(propertyName).data(), registerName(enumerator).data()); + it += OPCODE_LENGTH(op_has_structure_property) - 1; break; } - case op_construct: { - int func = (++it)->u.operand; - int argCount = (++it)->u.operand; - int registerOffset = (++it)->u.operand; - printf("[%4d] construct\t %s, %d, %d\n", location, registerName(exec, func).data(), argCount, registerOffset); + case op_has_generic_property: { + int dst = it[1].u.operand; + int base = it[2].u.operand; + int propertyName = it[3].u.operand; + printLocationAndOp(out, exec, location, it, "op_has_generic_property"); + out.printf("%s, %s, %s", registerName(dst).data(), registerName(base).data(), registerName(propertyName).data()); + it += OPCODE_LENGTH(op_has_generic_property) - 1; break; } - case op_strcat: { - int r0 = (++it)->u.operand; - int r1 = (++it)->u.operand; - int count = (++it)->u.operand; - printf("[%4d] strcat\t\t %s, %s, %d\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), count); + case op_get_direct_pname: { + int dst = it[1].u.operand; + int base = it[2].u.operand; + int propertyName = it[3].u.operand; + int index = it[4].u.operand; + int enumerator = it[5].u.operand; + ValueProfile* profile = it[6].u.profile; + printLocationAndOp(out, exec, location, it, "op_get_direct_pname"); + out.printf("%s, %s, %s, %s, %s, %p", registerName(dst).data(), registerName(base).data(), registerName(propertyName).data(), registerName(index).data(), registerName(enumerator).data(), profile); + it += OPCODE_LENGTH(op_get_direct_pname) - 1; break; + } - case op_to_primitive: { - int r0 = (++it)->u.operand; - int r1 = (++it)->u.operand; - printf("[%4d] to_primitive\t %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data()); + case op_get_property_enumerator: { + int dst = it[1].u.operand; + int base = it[2].u.operand; + printLocationAndOp(out, exec, location, it, "op_get_property_enumerator"); + out.printf("%s, %s", registerName(dst).data(), registerName(base).data()); + it += OPCODE_LENGTH(op_get_property_enumerator) - 1; break; } - case op_get_pnames: { - int r0 = it[1].u.operand; - int r1 = it[2].u.operand; - int r2 = it[3].u.operand; - int r3 = it[4].u.operand; - int offset = it[5].u.operand; - printf("[%4d] get_pnames\t %s, %s, %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data(), registerName(exec, r3).data(), offset, location + offset); - it += OPCODE_LENGTH(op_get_pnames) - 1; + case op_enumerator_structure_pname: { + int dst = it[1].u.operand; + int enumerator = it[2].u.operand; + int index = it[3].u.operand; + printLocationAndOp(out, exec, location, it, "op_enumerator_structure_pname"); + out.printf("%s, %s, %s", registerName(dst).data(), registerName(enumerator).data(), registerName(index).data()); + it += OPCODE_LENGTH(op_enumerator_structure_pname) - 1; break; } - case op_next_pname: { - int dest = it[1].u.operand; - int base = it[2].u.operand; - int i = it[3].u.operand; - int size = it[4].u.operand; - int iter = it[5].u.operand; - int offset = it[6].u.operand; - printf("[%4d] next_pname\t %s, %s, %s, %s, %s, %d(->%d)\n", location, registerName(exec, dest).data(), registerName(exec, base).data(), registerName(exec, i).data(), registerName(exec, size).data(), registerName(exec, iter).data(), offset, location + offset); - it += OPCODE_LENGTH(op_next_pname) - 1; + case op_enumerator_generic_pname: { + int dst = it[1].u.operand; + int enumerator = it[2].u.operand; + int index = it[3].u.operand; + printLocationAndOp(out, exec, location, it, "op_enumerator_generic_pname"); + out.printf("%s, %s, %s", registerName(dst).data(), registerName(enumerator).data(), registerName(index).data()); + it += OPCODE_LENGTH(op_enumerator_generic_pname) - 1; break; } - case op_push_scope: { - int r0 = (++it)->u.operand; - printf("[%4d] push_scope\t %s\n", location, registerName(exec, r0).data()); + case op_to_index_string: { + int dst = it[1].u.operand; + int index = it[2].u.operand; + printLocationAndOp(out, exec, location, it, "op_to_index_string"); + out.printf("%s, %s", registerName(dst).data(), registerName(index).data()); + it += OPCODE_LENGTH(op_to_index_string) - 1; break; } - case op_pop_scope: { - printf("[%4d] pop_scope\n", location); + case op_push_with_scope: { + int dst = (++it)->u.operand; + int newScope = (++it)->u.operand; + printLocationAndOp(out, exec, location, it, "push_with_scope"); + out.printf("%s, %s", registerName(dst).data(), registerName(newScope).data()); break; } - case op_push_new_scope: { + case op_pop_scope: { int r0 = (++it)->u.operand; - int id0 = (++it)->u.operand; - int r1 = (++it)->u.operand; - printf("[%4d] push_new_scope \t%s, %s, %s\n", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), registerName(exec, r1).data()); + printLocationOpAndRegisterOperand(out, exec, location, it, "pop_scope", r0); break; } - case op_jmp_scopes: { - int scopeDelta = (++it)->u.operand; - int offset = (++it)->u.operand; - printf("[%4d] jmp_scopes\t^%d, %d(->%d)\n", location, scopeDelta, offset, location + offset); + case op_push_name_scope: { + int dst = (++it)->u.operand; + int r1 = (++it)->u.operand; + int k0 = (++it)->u.operand; + JSNameScope::Type scopeType = (JSNameScope::Type)(++it)->u.operand; + printLocationAndOp(out, exec, location, it, "push_name_scope"); + out.printf("%s, %s, %s, %s", registerName(dst).data(), registerName(r1).data(), constantName(k0).data(), (scopeType == JSNameScope::FunctionNameScope) ? "functionScope" : ((scopeType == JSNameScope::CatchScope) ? "catchScope" : "unknownScopeType")); break; } case op_catch: { int r0 = (++it)->u.operand; - printf("[%4d] catch\t\t %s\n", location, registerName(exec, r0).data()); + int r1 = (++it)->u.operand; + printLocationAndOp(out, exec, location, it, "catch"); + out.printf("%s, %s", registerName(r0).data(), registerName(r1).data()); break; } case op_throw: { int r0 = (++it)->u.operand; - printf("[%4d] throw\t\t %s\n", location, registerName(exec, r0).data()); + printLocationOpAndRegisterOperand(out, exec, location, it, "throw", r0); break; } - case op_throw_reference_error: { + case op_throw_static_error: { int k0 = (++it)->u.operand; - printf("[%4d] throw_reference_error\t %s\n", location, constantName(exec, k0, getConstant(k0)).data()); - break; - } - case op_jsr: { - int retAddrDst = (++it)->u.operand; - int offset = (++it)->u.operand; - printf("[%4d] jsr\t\t %s, %d(->%d)\n", location, registerName(exec, retAddrDst).data(), offset, location + offset); - break; - } - case op_sret: { - int retAddrSrc = (++it)->u.operand; - printf("[%4d] sret\t\t %s\n", location, registerName(exec, retAddrSrc).data()); + int k1 = (++it)->u.operand; + printLocationAndOp(out, exec, location, it, "throw_static_error"); + out.printf("%s, %s", constantName(k0).data(), k1 ? "true" : "false"); break; } case op_debug: { int debugHookID = (++it)->u.operand; - int firstLine = (++it)->u.operand; - int lastLine = (++it)->u.operand; - printf("[%4d] debug\t\t %s, %d, %d\n", location, debugHookName(debugHookID), firstLine, lastLine); + int hasBreakpointFlag = (++it)->u.operand; + printLocationAndOp(out, exec, location, it, "debug"); + out.printf("%s %d", debugHookName(debugHookID), hasBreakpointFlag); break; } case op_profile_will_call: { int function = (++it)->u.operand; - printf("[%4d] profile_will_call %s\n", location, registerName(exec, function).data()); + printLocationOpAndRegisterOperand(out, exec, location, it, "profile_will_call", function); break; } case op_profile_did_call: { int function = (++it)->u.operand; - printf("[%4d] profile_did_call\t %s\n", location, registerName(exec, function).data()); + printLocationOpAndRegisterOperand(out, exec, location, it, "profile_did_call", function); break; } case op_end: { int r0 = (++it)->u.operand; - printf("[%4d] end\t\t %s\n", location, registerName(exec, r0).data()); + printLocationOpAndRegisterOperand(out, exec, location, it, "end", r0); + break; + } + case op_resolve_scope: { + int r0 = (++it)->u.operand; + int scope = (++it)->u.operand; + int id0 = (++it)->u.operand; + ResolveModeAndType modeAndType = ResolveModeAndType((++it)->u.operand); + int depth = (++it)->u.operand; + printLocationAndOp(out, exec, location, it, "resolve_scope"); + out.printf("%s, %s, %s, %u<%s|%s>, %d", registerName(r0).data(), registerName(scope).data(), idName(id0, identifier(id0)).data(), + modeAndType.operand(), resolveModeName(modeAndType.mode()), resolveTypeName(modeAndType.type()), + depth); + ++it; + break; + } + case op_get_from_scope: { + int r0 = (++it)->u.operand; + int r1 = (++it)->u.operand; + int id0 = (++it)->u.operand; + ResolveModeAndType modeAndType = ResolveModeAndType((++it)->u.operand); + ++it; // Structure + int operand = (++it)->u.operand; // Operand + printLocationAndOp(out, exec, location, it, "get_from_scope"); + out.print(registerName(r0), ", ", registerName(r1)); + if (static_cast(id0) == UINT_MAX) + out.print(", anonymous"); + else + out.print(", ", idName(id0, identifier(id0))); + out.print(", ", modeAndType.operand(), "<", resolveModeName(modeAndType.mode()), "|", resolveTypeName(modeAndType.type()), ">, ", operand); + dumpValueProfiling(out, it, hasPrintedProfiling); + break; + } + case op_put_to_scope: { + int r0 = (++it)->u.operand; + int id0 = (++it)->u.operand; + int r1 = (++it)->u.operand; + ResolveModeAndType modeAndType = ResolveModeAndType((++it)->u.operand); + ++it; // Structure + int operand = (++it)->u.operand; // Operand + printLocationAndOp(out, exec, location, it, "put_to_scope"); + out.print(registerName(r0)); + if (static_cast(id0) == UINT_MAX) + out.print(", anonymous"); + else + out.print(", ", idName(id0, identifier(id0))); + out.print(", ", registerName(r1), ", ", modeAndType.operand(), "<", resolveModeName(modeAndType.mode()), "|", resolveTypeName(modeAndType.type()), ">, , ", operand); + break; + } + case op_get_from_arguments: { + int r0 = (++it)->u.operand; + int r1 = (++it)->u.operand; + int offset = (++it)->u.operand; + printLocationAndOp(out, exec, location, it, "get_from_arguments"); + out.printf("%s, %s, %d", registerName(r0).data(), registerName(r1).data(), offset); + dumpValueProfiling(out, it, hasPrintedProfiling); + break; + } + case op_put_to_arguments: { + int r0 = (++it)->u.operand; + int offset = (++it)->u.operand; + int r1 = (++it)->u.operand; + printLocationAndOp(out, exec, location, it, "put_to_arguments"); + out.printf("%s, %d, %s", registerName(r0).data(), offset, registerName(r1).data()); break; } + default: + RELEASE_ASSERT_NOT_REACHED(); } -} -#endif // !defined(NDEBUG) || ENABLE(OPCODE_SAMPLING) + dumpRareCaseProfile(out, "rare case: ", rareCaseProfileForBytecodeOffset(location), hasPrintedProfiling); + dumpRareCaseProfile(out, "special fast case: ", specialFastCaseProfileForBytecodeOffset(location), hasPrintedProfiling); + +#if ENABLE(DFG_JIT) + Vector exitSites = exitProfile().exitSitesFor(location); + if (!exitSites.isEmpty()) { + out.print(" !! frequent exits: "); + CommaPrinter comma; + for (unsigned i = 0; i < exitSites.size(); ++i) + out.print(comma, exitSites[i].kind(), " ", exitSites[i].jitType()); + } +#else // ENABLE(DFG_JIT) + UNUSED_PARAM(location); +#endif // ENABLE(DFG_JIT) + out.print("\n"); +} -#if DUMP_CODE_BLOCK_STATISTICS -static HashSet liveCodeBlockSet; -#endif +void CodeBlock::dumpBytecode( + PrintStream& out, unsigned bytecodeOffset, + const StubInfoMap& stubInfos, const CallLinkInfoMap& callLinkInfos) +{ + ExecState* exec = m_globalObject->globalExec(); + const Instruction* it = instructions().begin() + bytecodeOffset; + dumpBytecode(out, exec, instructions().begin(), it, stubInfos, callLinkInfos); +} #define FOR_EACH_MEMBER_VECTOR(macro) \ macro(instructions) \ - macro(globalResolveInfos) \ - macro(structureStubInfos) \ macro(callLinkInfos) \ macro(linkedCallerList) \ macro(identifiers) \ @@ -1262,8 +1628,7 @@ static HashSet liveCodeBlockSet; macro(regexps) \ macro(functions) \ macro(exceptionHandlers) \ - macro(immediateSwitchJumpTables) \ - macro(characterSwitchJumpTables) \ + macro(switchJumpTables) \ macro(stringSwitchJumpTables) \ macro(evalCodeCache) \ macro(expressionInfo) \ @@ -1276,439 +1641,2358 @@ static size_t sizeInBytes(const Vector& vector) return vector.capacity() * sizeof(T); } -void CodeBlock::dumpStatistics() +namespace { + +class PutToScopeFireDetail : public FireDetail { +public: + PutToScopeFireDetail(CodeBlock* codeBlock, const Identifier& ident) + : m_codeBlock(codeBlock) + , m_ident(ident) + { + } + + virtual void dump(PrintStream& out) const override + { + out.print("Linking put_to_scope in ", FunctionExecutableDump(jsCast(m_codeBlock->ownerExecutable())), " for ", m_ident); + } + +private: + CodeBlock* m_codeBlock; + const Identifier& m_ident; +}; + +} // anonymous namespace + +CodeBlock::CodeBlock(CopyParsedBlockTag, CodeBlock& other) + : m_globalObject(other.m_globalObject) + , m_heap(other.m_heap) + , m_numCalleeRegisters(other.m_numCalleeRegisters) + , m_numVars(other.m_numVars) + , m_isConstructor(other.m_isConstructor) + , m_shouldAlwaysBeInlined(true) + , m_didFailFTLCompilation(false) + , m_hasBeenCompiledWithFTL(false) + , m_unlinkedCode(*other.m_vm, other.m_ownerExecutable.get(), other.m_unlinkedCode.get()) + , m_hasDebuggerStatement(false) + , m_steppingMode(SteppingModeDisabled) + , m_numBreakpoints(0) + , m_ownerExecutable(*other.m_vm, other.m_ownerExecutable.get(), other.m_ownerExecutable.get()) + , m_vm(other.m_vm) + , m_instructions(other.m_instructions) + , m_thisRegister(other.m_thisRegister) + , m_scopeRegister(other.m_scopeRegister) + , m_lexicalEnvironmentRegister(other.m_lexicalEnvironmentRegister) + , m_isStrictMode(other.m_isStrictMode) + , m_needsActivation(other.m_needsActivation) + , m_mayBeExecuting(false) + , m_source(other.m_source) + , m_sourceOffset(other.m_sourceOffset) + , m_firstLineColumnOffset(other.m_firstLineColumnOffset) + , m_codeType(other.m_codeType) + , m_constantRegisters(other.m_constantRegisters) + , m_constantsSourceCodeRepresentation(other.m_constantsSourceCodeRepresentation) + , m_functionDecls(other.m_functionDecls) + , m_functionExprs(other.m_functionExprs) + , m_osrExitCounter(0) + , m_optimizationDelayCounter(0) + , m_reoptimizationRetryCounter(0) + , m_hash(other.m_hash) +#if ENABLE(JIT) + , m_capabilityLevelState(DFG::CapabilityLevelNotSet) +#endif { -#if DUMP_CODE_BLOCK_STATISTICS - #define DEFINE_VARS(name) size_t name##IsNotEmpty = 0; size_t name##TotalSize = 0; - FOR_EACH_MEMBER_VECTOR(DEFINE_VARS) - FOR_EACH_MEMBER_VECTOR_RARE_DATA(DEFINE_VARS) - #undef DEFINE_VARS + m_visitAggregateHasBeenCalled.store(false, std::memory_order_relaxed); - // Non-vector data members - size_t evalCodeCacheIsNotEmpty = 0; + ASSERT(m_heap->isDeferred()); + ASSERT(m_scopeRegister.isLocal()); - size_t symbolTableIsNotEmpty = 0; - size_t symbolTableTotalSize = 0; + if (SymbolTable* symbolTable = other.symbolTable()) + m_symbolTable.set(*m_vm, m_ownerExecutable.get(), symbolTable); + + setNumParameters(other.numParameters()); + optimizeAfterWarmUp(); + jitAfterWarmUp(); + + if (other.m_rareData) { + createRareDataIfNecessary(); + + m_rareData->m_exceptionHandlers = other.m_rareData->m_exceptionHandlers; + m_rareData->m_constantBuffers = other.m_rareData->m_constantBuffers; + m_rareData->m_switchJumpTables = other.m_rareData->m_switchJumpTables; + m_rareData->m_stringSwitchJumpTables = other.m_rareData->m_stringSwitchJumpTables; + } + + m_heap->m_codeBlocks.add(this); + m_heap->reportExtraMemoryAllocated(sizeof(CodeBlock)); +} - size_t hasRareData = 0; +CodeBlock::CodeBlock(ScriptExecutable* ownerExecutable, UnlinkedCodeBlock* unlinkedCodeBlock, JSScope* scope, PassRefPtr sourceProvider, unsigned sourceOffset, unsigned firstLineColumnOffset) + : m_globalObject(scope->globalObject()->vm(), ownerExecutable, scope->globalObject()) + , m_heap(&m_globalObject->vm().heap) + , m_numCalleeRegisters(unlinkedCodeBlock->m_numCalleeRegisters) + , m_numVars(unlinkedCodeBlock->m_numVars) + , m_isConstructor(unlinkedCodeBlock->isConstructor()) + , m_shouldAlwaysBeInlined(true) + , m_didFailFTLCompilation(false) + , m_hasBeenCompiledWithFTL(false) + , m_unlinkedCode(m_globalObject->vm(), ownerExecutable, unlinkedCodeBlock) + , m_hasDebuggerStatement(false) + , m_steppingMode(SteppingModeDisabled) + , m_numBreakpoints(0) + , m_ownerExecutable(m_globalObject->vm(), ownerExecutable, ownerExecutable) + , m_vm(unlinkedCodeBlock->vm()) + , m_thisRegister(unlinkedCodeBlock->thisRegister()) + , m_scopeRegister(unlinkedCodeBlock->scopeRegister()) + , m_lexicalEnvironmentRegister(unlinkedCodeBlock->activationRegister()) + , m_isStrictMode(unlinkedCodeBlock->isStrictMode()) + , m_needsActivation(unlinkedCodeBlock->hasActivationRegister() && unlinkedCodeBlock->codeType() == FunctionCode) + , m_mayBeExecuting(false) + , m_source(sourceProvider) + , m_sourceOffset(sourceOffset) + , m_firstLineColumnOffset(firstLineColumnOffset) + , m_codeType(unlinkedCodeBlock->codeType()) + , m_osrExitCounter(0) + , m_optimizationDelayCounter(0) + , m_reoptimizationRetryCounter(0) +#if ENABLE(JIT) + , m_capabilityLevelState(DFG::CapabilityLevelNotSet) +#endif +{ + m_visitAggregateHasBeenCalled.store(false, std::memory_order_relaxed); - size_t isFunctionCode = 0; - size_t isGlobalCode = 0; - size_t isEvalCode = 0; + ASSERT(m_heap->isDeferred()); + ASSERT(m_scopeRegister.isLocal()); - HashSet::const_iterator end = liveCodeBlockSet.end(); - for (HashSet::const_iterator it = liveCodeBlockSet.begin(); it != end; ++it) { - CodeBlock* codeBlock = *it; + bool didCloneSymbolTable = false; + + if (SymbolTable* symbolTable = unlinkedCodeBlock->symbolTable()) { + if (m_vm->typeProfiler()) { + ConcurrentJITLocker locker(symbolTable->m_lock); + symbolTable->prepareForTypeProfiling(locker); + } - #define GET_STATS(name) if (!codeBlock->m_##name.isEmpty()) { name##IsNotEmpty++; name##TotalSize += sizeInBytes(codeBlock->m_##name); } - FOR_EACH_MEMBER_VECTOR(GET_STATS) - #undef GET_STATS + if (codeType() == FunctionCode && symbolTable->scopeSize()) { + m_symbolTable.set(*m_vm, m_ownerExecutable.get(), symbolTable->cloneScopePart(*m_vm)); + didCloneSymbolTable = true; + } else + m_symbolTable.set(*m_vm, m_ownerExecutable.get(), symbolTable); + } + + ASSERT(m_source); + setNumParameters(unlinkedCodeBlock->numParameters()); - if (!codeBlock->m_symbolTable.isEmpty()) { - symbolTableIsNotEmpty++; - symbolTableTotalSize += (codeBlock->m_symbolTable.capacity() * (sizeof(SymbolTable::KeyType) + sizeof(SymbolTable::MappedType))); - } + if (vm()->typeProfiler() || vm()->controlFlowProfiler()) + vm()->functionHasExecutedCache()->removeUnexecutedRange(m_ownerExecutable->sourceID(), m_ownerExecutable->typeProfilingStartOffset(), m_ownerExecutable->typeProfilingEndOffset()); - if (codeBlock->m_rareData) { - hasRareData++; - #define GET_STATS(name) if (!codeBlock->m_rareData->m_##name.isEmpty()) { name##IsNotEmpty++; name##TotalSize += sizeInBytes(codeBlock->m_rareData->m_##name); } - FOR_EACH_MEMBER_VECTOR_RARE_DATA(GET_STATS) - #undef GET_STATS + setConstantRegisters(unlinkedCodeBlock->constantRegisters(), unlinkedCodeBlock->constantsSourceCodeRepresentation()); + if (unlinkedCodeBlock->usesGlobalObject()) + m_constantRegisters[unlinkedCodeBlock->globalObjectRegister().toConstantIndex()].set(*m_vm, ownerExecutable, m_globalObject.get()); - if (!codeBlock->m_rareData->m_evalCodeCache.isEmpty()) - evalCodeCacheIsNotEmpty++; - } + for (unsigned i = 0; i < LinkTimeConstantCount; i++) { + LinkTimeConstant type = static_cast(i); + if (unsigned registerIndex = unlinkedCodeBlock->registerIndexForLinkTimeConstant(type)) + m_constantRegisters[registerIndex].set(*m_vm, ownerExecutable, m_globalObject->jsCellForLinkTimeConstant(type)); + } - switch (codeBlock->codeType()) { - case FunctionCode: - ++isFunctionCode; - break; - case GlobalCode: - ++isGlobalCode; - break; - case EvalCode: - ++isEvalCode; - break; - } + m_functionDecls.resizeToFit(unlinkedCodeBlock->numberOfFunctionDecls()); + for (size_t count = unlinkedCodeBlock->numberOfFunctionDecls(), i = 0; i < count; ++i) { + UnlinkedFunctionExecutable* unlinkedExecutable = unlinkedCodeBlock->functionDecl(i); + if (vm()->typeProfiler() || vm()->controlFlowProfiler()) + vm()->functionHasExecutedCache()->insertUnexecutedRange(m_ownerExecutable->sourceID(), unlinkedExecutable->typeProfilingStartOffset(), unlinkedExecutable->typeProfilingEndOffset()); + m_functionDecls[i].set(*m_vm, ownerExecutable, unlinkedExecutable->link(*m_vm, ownerExecutable->source())); } - size_t totalSize = 0; + m_functionExprs.resizeToFit(unlinkedCodeBlock->numberOfFunctionExprs()); + for (size_t count = unlinkedCodeBlock->numberOfFunctionExprs(), i = 0; i < count; ++i) { + UnlinkedFunctionExecutable* unlinkedExecutable = unlinkedCodeBlock->functionExpr(i); + if (vm()->typeProfiler() || vm()->controlFlowProfiler()) + vm()->functionHasExecutedCache()->insertUnexecutedRange(m_ownerExecutable->sourceID(), unlinkedExecutable->typeProfilingStartOffset(), unlinkedExecutable->typeProfilingEndOffset()); + m_functionExprs[i].set(*m_vm, ownerExecutable, unlinkedExecutable->link(*m_vm, ownerExecutable->source())); + } - #define GET_TOTAL_SIZE(name) totalSize += name##TotalSize; - FOR_EACH_MEMBER_VECTOR(GET_TOTAL_SIZE) - FOR_EACH_MEMBER_VECTOR_RARE_DATA(GET_TOTAL_SIZE) - #undef GET_TOTAL_SIZE + if (unlinkedCodeBlock->hasRareData()) { + createRareDataIfNecessary(); + if (size_t count = unlinkedCodeBlock->constantBufferCount()) { + m_rareData->m_constantBuffers.grow(count); + for (size_t i = 0; i < count; i++) { + const UnlinkedCodeBlock::ConstantBuffer& buffer = unlinkedCodeBlock->constantBuffer(i); + m_rareData->m_constantBuffers[i] = buffer; + } + } + if (size_t count = unlinkedCodeBlock->numberOfExceptionHandlers()) { + m_rareData->m_exceptionHandlers.resizeToFit(count); + size_t nonLocalScopeDepth = scope->depth(); + for (size_t i = 0; i < count; i++) { + const UnlinkedHandlerInfo& unlinkedHandler = unlinkedCodeBlock->exceptionHandler(i); + HandlerInfo& handler = m_rareData->m_exceptionHandlers[i]; +#if ENABLE(JIT) + handler.initialize(unlinkedHandler, nonLocalScopeDepth, + CodeLocationLabel(MacroAssemblerCodePtr::createFromExecutableAddress(LLInt::getCodePtr(op_catch)))); +#else + handler.initialize(unlinkedHandler, nonLocalScopeDepth); +#endif + } + } - totalSize += symbolTableTotalSize; - totalSize += (liveCodeBlockSet.size() * sizeof(CodeBlock)); + if (size_t count = unlinkedCodeBlock->numberOfStringSwitchJumpTables()) { + m_rareData->m_stringSwitchJumpTables.grow(count); + for (size_t i = 0; i < count; i++) { + UnlinkedStringJumpTable::StringOffsetTable::iterator ptr = unlinkedCodeBlock->stringSwitchJumpTable(i).offsetTable.begin(); + UnlinkedStringJumpTable::StringOffsetTable::iterator end = unlinkedCodeBlock->stringSwitchJumpTable(i).offsetTable.end(); + for (; ptr != end; ++ptr) { + OffsetLocation offset; + offset.branchOffset = ptr->value; + m_rareData->m_stringSwitchJumpTables[i].offsetTable.add(ptr->key, offset); + } + } + } - printf("Number of live CodeBlocks: %d\n", liveCodeBlockSet.size()); - printf("Size of a single CodeBlock [sizeof(CodeBlock)]: %zu\n", sizeof(CodeBlock)); - printf("Size of all CodeBlocks: %zu\n", totalSize); - printf("Average size of a CodeBlock: %zu\n", totalSize / liveCodeBlockSet.size()); + if (size_t count = unlinkedCodeBlock->numberOfSwitchJumpTables()) { + m_rareData->m_switchJumpTables.grow(count); + for (size_t i = 0; i < count; i++) { + UnlinkedSimpleJumpTable& sourceTable = unlinkedCodeBlock->switchJumpTable(i); + SimpleJumpTable& destTable = m_rareData->m_switchJumpTables[i]; + destTable.branchOffsets = sourceTable.branchOffsets; + destTable.min = sourceTable.min; + } + } + } - printf("Number of FunctionCode CodeBlocks: %zu (%.3f%%)\n", isFunctionCode, static_cast(isFunctionCode) * 100.0 / liveCodeBlockSet.size()); - printf("Number of GlobalCode CodeBlocks: %zu (%.3f%%)\n", isGlobalCode, static_cast(isGlobalCode) * 100.0 / liveCodeBlockSet.size()); - printf("Number of EvalCode CodeBlocks: %zu (%.3f%%)\n", isEvalCode, static_cast(isEvalCode) * 100.0 / liveCodeBlockSet.size()); + // Allocate metadata buffers for the bytecode + if (size_t size = unlinkedCodeBlock->numberOfLLintCallLinkInfos()) + m_llintCallLinkInfos.resizeToFit(size); + if (size_t size = unlinkedCodeBlock->numberOfArrayProfiles()) + m_arrayProfiles.grow(size); + if (size_t size = unlinkedCodeBlock->numberOfArrayAllocationProfiles()) + m_arrayAllocationProfiles.resizeToFit(size); + if (size_t size = unlinkedCodeBlock->numberOfValueProfiles()) + m_valueProfiles.resizeToFit(size); + if (size_t size = unlinkedCodeBlock->numberOfObjectAllocationProfiles()) + m_objectAllocationProfiles.resizeToFit(size); - printf("Number of CodeBlocks with rare data: %zu (%.3f%%)\n", hasRareData, static_cast(hasRareData) * 100.0 / liveCodeBlockSet.size()); + // Copy and translate the UnlinkedInstructions + unsigned instructionCount = unlinkedCodeBlock->instructions().count(); + UnlinkedInstructionStream::Reader instructionReader(unlinkedCodeBlock->instructions()); - #define PRINT_STATS(name) printf("Number of CodeBlocks with " #name ": %zu\n", name##IsNotEmpty); printf("Size of all " #name ": %zu\n", name##TotalSize); - FOR_EACH_MEMBER_VECTOR(PRINT_STATS) - FOR_EACH_MEMBER_VECTOR_RARE_DATA(PRINT_STATS) - #undef PRINT_STATS + Vector instructions(instructionCount); + for (unsigned i = 0; !instructionReader.atEnd(); ) { + const UnlinkedInstruction* pc = instructionReader.next(); - printf("Number of CodeBlocks with evalCodeCache: %zu\n", evalCodeCacheIsNotEmpty); - printf("Number of CodeBlocks with symbolTable: %zu\n", symbolTableIsNotEmpty); + unsigned opLength = opcodeLength(pc[0].u.opcode); - printf("Size of all symbolTables: %zu\n", symbolTableTotalSize); + instructions[i] = vm()->interpreter->getOpcode(pc[0].u.opcode); + for (size_t j = 1; j < opLength; ++j) { + if (sizeof(int32_t) != sizeof(intptr_t)) + instructions[i + j].u.pointer = 0; + instructions[i + j].u.operand = pc[j].u.operand; + } + switch (pc[0].u.opcode) { + case op_has_indexed_property: { + int arrayProfileIndex = pc[opLength - 1].u.operand; + m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); -#else - printf("Dumping CodeBlock statistics is not enabled.\n"); -#endif -} + instructions[i + opLength - 1] = &m_arrayProfiles[arrayProfileIndex]; + break; + } + case op_call_varargs: + case op_construct_varargs: + case op_get_by_val: { + int arrayProfileIndex = pc[opLength - 2].u.operand; + m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); -CodeBlock::CodeBlock(ScriptExecutable* ownerExecutable, CodeType codeType, JSGlobalObject *globalObject, PassRefPtr sourceProvider, unsigned sourceOffset, SymbolTable* symTab, bool isConstructor) - : m_globalObject(globalObject->globalData(), ownerExecutable, globalObject) - , m_heap(&m_globalObject->globalData().heap) - , m_numCalleeRegisters(0) - , m_numVars(0) - , m_numParameters(0) - , m_isConstructor(isConstructor) - , m_ownerExecutable(globalObject->globalData(), ownerExecutable, ownerExecutable) - , m_globalData(0) -#ifndef NDEBUG - , m_instructionCount(0) -#endif - , m_argumentsRegister(-1) - , m_needsFullScopeChain(ownerExecutable->needsActivation()) - , m_usesEval(ownerExecutable->usesEval()) - , m_isNumericCompareFunction(false) - , m_isStrictMode(ownerExecutable->isStrictMode()) - , m_codeType(codeType) - , m_source(sourceProvider) - , m_sourceOffset(sourceOffset) - , m_symbolTable(symTab) -{ - ASSERT(m_source); + instructions[i + opLength - 2] = &m_arrayProfiles[arrayProfileIndex]; + FALLTHROUGH; + } + case op_get_direct_pname: + case op_get_by_id: + case op_get_from_arguments: { + ValueProfile* profile = &m_valueProfiles[pc[opLength - 1].u.operand]; + ASSERT(profile->m_bytecodeOffset == -1); + profile->m_bytecodeOffset = i; + instructions[i + opLength - 1] = profile; + break; + } + case op_put_by_val: { + int arrayProfileIndex = pc[opLength - 1].u.operand; + m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); + instructions[i + opLength - 1] = &m_arrayProfiles[arrayProfileIndex]; + break; + } + case op_put_by_val_direct: { + int arrayProfileIndex = pc[opLength - 1].u.operand; + m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); + instructions[i + opLength - 1] = &m_arrayProfiles[arrayProfileIndex]; + break; + } -#if DUMP_CODE_BLOCK_STATISTICS - liveCodeBlockSet.add(this); -#endif -} + case op_new_array: + case op_new_array_buffer: + case op_new_array_with_size: { + int arrayAllocationProfileIndex = pc[opLength - 1].u.operand; + instructions[i + opLength - 1] = &m_arrayAllocationProfiles[arrayAllocationProfileIndex]; + break; + } + case op_new_object: { + int objectAllocationProfileIndex = pc[opLength - 1].u.operand; + ObjectAllocationProfile* objectAllocationProfile = &m_objectAllocationProfiles[objectAllocationProfileIndex]; + int inferredInlineCapacity = pc[opLength - 2].u.operand; -CodeBlock::~CodeBlock() -{ -#if ENABLE(JIT) - for (size_t size = m_structureStubInfos.size(), i = 0; i < size; ++i) - m_structureStubInfos[i].deref(); -#endif // ENABLE(JIT) + instructions[i + opLength - 1] = objectAllocationProfile; + objectAllocationProfile->initialize(*vm(), + m_ownerExecutable.get(), m_globalObject->objectPrototype(), inferredInlineCapacity); + break; + } -#if DUMP_CODE_BLOCK_STATISTICS - liveCodeBlockSet.remove(this); -#endif -} + case op_call: + case op_call_eval: { + ValueProfile* profile = &m_valueProfiles[pc[opLength - 1].u.operand]; + ASSERT(profile->m_bytecodeOffset == -1); + profile->m_bytecodeOffset = i; + instructions[i + opLength - 1] = profile; + int arrayProfileIndex = pc[opLength - 2].u.operand; + m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); + instructions[i + opLength - 2] = &m_arrayProfiles[arrayProfileIndex]; + instructions[i + 5] = &m_llintCallLinkInfos[pc[5].u.operand]; + break; + } + case op_construct: { + instructions[i + 5] = &m_llintCallLinkInfos[pc[5].u.operand]; + ValueProfile* profile = &m_valueProfiles[pc[opLength - 1].u.operand]; + ASSERT(profile->m_bytecodeOffset == -1); + profile->m_bytecodeOffset = i; + instructions[i + opLength - 1] = profile; + break; + } + case op_get_by_id_out_of_line: + case op_get_array_length: + CRASH(); -void CodeBlock::visitStructures(SlotVisitor& visitor, Instruction* vPC) const -{ - Interpreter* interpreter = m_globalData->interpreter; + case op_init_global_const_nop: { + ASSERT(codeType() == GlobalCode); + Identifier ident = identifier(pc[4].u.operand); + SymbolTableEntry entry = m_globalObject->symbolTable()->get(ident.impl()); + if (entry.isNull()) + break; - if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id) && vPC[4].u.structure) { - visitor.append(&vPC[4].u.structure); + instructions[i + 0] = vm()->interpreter->getOpcode(op_init_global_const); + instructions[i + 1] = &m_globalObject->variableAt(entry.varOffset().scopeOffset()); + break; + } + + case op_resolve_scope: { + const Identifier& ident = identifier(pc[3].u.operand); + ResolveType type = static_cast(pc[4].u.operand); + RELEASE_ASSERT(type != LocalClosureVar); + + ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), needsActivation(), scope, ident, Get, type); + instructions[i + 4].u.operand = op.type; + instructions[i + 5].u.operand = op.depth; + if (op.lexicalEnvironment) + instructions[i + 6].u.symbolTable.set(*vm(), ownerExecutable, op.lexicalEnvironment->symbolTable()); + break; + } + + case op_get_from_scope: { + ValueProfile* profile = &m_valueProfiles[pc[opLength - 1].u.operand]; + ASSERT(profile->m_bytecodeOffset == -1); + profile->m_bytecodeOffset = i; + instructions[i + opLength - 1] = profile; + + // get_from_scope dst, scope, id, ResolveModeAndType, Structure, Operand + + ResolveModeAndType modeAndType = ResolveModeAndType(pc[4].u.operand); + if (modeAndType.type() == LocalClosureVar) { + instructions[i + 4] = ResolveModeAndType(modeAndType.mode(), ClosureVar).operand(); + break; + } + + const Identifier& ident = identifier(pc[3].u.operand); + + ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), needsActivation(), scope, ident, Get, modeAndType.type()); + + instructions[i + 4].u.operand = ResolveModeAndType(modeAndType.mode(), op.type).operand(); + if (op.type == GlobalVar || op.type == GlobalVarWithVarInjectionChecks) + instructions[i + 5].u.watchpointSet = op.watchpointSet; + else if (op.structure) + instructions[i + 5].u.structure.set(*vm(), ownerExecutable, op.structure); + instructions[i + 6].u.pointer = reinterpret_cast(op.operand); + break; + } + + case op_put_to_scope: { + // put_to_scope scope, id, value, ResolveModeAndType, Structure, Operand + ResolveModeAndType modeAndType = ResolveModeAndType(pc[4].u.operand); + if (modeAndType.type() == LocalClosureVar) { + // Only do watching if the property we're putting to is not anonymous. + if (static_cast(pc[2].u.operand) != UINT_MAX) { + RELEASE_ASSERT(didCloneSymbolTable); + const Identifier& ident = identifier(pc[2].u.operand); + ConcurrentJITLocker locker(m_symbolTable->m_lock); + SymbolTable::Map::iterator iter = m_symbolTable->find(locker, ident.impl()); + ASSERT(iter != m_symbolTable->end(locker)); + iter->value.prepareToWatch(); + instructions[i + 5].u.watchpointSet = iter->value.watchpointSet(); + } else + instructions[i + 5].u.watchpointSet = nullptr; + break; + } + + const Identifier& ident = identifier(pc[2].u.operand); + + ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), needsActivation(), scope, ident, Put, modeAndType.type()); + + instructions[i + 4].u.operand = ResolveModeAndType(modeAndType.mode(), op.type).operand(); + if (op.type == GlobalVar || op.type == GlobalVarWithVarInjectionChecks) + instructions[i + 5].u.watchpointSet = op.watchpointSet; + else if (op.type == ClosureVar || op.type == ClosureVarWithVarInjectionChecks) { + if (op.watchpointSet) + op.watchpointSet->invalidate(PutToScopeFireDetail(this, ident)); + } else if (op.structure) + instructions[i + 5].u.structure.set(*vm(), ownerExecutable, op.structure); + instructions[i + 6].u.pointer = reinterpret_cast(op.operand); + + break; + } + + case op_profile_type: { + RELEASE_ASSERT(vm()->typeProfiler()); + // The format of this instruction is: op_profile_type regToProfile, TypeLocation*, flag, identifier?, resolveType? + size_t instructionOffset = i + opLength - 1; + unsigned divotStart, divotEnd; + GlobalVariableID globalVariableID = 0; + RefPtr globalTypeSet; + bool shouldAnalyze = m_unlinkedCode->typeProfilerExpressionInfoForBytecodeOffset(instructionOffset, divotStart, divotEnd); + VirtualRegister profileRegister(pc[1].u.operand); + ProfileTypeBytecodeFlag flag = static_cast(pc[3].u.operand); + SymbolTable* symbolTable = nullptr; + + switch (flag) { + case ProfileTypeBytecodePutToScope: + case ProfileTypeBytecodeGetFromScope: { + const Identifier& ident = identifier(pc[4].u.operand); + ResolveType type = static_cast(pc[5].u.operand); + ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), needsActivation(), scope, ident, (flag == ProfileTypeBytecodeGetFromScope ? Get : Put), type); + + // FIXME: handle other values for op.type here, and also consider what to do when we can't statically determine the globalID + // https://bugs.webkit.org/show_bug.cgi?id=135184 + if (op.type == ClosureVar) + symbolTable = op.lexicalEnvironment->symbolTable(); + else if (op.type == GlobalVar) + symbolTable = m_globalObject.get()->symbolTable(); + + if (symbolTable) { + ConcurrentJITLocker locker(symbolTable->m_lock); + // If our parent scope was created while profiling was disabled, it will not have prepared for profiling yet. + symbolTable->prepareForTypeProfiling(locker); + globalVariableID = symbolTable->uniqueIDForVariable(locker, ident.impl(), *vm()); + globalTypeSet = symbolTable->globalTypeSetForVariable(locker, ident.impl(), *vm()); + } else + globalVariableID = TypeProfilerNoGlobalIDExists; + + break; + } + case ProfileTypeBytecodePutToLocalScope: + case ProfileTypeBytecodeGetFromLocalScope: { + const Identifier& ident = identifier(pc[4].u.operand); + symbolTable = m_symbolTable.get(); + ConcurrentJITLocker locker(symbolTable->m_lock); + // If our parent scope was created while profiling was disabled, it will not have prepared for profiling yet. + symbolTable->prepareForTypeProfiling(locker); + globalVariableID = symbolTable->uniqueIDForVariable(locker, ident.impl(), *vm()); + globalTypeSet = symbolTable->globalTypeSetForVariable(locker, ident.impl(), *vm()); + + break; + } + + case ProfileTypeBytecodeHasGlobalID: { + symbolTable = m_symbolTable.get(); + ConcurrentJITLocker locker(symbolTable->m_lock); + globalVariableID = symbolTable->uniqueIDForOffset(locker, VarOffset(profileRegister), *vm()); + globalTypeSet = symbolTable->globalTypeSetForOffset(locker, VarOffset(profileRegister), *vm()); + break; + } + case ProfileTypeBytecodeDoesNotHaveGlobalID: + case ProfileTypeBytecodeFunctionArgument: { + globalVariableID = TypeProfilerNoGlobalIDExists; + break; + } + case ProfileTypeBytecodeFunctionReturnStatement: { + RELEASE_ASSERT(ownerExecutable->isFunctionExecutable()); + globalTypeSet = jsCast(ownerExecutable)->returnStatementTypeSet(); + globalVariableID = TypeProfilerReturnStatement; + if (!shouldAnalyze) { + // Because a return statement can be added implicitly to return undefined at the end of a function, + // and these nodes don't emit expression ranges because they aren't in the actual source text of + // the user's program, give the type profiler some range to identify these return statements. + // Currently, the text offset that is used as identification is on the open brace of the function + // and is stored on TypeLocation's m_divotForFunctionOffsetIfReturnStatement member variable. + divotStart = divotEnd = m_sourceOffset; + shouldAnalyze = true; + } + break; + } + } + + std::pair locationPair = vm()->typeProfiler()->typeLocationCache()->getTypeLocation(globalVariableID, + m_ownerExecutable->sourceID(), divotStart, divotEnd, globalTypeSet, vm()); + TypeLocation* location = locationPair.first; + bool isNewLocation = locationPair.second; + + if (flag == ProfileTypeBytecodeFunctionReturnStatement) + location->m_divotForFunctionOffsetIfReturnStatement = m_sourceOffset; + + if (shouldAnalyze && isNewLocation) + vm()->typeProfiler()->insertNewLocation(location); + + instructions[i + 2].u.location = location; + break; + } + + case op_debug: { + if (pc[1].u.index == DidReachBreakpoint) + m_hasDebuggerStatement = true; + break; + } + + default: + break; + } + i += opLength; + } + + if (vm()->controlFlowProfiler()) + insertBasicBlockBoundariesForControlFlowProfiler(instructions); + + m_instructions = WTF::RefCountedArray(instructions); + + // Set optimization thresholds only after m_instructions is initialized, since these + // rely on the instruction count (and are in theory permitted to also inspect the + // instruction stream to more accurate assess the cost of tier-up). + optimizeAfterWarmUp(); + jitAfterWarmUp(); + + // If the concurrent thread will want the code block's hash, then compute it here + // synchronously. + if (Options::alwaysComputeHash()) + hash(); + + if (Options::dumpGeneratedBytecodes()) + dumpBytecode(); + + m_heap->m_codeBlocks.add(this); + m_heap->reportExtraMemoryAllocated(sizeof(CodeBlock) + m_instructions.size() * sizeof(Instruction)); +} + +CodeBlock::~CodeBlock() +{ + if (m_vm->m_perBytecodeProfiler) + m_vm->m_perBytecodeProfiler->notifyDestruction(this); + +#if ENABLE(VERBOSE_VALUE_PROFILE) + dumpValueProfiles(); +#endif + while (m_incomingLLIntCalls.begin() != m_incomingLLIntCalls.end()) + m_incomingLLIntCalls.begin()->remove(); +#if ENABLE(JIT) + // We may be destroyed before any CodeBlocks that refer to us are destroyed. + // Consider that two CodeBlocks become unreachable at the same time. There + // is no guarantee about the order in which the CodeBlocks are destroyed. + // So, if we don't remove incoming calls, and get destroyed before the + // CodeBlock(s) that have calls into us, then the CallLinkInfo vector's + // destructor will try to remove nodes from our (no longer valid) linked list. + while (m_incomingCalls.begin() != m_incomingCalls.end()) + m_incomingCalls.begin()->remove(); + while (m_incomingPolymorphicCalls.begin() != m_incomingPolymorphicCalls.end()) + m_incomingPolymorphicCalls.begin()->remove(); + + // Note that our outgoing calls will be removed from other CodeBlocks' + // m_incomingCalls linked lists through the execution of the ~CallLinkInfo + // destructors. + + for (Bag::iterator iter = m_stubInfos.begin(); !!iter; ++iter) + (*iter)->deref(); +#endif // ENABLE(JIT) +} + +void CodeBlock::setNumParameters(int newValue) +{ + m_numParameters = newValue; + + m_argumentValueProfiles.resizeToFit(newValue); +} + +void EvalCodeCache::visitAggregate(SlotVisitor& visitor) +{ + EvalCacheMap::iterator end = m_cacheMap.end(); + for (EvalCacheMap::iterator ptr = m_cacheMap.begin(); ptr != end; ++ptr) + visitor.append(&ptr->value); +} + +CodeBlock* CodeBlock::specialOSREntryBlockOrNull() +{ +#if ENABLE(FTL_JIT) + if (jitType() != JITCode::DFGJIT) + return 0; + DFG::JITCode* jitCode = m_jitCode->dfg(); + return jitCode->osrEntryBlock.get(); +#else // ENABLE(FTL_JIT) + return 0; +#endif // ENABLE(FTL_JIT) +} + +void CodeBlock::visitAggregate(SlotVisitor& visitor) +{ +#if ENABLE(PARALLEL_GC) + // I may be asked to scan myself more than once, and it may even happen concurrently. + // To this end, use an atomic operation to check (and set) if I've been called already. + // Only one thread may proceed past this point - whichever one wins the atomic set race. + bool setByMe = m_visitAggregateHasBeenCalled.compareExchangeStrong(false, true); + if (!setByMe) + return; +#endif // ENABLE(PARALLEL_GC) + + if (!!m_alternative) + m_alternative->visitAggregate(visitor); + + if (CodeBlock* otherBlock = specialOSREntryBlockOrNull()) + otherBlock->visitAggregate(visitor); + + visitor.reportExtraMemoryVisited(ownerExecutable(), sizeof(CodeBlock)); + if (m_jitCode) + visitor.reportExtraMemoryVisited(ownerExecutable(), m_jitCode->size()); + if (m_instructions.size()) { + // Divide by refCount() because m_instructions points to something that is shared + // by multiple CodeBlocks, and we only want to count it towards the heap size once. + // Having each CodeBlock report only its proportional share of the size is one way + // of accomplishing this. + visitor.reportExtraMemoryVisited(ownerExecutable(), m_instructions.size() * sizeof(Instruction) / m_instructions.refCount()); + } + + visitor.append(&m_unlinkedCode); + + // There are three things that may use unconditional finalizers: lazy bytecode freeing, + // inline cache clearing, and jettisoning. The probability of us wanting to do at + // least one of those things is probably quite close to 1. So we add one no matter what + // and when it runs, it figures out whether it has any work to do. + visitor.addUnconditionalFinalizer(this); + + m_allTransitionsHaveBeenMarked = false; + + if (shouldImmediatelyAssumeLivenessDuringScan()) { + // This code block is live, so scan all references strongly and return. + stronglyVisitStrongReferences(visitor); + stronglyVisitWeakReferences(visitor); + propagateTransitions(visitor); + return; + } + + // There are two things that we use weak reference harvesters for: DFG fixpoint for + // jettisoning, and trying to find structures that would be live based on some + // inline cache. So it makes sense to register them regardless. + visitor.addWeakReferenceHarvester(this); + +#if ENABLE(DFG_JIT) + // We get here if we're live in the sense that our owner executable is live, + // but we're not yet live for sure in another sense: we may yet decide that this + // code block should be jettisoned based on its outgoing weak references being + // stale. Set a flag to indicate that we're still assuming that we're dead, and + // perform one round of determining if we're live. The GC may determine, based on + // either us marking additional objects, or by other objects being marked for + // other reasons, that this iteration should run again; it will notify us of this + // decision by calling harvestWeakReferences(). + + m_jitCode->dfgCommon()->livenessHasBeenProved = false; + + propagateTransitions(visitor); + determineLiveness(visitor); +#else // ENABLE(DFG_JIT) + RELEASE_ASSERT_NOT_REACHED(); +#endif // ENABLE(DFG_JIT) +} + +bool CodeBlock::shouldImmediatelyAssumeLivenessDuringScan() +{ +#if ENABLE(DFG_JIT) + // Interpreter and Baseline JIT CodeBlocks don't need to be jettisoned when + // their weak references go stale. So if a basline JIT CodeBlock gets + // scanned, we can assume that this means that it's live. + if (!JITCode::isOptimizingJIT(jitType())) + return true; + + // For simplicity, we don't attempt to jettison code blocks during GC if + // they are executing. Instead we strongly mark their weak references to + // allow them to continue to execute soundly. + if (m_mayBeExecuting) + return true; + + if (Options::forceDFGCodeBlockLiveness()) + return true; + + return false; +#else + return true; +#endif +} + +bool CodeBlock::isKnownToBeLiveDuringGC() +{ +#if ENABLE(DFG_JIT) + // This should return true for: + // - Code blocks that behave like normal objects - i.e. if they are referenced then they + // are live. + // - Code blocks that were running on the stack. + // - Code blocks that survived the last GC if the current GC is an Eden GC. This is + // because either livenessHasBeenProved would have survived as true or m_mayBeExecuting + // would survive as true. + // - Code blocks that don't have any dead weak references. + + return shouldImmediatelyAssumeLivenessDuringScan() + || m_jitCode->dfgCommon()->livenessHasBeenProved; +#else + return true; +#endif +} + +#if ENABLE(DFG_JIT) +static bool shouldMarkTransition(DFG::WeakReferenceTransition& transition) +{ + if (transition.m_codeOrigin && !Heap::isMarked(transition.m_codeOrigin.get())) + return false; + + if (!Heap::isMarked(transition.m_from.get())) + return false; + + return true; +} +#endif // ENABLE(DFG_JIT) + +void CodeBlock::propagateTransitions(SlotVisitor& visitor) +{ + UNUSED_PARAM(visitor); + + if (m_allTransitionsHaveBeenMarked) + return; + + bool allAreMarkedSoFar = true; + + Interpreter* interpreter = m_vm->interpreter; + if (jitType() == JITCode::InterpreterThunk) { + const Vector& propertyAccessInstructions = m_unlinkedCode->propertyAccessInstructions(); + for (size_t i = 0; i < propertyAccessInstructions.size(); ++i) { + Instruction* instruction = &instructions()[propertyAccessInstructions[i]]; + switch (interpreter->getOpcodeID(instruction[0].u.opcode)) { + case op_put_by_id_transition_direct: + case op_put_by_id_transition_normal: + case op_put_by_id_transition_direct_out_of_line: + case op_put_by_id_transition_normal_out_of_line: { + if (Heap::isMarked(instruction[4].u.structure.get())) + visitor.append(&instruction[6].u.structure); + else + allAreMarkedSoFar = false; + break; + } + default: + break; + } + } + } + +#if ENABLE(JIT) + if (JITCode::isJIT(jitType())) { + for (Bag::iterator iter = m_stubInfos.begin(); !!iter; ++iter) { + StructureStubInfo& stubInfo = **iter; + switch (stubInfo.accessType) { + case access_put_by_id_transition_normal: + case access_put_by_id_transition_direct: { + JSCell* origin = stubInfo.codeOrigin.codeOriginOwner(); + if ((!origin || Heap::isMarked(origin)) + && Heap::isMarked(stubInfo.u.putByIdTransition.previousStructure.get())) + visitor.append(&stubInfo.u.putByIdTransition.structure); + else + allAreMarkedSoFar = false; + break; + } + + case access_put_by_id_list: { + PolymorphicPutByIdList* list = stubInfo.u.putByIdList.list; + JSCell* origin = stubInfo.codeOrigin.codeOriginOwner(); + if (origin && !Heap::isMarked(origin)) { + allAreMarkedSoFar = false; + break; + } + for (unsigned j = list->size(); j--;) { + PutByIdAccess& access = list->m_list[j]; + if (!access.isTransition()) + continue; + if (Heap::isMarked(access.oldStructure())) + visitor.append(&access.m_newStructure); + else + allAreMarkedSoFar = false; + } + break; + } + + default: + break; + } + } + } +#endif // ENABLE(JIT) + +#if ENABLE(DFG_JIT) + if (JITCode::isOptimizingJIT(jitType())) { + DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); + + for (unsigned i = 0; i < dfgCommon->transitions.size(); ++i) { + if (shouldMarkTransition(dfgCommon->transitions[i])) { + // If the following three things are live, then the target of the + // transition is also live: + // + // - This code block. We know it's live already because otherwise + // we wouldn't be scanning ourselves. + // + // - The code origin of the transition. Transitions may arise from + // code that was inlined. They are not relevant if the user's + // object that is required for the inlinee to run is no longer + // live. + // + // - The source of the transition. The transition checks if some + // heap location holds the source, and if so, stores the target. + // Hence the source must be live for the transition to be live. + // + // We also short-circuit the liveness if the structure is harmless + // to mark (i.e. its global object and prototype are both already + // live). + + visitor.append(&dfgCommon->transitions[i].m_to); + } else + allAreMarkedSoFar = false; + } + } +#endif // ENABLE(DFG_JIT) + + if (allAreMarkedSoFar) + m_allTransitionsHaveBeenMarked = true; +} + +void CodeBlock::determineLiveness(SlotVisitor& visitor) +{ + UNUSED_PARAM(visitor); + + if (shouldImmediatelyAssumeLivenessDuringScan()) + return; + +#if ENABLE(DFG_JIT) + // Check if we have any remaining work to do. + DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); + if (dfgCommon->livenessHasBeenProved) + return; + + // Now check all of our weak references. If all of them are live, then we + // have proved liveness and so we scan our strong references. If at end of + // GC we still have not proved liveness, then this code block is toast. + bool allAreLiveSoFar = true; + for (unsigned i = 0; i < dfgCommon->weakReferences.size(); ++i) { + if (!Heap::isMarked(dfgCommon->weakReferences[i].get())) { + allAreLiveSoFar = false; + break; + } + } + if (allAreLiveSoFar) { + for (unsigned i = 0; i < dfgCommon->weakStructureReferences.size(); ++i) { + if (!Heap::isMarked(dfgCommon->weakStructureReferences[i].get())) { + allAreLiveSoFar = false; + break; + } + } + } + + // If some weak references are dead, then this fixpoint iteration was + // unsuccessful. + if (!allAreLiveSoFar) + return; + + // All weak references are live. Record this information so we don't + // come back here again, and scan the strong references. + dfgCommon->livenessHasBeenProved = true; + stronglyVisitStrongReferences(visitor); +#endif // ENABLE(DFG_JIT) +} + +void CodeBlock::visitWeakReferences(SlotVisitor& visitor) +{ + propagateTransitions(visitor); + determineLiveness(visitor); +} + +void CodeBlock::finalizeUnconditionally() +{ + Interpreter* interpreter = m_vm->interpreter; + if (JITCode::couldBeInterpreted(jitType())) { + const Vector& propertyAccessInstructions = m_unlinkedCode->propertyAccessInstructions(); + for (size_t size = propertyAccessInstructions.size(), i = 0; i < size; ++i) { + Instruction* curInstruction = &instructions()[propertyAccessInstructions[i]]; + switch (interpreter->getOpcodeID(curInstruction[0].u.opcode)) { + case op_get_by_id: + case op_get_by_id_out_of_line: + case op_put_by_id: + case op_put_by_id_out_of_line: + if (!curInstruction[4].u.structure || Heap::isMarked(curInstruction[4].u.structure.get())) + break; + if (Options::verboseOSR()) + dataLogF("Clearing LLInt property access with structure %p.\n", curInstruction[4].u.structure.get()); + curInstruction[4].u.structure.clear(); + curInstruction[5].u.operand = 0; + break; + case op_put_by_id_transition_direct: + case op_put_by_id_transition_normal: + case op_put_by_id_transition_direct_out_of_line: + case op_put_by_id_transition_normal_out_of_line: + if (Heap::isMarked(curInstruction[4].u.structure.get()) + && Heap::isMarked(curInstruction[6].u.structure.get()) + && Heap::isMarked(curInstruction[7].u.structureChain.get())) + break; + if (Options::verboseOSR()) { + dataLogF("Clearing LLInt put transition with structures %p -> %p, chain %p.\n", + curInstruction[4].u.structure.get(), + curInstruction[6].u.structure.get(), + curInstruction[7].u.structureChain.get()); + } + curInstruction[4].u.structure.clear(); + curInstruction[6].u.structure.clear(); + curInstruction[7].u.structureChain.clear(); + curInstruction[0].u.opcode = interpreter->getOpcode(op_put_by_id); + break; + case op_get_array_length: + break; + case op_to_this: + if (!curInstruction[2].u.structure || Heap::isMarked(curInstruction[2].u.structure.get())) + break; + if (Options::verboseOSR()) + dataLogF("Clearing LLInt to_this with structure %p.\n", curInstruction[2].u.structure.get()); + curInstruction[2].u.structure.clear(); + curInstruction[3].u.toThisStatus = merge( + curInstruction[3].u.toThisStatus, ToThisClearedByGC); + break; + case op_create_this: { + auto& cacheWriteBarrier = curInstruction[4].u.jsCell; + if (!cacheWriteBarrier || cacheWriteBarrier.unvalidatedGet() == JSCell::seenMultipleCalleeObjects()) + break; + JSCell* cachedFunction = cacheWriteBarrier.get(); + if (Heap::isMarked(cachedFunction)) + break; + if (Options::verboseOSR()) + dataLogF("Clearing LLInt create_this with cached callee %p.\n", cachedFunction); + cacheWriteBarrier.clear(); + break; + } + case op_resolve_scope: { + // Right now this isn't strictly necessary. Any symbol tables that this will refer to + // are for outer functions, and we refer to those functions strongly, and they refer + // to the symbol table strongly. But it's nice to be on the safe side. + WriteBarrierBase& symbolTable = curInstruction[6].u.symbolTable; + if (!symbolTable || Heap::isMarked(symbolTable.get())) + break; + if (Options::verboseOSR()) + dataLogF("Clearing dead symbolTable %p.\n", symbolTable.get()); + symbolTable.clear(); + break; + } + case op_get_from_scope: + case op_put_to_scope: { + ResolveModeAndType modeAndType = + ResolveModeAndType(curInstruction[4].u.operand); + if (modeAndType.type() == GlobalVar || modeAndType.type() == GlobalVarWithVarInjectionChecks || modeAndType.type() == LocalClosureVar) + continue; + WriteBarrierBase& structure = curInstruction[5].u.structure; + if (!structure || Heap::isMarked(structure.get())) + break; + if (Options::verboseOSR()) + dataLogF("Clearing scope access with structure %p.\n", structure.get()); + structure.clear(); + break; + } + default: + OpcodeID opcodeID = interpreter->getOpcodeID(curInstruction[0].u.opcode); + ASSERT_WITH_MESSAGE_UNUSED(opcodeID, false, "Unhandled opcode in CodeBlock::finalizeUnconditionally, %s(%d) at bc %u", opcodeNames[opcodeID], opcodeID, propertyAccessInstructions[i]); + } + } + + for (unsigned i = 0; i < m_llintCallLinkInfos.size(); ++i) { + if (m_llintCallLinkInfos[i].isLinked() && !Heap::isMarked(m_llintCallLinkInfos[i].callee.get())) { + if (Options::verboseOSR()) + dataLog("Clearing LLInt call from ", *this, "\n"); + m_llintCallLinkInfos[i].unlink(); + } + if (!!m_llintCallLinkInfos[i].lastSeenCallee && !Heap::isMarked(m_llintCallLinkInfos[i].lastSeenCallee.get())) + m_llintCallLinkInfos[i].lastSeenCallee.clear(); + } + } + +#if ENABLE(DFG_JIT) + // Check if we're not live. If we are, then jettison. + if (!isKnownToBeLiveDuringGC()) { + if (Options::verboseOSR()) + dataLog(*this, " has dead weak references, jettisoning during GC.\n"); + + if (DFG::shouldShowDisassembly()) { + dataLog(*this, " will be jettisoned because of the following dead references:\n"); + DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); + for (unsigned i = 0; i < dfgCommon->transitions.size(); ++i) { + DFG::WeakReferenceTransition& transition = dfgCommon->transitions[i]; + JSCell* origin = transition.m_codeOrigin.get(); + JSCell* from = transition.m_from.get(); + JSCell* to = transition.m_to.get(); + if ((!origin || Heap::isMarked(origin)) && Heap::isMarked(from)) + continue; + dataLog(" Transition under ", RawPointer(origin), ", ", RawPointer(from), " -> ", RawPointer(to), ".\n"); + } + for (unsigned i = 0; i < dfgCommon->weakReferences.size(); ++i) { + JSCell* weak = dfgCommon->weakReferences[i].get(); + if (Heap::isMarked(weak)) + continue; + dataLog(" Weak reference ", RawPointer(weak), ".\n"); + } + } + + jettison(Profiler::JettisonDueToWeakReference); + return; + } +#endif // ENABLE(DFG_JIT) + +#if ENABLE(JIT) + // Handle inline caches. + if (!!jitCode()) { + RepatchBuffer repatchBuffer(this); + + for (auto iter = callLinkInfosBegin(); !!iter; ++iter) + (*iter)->visitWeak(repatchBuffer); + + for (Bag::iterator iter = m_stubInfos.begin(); !!iter; ++iter) { + StructureStubInfo& stubInfo = **iter; + + if (stubInfo.visitWeakReferences(repatchBuffer)) + continue; + + resetStubDuringGCInternal(repatchBuffer, stubInfo); + } + } +#endif +} + +void CodeBlock::getStubInfoMap(const ConcurrentJITLocker&, StubInfoMap& result) +{ +#if ENABLE(JIT) + toHashMap(m_stubInfos, getStructureStubInfoCodeOrigin, result); +#else + UNUSED_PARAM(result); +#endif +} + +void CodeBlock::getStubInfoMap(StubInfoMap& result) +{ + ConcurrentJITLocker locker(m_lock); + getStubInfoMap(locker, result); +} + +void CodeBlock::getCallLinkInfoMap(const ConcurrentJITLocker&, CallLinkInfoMap& result) +{ +#if ENABLE(JIT) + toHashMap(m_callLinkInfos, getCallLinkInfoCodeOrigin, result); +#else + UNUSED_PARAM(result); +#endif +} + +void CodeBlock::getCallLinkInfoMap(CallLinkInfoMap& result) +{ + ConcurrentJITLocker locker(m_lock); + getCallLinkInfoMap(locker, result); +} + +#if ENABLE(JIT) +StructureStubInfo* CodeBlock::addStubInfo() +{ + ConcurrentJITLocker locker(m_lock); + return m_stubInfos.add(); +} + +StructureStubInfo* CodeBlock::findStubInfo(CodeOrigin codeOrigin) +{ + for (StructureStubInfo* stubInfo : m_stubInfos) { + if (stubInfo->codeOrigin == codeOrigin) + return stubInfo; + } + return nullptr; +} + +CallLinkInfo* CodeBlock::addCallLinkInfo() +{ + ConcurrentJITLocker locker(m_lock); + return m_callLinkInfos.add(); +} + +void CodeBlock::resetStub(StructureStubInfo& stubInfo) +{ + if (stubInfo.accessType == access_unset) return; + + ConcurrentJITLocker locker(m_lock); + + RepatchBuffer repatchBuffer(this); + resetStubInternal(repatchBuffer, stubInfo); +} + +void CodeBlock::resetStubInternal(RepatchBuffer& repatchBuffer, StructureStubInfo& stubInfo) +{ + AccessType accessType = static_cast(stubInfo.accessType); + + if (Options::verboseOSR()) { + // This can be called from GC destructor calls, so we don't try to do a full dump + // of the CodeBlock. + dataLog("Clearing structure cache (kind ", static_cast(stubInfo.accessType), ") in ", RawPointer(this), ".\n"); + } + + RELEASE_ASSERT(JITCode::isJIT(jitType())); + + if (isGetByIdAccess(accessType)) + resetGetByID(repatchBuffer, stubInfo); + else if (isPutByIdAccess(accessType)) + resetPutByID(repatchBuffer, stubInfo); + else { + RELEASE_ASSERT(isInAccess(accessType)); + resetIn(repatchBuffer, stubInfo); + } + + stubInfo.reset(); +} + +void CodeBlock::resetStubDuringGCInternal(RepatchBuffer& repatchBuffer, StructureStubInfo& stubInfo) +{ + resetStubInternal(repatchBuffer, stubInfo); + stubInfo.resetByGC = true; +} + +CallLinkInfo* CodeBlock::getCallLinkInfoForBytecodeIndex(unsigned index) +{ + for (auto iter = m_callLinkInfos.begin(); !!iter; ++iter) { + if ((*iter)->codeOrigin() == CodeOrigin(index)) + return *iter; + } + return nullptr; +} +#endif + +void CodeBlock::stronglyVisitStrongReferences(SlotVisitor& visitor) +{ + visitor.append(&m_globalObject); + visitor.append(&m_ownerExecutable); + visitor.append(&m_symbolTable); + visitor.append(&m_unlinkedCode); + if (m_rareData) + m_rareData->m_evalCodeCache.visitAggregate(visitor); + visitor.appendValues(m_constantRegisters.data(), m_constantRegisters.size()); + for (size_t i = 0; i < m_functionExprs.size(); ++i) + visitor.append(&m_functionExprs[i]); + for (size_t i = 0; i < m_functionDecls.size(); ++i) + visitor.append(&m_functionDecls[i]); + for (unsigned i = 0; i < m_objectAllocationProfiles.size(); ++i) + m_objectAllocationProfiles[i].visitAggregate(visitor); + +#if ENABLE(DFG_JIT) + if (JITCode::isOptimizingJIT(jitType())) { + // FIXME: This is an antipattern for two reasons. References introduced by the DFG + // that aren't in the original CodeBlock being compiled should be weakly referenced. + // Inline call frames aren't in the original CodeBlock, so they qualify as weak. Also, + // those weak references should already be tracked in the DFG as weak FrozenValues. So, + // there is probably no need for this. We already have assertions that this should be + // unnecessary. + // https://bugs.webkit.org/show_bug.cgi?id=146613 + DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); + if (dfgCommon->inlineCallFrames.get()) + dfgCommon->inlineCallFrames->visitAggregate(visitor); + } +#endif + + updateAllPredictions(); +} + +void CodeBlock::stronglyVisitWeakReferences(SlotVisitor& visitor) +{ + UNUSED_PARAM(visitor); + +#if ENABLE(DFG_JIT) + if (!JITCode::isOptimizingJIT(jitType())) + return; + + DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); + + for (unsigned i = 0; i < dfgCommon->transitions.size(); ++i) { + if (!!dfgCommon->transitions[i].m_codeOrigin) + visitor.append(&dfgCommon->transitions[i].m_codeOrigin); // Almost certainly not necessary, since the code origin should also be a weak reference. Better to be safe, though. + visitor.append(&dfgCommon->transitions[i].m_from); + visitor.append(&dfgCommon->transitions[i].m_to); + } + + for (unsigned i = 0; i < dfgCommon->weakReferences.size(); ++i) + visitor.append(&dfgCommon->weakReferences[i]); + + for (unsigned i = 0; i < dfgCommon->weakStructureReferences.size(); ++i) + visitor.append(&dfgCommon->weakStructureReferences[i]); +#endif +} + +CodeBlock* CodeBlock::baselineAlternative() +{ +#if ENABLE(JIT) + CodeBlock* result = this; + while (result->alternative()) + result = result->alternative(); + RELEASE_ASSERT(result); + RELEASE_ASSERT(JITCode::isBaselineCode(result->jitType()) || result->jitType() == JITCode::None); + return result; +#else + return this; +#endif +} + +CodeBlock* CodeBlock::baselineVersion() +{ +#if ENABLE(JIT) + if (JITCode::isBaselineCode(jitType())) + return this; + CodeBlock* result = replacement(); + if (!result) { + // This can happen if we're creating the original CodeBlock for an executable. + // Assume that we're the baseline CodeBlock. + RELEASE_ASSERT(jitType() == JITCode::None); + return this; + } + result = result->baselineAlternative(); + return result; +#else + return this; +#endif +} + +#if ENABLE(JIT) +bool CodeBlock::hasOptimizedReplacement(JITCode::JITType typeToReplace) +{ + return JITCode::isHigherTier(replacement()->jitType(), typeToReplace); +} + +bool CodeBlock::hasOptimizedReplacement() +{ + return hasOptimizedReplacement(jitType()); +} +#endif + +HandlerInfo* CodeBlock::handlerForBytecodeOffset(unsigned bytecodeOffset, RequiredHandler requiredHandler) +{ + RELEASE_ASSERT(bytecodeOffset < instructions().size()); + + if (!m_rareData) + return 0; + + Vector& exceptionHandlers = m_rareData->m_exceptionHandlers; + for (size_t i = 0; i < exceptionHandlers.size(); ++i) { + HandlerInfo& handler = exceptionHandlers[i]; + if ((requiredHandler == RequiredHandler::CatchHandler) && !handler.isCatchHandler()) + continue; + + // Handlers are ordered innermost first, so the first handler we encounter + // that contains the source address is the correct handler to use. + if (handler.start <= bytecodeOffset && handler.end > bytecodeOffset) + return &handler; + } + + return 0; +} + +unsigned CodeBlock::lineNumberForBytecodeOffset(unsigned bytecodeOffset) +{ + RELEASE_ASSERT(bytecodeOffset < instructions().size()); + return m_ownerExecutable->firstLine() + m_unlinkedCode->lineNumberForBytecodeOffset(bytecodeOffset); +} + +unsigned CodeBlock::columnNumberForBytecodeOffset(unsigned bytecodeOffset) +{ + int divot; + int startOffset; + int endOffset; + unsigned line; + unsigned column; + expressionRangeForBytecodeOffset(bytecodeOffset, divot, startOffset, endOffset, line, column); + return column; +} + +void CodeBlock::expressionRangeForBytecodeOffset(unsigned bytecodeOffset, int& divot, int& startOffset, int& endOffset, unsigned& line, unsigned& column) +{ + m_unlinkedCode->expressionRangeForBytecodeOffset(bytecodeOffset, divot, startOffset, endOffset, line, column); + divot += m_sourceOffset; + column += line ? 1 : firstLineColumnOffset(); + line += m_ownerExecutable->firstLine(); +} + +bool CodeBlock::hasOpDebugForLineAndColumn(unsigned line, unsigned column) +{ + Interpreter* interpreter = vm()->interpreter; + const Instruction* begin = instructions().begin(); + const Instruction* end = instructions().end(); + for (const Instruction* it = begin; it != end;) { + OpcodeID opcodeID = interpreter->getOpcodeID(it->u.opcode); + if (opcodeID == op_debug) { + unsigned bytecodeOffset = it - begin; + int unused; + unsigned opDebugLine; + unsigned opDebugColumn; + expressionRangeForBytecodeOffset(bytecodeOffset, unused, unused, unused, opDebugLine, opDebugColumn); + if (line == opDebugLine && (column == Breakpoint::unspecifiedColumn || column == opDebugColumn)) + return true; + } + it += opcodeLengths[opcodeID]; + } + return false; +} + +void CodeBlock::shrinkToFit(ShrinkMode shrinkMode) +{ + m_rareCaseProfiles.shrinkToFit(); + m_specialFastCaseProfiles.shrinkToFit(); + + if (shrinkMode == EarlyShrink) { + m_constantRegisters.shrinkToFit(); + m_constantsSourceCodeRepresentation.shrinkToFit(); + + if (m_rareData) { + m_rareData->m_switchJumpTables.shrinkToFit(); + m_rareData->m_stringSwitchJumpTables.shrinkToFit(); + } + } // else don't shrink these, because we would have already pointed pointers into these tables. +} + +#if ENABLE(JIT) +void CodeBlock::unlinkCalls() +{ + if (!!m_alternative) + m_alternative->unlinkCalls(); + for (size_t i = 0; i < m_llintCallLinkInfos.size(); ++i) { + if (m_llintCallLinkInfos[i].isLinked()) + m_llintCallLinkInfos[i].unlink(); + } + if (m_callLinkInfos.isEmpty()) + return; + if (!m_vm->canUseJIT()) + return; + RepatchBuffer repatchBuffer(this); + for (auto iter = m_callLinkInfos.begin(); !!iter; ++iter) { + CallLinkInfo& info = **iter; + if (!info.isLinked()) + continue; + info.unlink(repatchBuffer); + } +} + +void CodeBlock::linkIncomingCall(ExecState* callerFrame, CallLinkInfo* incoming) +{ + noticeIncomingCall(callerFrame); + m_incomingCalls.push(incoming); +} + +void CodeBlock::linkIncomingPolymorphicCall(ExecState* callerFrame, PolymorphicCallNode* incoming) +{ + noticeIncomingCall(callerFrame); + m_incomingPolymorphicCalls.push(incoming); +} +#endif // ENABLE(JIT) + +void CodeBlock::unlinkIncomingCalls() +{ + while (m_incomingLLIntCalls.begin() != m_incomingLLIntCalls.end()) + m_incomingLLIntCalls.begin()->unlink(); +#if ENABLE(JIT) + if (m_incomingCalls.isEmpty() && m_incomingPolymorphicCalls.isEmpty()) + return; + RepatchBuffer repatchBuffer(this); + while (m_incomingCalls.begin() != m_incomingCalls.end()) + m_incomingCalls.begin()->unlink(repatchBuffer); + while (m_incomingPolymorphicCalls.begin() != m_incomingPolymorphicCalls.end()) + m_incomingPolymorphicCalls.begin()->unlink(repatchBuffer); +#endif // ENABLE(JIT) +} + +void CodeBlock::linkIncomingCall(ExecState* callerFrame, LLIntCallLinkInfo* incoming) +{ + noticeIncomingCall(callerFrame); + m_incomingLLIntCalls.push(incoming); +} + +void CodeBlock::clearEvalCache() +{ + if (!!m_alternative) + m_alternative->clearEvalCache(); + if (CodeBlock* otherBlock = specialOSREntryBlockOrNull()) + otherBlock->clearEvalCache(); + if (!m_rareData) + return; + m_rareData->m_evalCodeCache.clear(); +} + +void CodeBlock::install() +{ + ownerExecutable()->installCode(this); +} + +PassRefPtr CodeBlock::newReplacement() +{ + return ownerExecutable()->newReplacementCodeBlockFor(specializationKind()); +} + +#if ENABLE(JIT) +CodeBlock* ProgramCodeBlock::replacement() +{ + return jsCast(ownerExecutable())->codeBlock(); +} + +CodeBlock* EvalCodeBlock::replacement() +{ + return jsCast(ownerExecutable())->codeBlock(); +} + +CodeBlock* FunctionCodeBlock::replacement() +{ + return jsCast(ownerExecutable())->codeBlockFor(m_isConstructor ? CodeForConstruct : CodeForCall); +} + +DFG::CapabilityLevel ProgramCodeBlock::capabilityLevelInternal() +{ + return DFG::programCapabilityLevel(this); +} + +DFG::CapabilityLevel EvalCodeBlock::capabilityLevelInternal() +{ + return DFG::evalCapabilityLevel(this); +} + +DFG::CapabilityLevel FunctionCodeBlock::capabilityLevelInternal() +{ + if (m_isConstructor) + return DFG::functionForConstructCapabilityLevel(this); + return DFG::functionForCallCapabilityLevel(this); +} +#endif + +void CodeBlock::jettison(Profiler::JettisonReason reason, ReoptimizationMode mode, const FireDetail* detail) +{ + RELEASE_ASSERT(reason != Profiler::NotJettisoned); + +#if ENABLE(DFG_JIT) + if (DFG::shouldShowDisassembly()) { + dataLog("Jettisoning ", *this); + if (mode == CountReoptimization) + dataLog(" and counting reoptimization"); + dataLog(" due to ", reason); + if (detail) + dataLog(", ", *detail); + dataLog(".\n"); + } + + DeferGCForAWhile deferGC(*m_heap); + RELEASE_ASSERT(JITCode::isOptimizingJIT(jitType())); + + if (Profiler::Compilation* compilation = jitCode()->dfgCommon()->compilation.get()) + compilation->setJettisonReason(reason, detail); + + // We want to accomplish two things here: + // 1) Make sure that if this CodeBlock is on the stack right now, then if we return to it + // we should OSR exit at the top of the next bytecode instruction after the return. + // 2) Make sure that if we call the owner executable, then we shouldn't call this CodeBlock. + + // This accomplishes the OSR-exit-on-return part, and does its own book-keeping about + // whether the invalidation has already happened. + if (!jitCode()->dfgCommon()->invalidate()) { + // Nothing to do since we've already been invalidated. That means that we cannot be + // the optimized replacement. + RELEASE_ASSERT(this != replacement()); + return; + } + + if (DFG::shouldShowDisassembly()) + dataLog(" Did invalidate ", *this, "\n"); + + // Count the reoptimization if that's what the user wanted. + if (mode == CountReoptimization) { + // FIXME: Maybe this should call alternative(). + // https://bugs.webkit.org/show_bug.cgi?id=123677 + baselineAlternative()->countReoptimization(); + if (DFG::shouldShowDisassembly()) + dataLog(" Did count reoptimization for ", *this, "\n"); + } + + // Now take care of the entrypoint. + if (this != replacement()) { + // This means that we were never the entrypoint. This can happen for OSR entry code + // blocks. + return; + } + alternative()->optimizeAfterWarmUp(); + tallyFrequentExitSites(); + alternative()->install(); + if (DFG::shouldShowDisassembly()) + dataLog(" Did install baseline version of ", *this, "\n"); +#else // ENABLE(DFG_JIT) + UNUSED_PARAM(mode); + UNUSED_PARAM(detail); + UNREACHABLE_FOR_PLATFORM(); +#endif // ENABLE(DFG_JIT) +} + +JSGlobalObject* CodeBlock::globalObjectFor(CodeOrigin codeOrigin) +{ + if (!codeOrigin.inlineCallFrame) + return globalObject(); + return jsCast(codeOrigin.inlineCallFrame->executable.get())->eitherCodeBlock()->globalObject(); +} + +class RecursionCheckFunctor { +public: + RecursionCheckFunctor(CallFrame* startCallFrame, CodeBlock* codeBlock, unsigned depthToCheck) + : m_startCallFrame(startCallFrame) + , m_codeBlock(codeBlock) + , m_depthToCheck(depthToCheck) + , m_foundStartCallFrame(false) + , m_didRecurse(false) + { } + + StackVisitor::Status operator()(StackVisitor& visitor) + { + CallFrame* currentCallFrame = visitor->callFrame(); + + if (currentCallFrame == m_startCallFrame) + m_foundStartCallFrame = true; + + if (m_foundStartCallFrame) { + if (visitor->callFrame()->codeBlock() == m_codeBlock) { + m_didRecurse = true; + return StackVisitor::Done; + } + + if (!m_depthToCheck--) + return StackVisitor::Done; + } + + return StackVisitor::Continue; } - if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_self) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_getter_self) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_custom_self)) { - visitor.append(&vPC[4].u.structure); + bool didRecurse() const { return m_didRecurse; } + +private: + CallFrame* m_startCallFrame; + CodeBlock* m_codeBlock; + unsigned m_depthToCheck; + bool m_foundStartCallFrame; + bool m_didRecurse; +}; + +void CodeBlock::noticeIncomingCall(ExecState* callerFrame) +{ + CodeBlock* callerCodeBlock = callerFrame->codeBlock(); + + if (Options::verboseCallLink()) + dataLog("Noticing call link from ", pointerDump(callerCodeBlock), " to ", *this, "\n"); + +#if ENABLE(DFG_JIT) + if (!m_shouldAlwaysBeInlined) return; - } - if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_proto) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_getter_proto) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_custom_proto)) { - visitor.append(&vPC[4].u.structure); - visitor.append(&vPC[5].u.structure); + + if (!callerCodeBlock) { + m_shouldAlwaysBeInlined = false; + if (Options::verboseCallLink()) + dataLog(" Clearing SABI because caller is native.\n"); return; } - if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_chain) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_getter_chain) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_custom_chain)) { - visitor.append(&vPC[4].u.structure); - visitor.append(&vPC[5].u.structureChain); + + if (!hasBaselineJITProfiling()) return; - } - if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_transition)) { - visitor.append(&vPC[4].u.structure); - visitor.append(&vPC[5].u.structure); - visitor.append(&vPC[6].u.structureChain); + + if (!DFG::mightInlineFunction(this)) + return; + + if (!canInline(m_capabilityLevelState)) + return; + + if (!DFG::isSmallEnoughToInlineCodeInto(callerCodeBlock)) { + m_shouldAlwaysBeInlined = false; + if (Options::verboseCallLink()) + dataLog(" Clearing SABI because caller is too large.\n"); return; } - if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id) && vPC[4].u.structure) { - visitor.append(&vPC[4].u.structure); + + if (callerCodeBlock->jitType() == JITCode::InterpreterThunk) { + // If the caller is still in the interpreter, then we can't expect inlining to + // happen anytime soon. Assume it's profitable to optimize it separately. This + // ensures that a function is SABI only if it is called no more frequently than + // any of its callers. + m_shouldAlwaysBeInlined = false; + if (Options::verboseCallLink()) + dataLog(" Clearing SABI because caller is in LLInt.\n"); return; } - if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_replace)) { - visitor.append(&vPC[4].u.structure); + + if (JITCode::isOptimizingJIT(callerCodeBlock->jitType())) { + m_shouldAlwaysBeInlined = false; + if (Options::verboseCallLink()) + dataLog(" Clearing SABI bcause caller was already optimized.\n"); return; } - if (vPC[0].u.opcode == interpreter->getOpcode(op_resolve_global) || vPC[0].u.opcode == interpreter->getOpcode(op_resolve_global_dynamic)) { - if (vPC[3].u.structure) - visitor.append(&vPC[3].u.structure); + + if (callerCodeBlock->codeType() != FunctionCode) { + // If the caller is either eval or global code, assume that that won't be + // optimized anytime soon. For eval code this is particularly true since we + // delay eval optimization by a *lot*. + m_shouldAlwaysBeInlined = false; + if (Options::verboseCallLink()) + dataLog(" Clearing SABI because caller is not a function.\n"); return; } - if ((vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_proto_list)) - || (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_self_list)) - || (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_getter_proto_list)) - || (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_getter_self_list)) - || (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_custom_proto_list)) - || (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_custom_self_list))) { - PolymorphicAccessStructureList* polymorphicStructures = vPC[4].u.polymorphicStructures; - polymorphicStructures->visitAggregate(visitor, vPC[5].u.operand); - delete polymorphicStructures; + + // Recursive calls won't be inlined. + RecursionCheckFunctor functor(callerFrame, this, Options::maximumInliningDepth()); + vm()->topCallFrame->iterate(functor); + + if (functor.didRecurse()) { + if (Options::verboseCallLink()) + dataLog(" Clearing SABI because recursion was detected.\n"); + m_shouldAlwaysBeInlined = false; return; } + + if (callerCodeBlock->m_capabilityLevelState == DFG::CapabilityLevelNotSet) { + dataLog("In call from ", *callerCodeBlock, " ", callerFrame->codeOrigin(), " to ", *this, ": caller's DFG capability level is not set.\n"); + CRASH(); + } + + if (canCompile(callerCodeBlock->m_capabilityLevelState)) + return; + + if (Options::verboseCallLink()) + dataLog(" Clearing SABI because the caller is not a DFG candidate.\n"); + + m_shouldAlwaysBeInlined = false; +#endif +} - // These instructions don't ref their Structures. - ASSERT(vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id) || vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_get_array_length) || vPC[0].u.opcode == interpreter->getOpcode(op_get_string_length)); +unsigned CodeBlock::reoptimizationRetryCounter() const +{ +#if ENABLE(JIT) + ASSERT(m_reoptimizationRetryCounter <= Options::reoptimizationRetryCounterMax()); + return m_reoptimizationRetryCounter; +#else + return 0; +#endif // ENABLE(JIT) } -void EvalCodeCache::visitAggregate(SlotVisitor& visitor) +#if ENABLE(JIT) +void CodeBlock::countReoptimization() { - EvalCacheMap::iterator end = m_cacheMap.end(); - for (EvalCacheMap::iterator ptr = m_cacheMap.begin(); ptr != end; ++ptr) - visitor.append(&ptr->second); + m_reoptimizationRetryCounter++; + if (m_reoptimizationRetryCounter > Options::reoptimizationRetryCounterMax()) + m_reoptimizationRetryCounter = Options::reoptimizationRetryCounterMax(); } -void CodeBlock::visitAggregate(SlotVisitor& visitor) +unsigned CodeBlock::numberOfDFGCompiles() { - visitor.append(&m_globalObject); - visitor.append(&m_ownerExecutable); - if (m_rareData) { - m_rareData->m_evalCodeCache.visitAggregate(visitor); - size_t regExpCount = m_rareData->m_regexps.size(); - WriteBarrier* regexps = m_rareData->m_regexps.data(); - for (size_t i = 0; i < regExpCount; i++) - visitor.append(regexps + i); + ASSERT(JITCode::isBaselineCode(jitType())); + if (Options::testTheFTL()) { + if (m_didFailFTLCompilation) + return 1000000; + return (m_hasBeenCompiledWithFTL ? 1 : 0) + m_reoptimizationRetryCounter; } - visitor.appendValues(m_constantRegisters.data(), m_constantRegisters.size()); - for (size_t i = 0; i < m_functionExprs.size(); ++i) - visitor.append(&m_functionExprs[i]); - for (size_t i = 0; i < m_functionDecls.size(); ++i) - visitor.append(&m_functionDecls[i]); -#if ENABLE(JIT_OPTIMIZE_CALL) - if (visitor.shouldUnlinkCalls()) - unlinkCalls(); - for (unsigned i = 0; i < numberOfCallLinkInfos(); ++i) - if (callLinkInfo(i).isLinked()) - visitor.append(&callLinkInfo(i).callee); -#endif -#if ENABLE(INTERPRETER) - for (size_t size = m_propertyAccessInstructions.size(), i = 0; i < size; ++i) - visitStructures(visitor, &m_instructions[m_propertyAccessInstructions[i]]); - for (size_t size = m_globalResolveInstructions.size(), i = 0; i < size; ++i) - visitStructures(visitor, &m_instructions[m_globalResolveInstructions[i]]); -#endif -#if ENABLE(JIT) - for (size_t size = m_globalResolveInfos.size(), i = 0; i < size; ++i) { - if (m_globalResolveInfos[i].structure) - visitor.append(&m_globalResolveInfos[i].structure); + return (JITCode::isOptimizingJIT(replacement()->jitType()) ? 1 : 0) + m_reoptimizationRetryCounter; +} + +int32_t CodeBlock::codeTypeThresholdMultiplier() const +{ + if (codeType() == EvalCode) + return Options::evalThresholdMultiplier(); + + return 1; +} + +double CodeBlock::optimizationThresholdScalingFactor() +{ + // This expression arises from doing a least-squares fit of + // + // F[x_] =: a * Sqrt[x + b] + Abs[c * x] + d + // + // against the data points: + // + // x F[x_] + // 10 0.9 (smallest reasonable code block) + // 200 1.0 (typical small-ish code block) + // 320 1.2 (something I saw in 3d-cube that I wanted to optimize) + // 1268 5.0 (something I saw in 3d-cube that I didn't want to optimize) + // 4000 5.5 (random large size, used to cause the function to converge to a shallow curve of some sort) + // 10000 6.0 (similar to above) + // + // I achieve the minimization using the following Mathematica code: + // + // MyFunctionTemplate[x_, a_, b_, c_, d_] := a*Sqrt[x + b] + Abs[c*x] + d + // + // samples = {{10, 0.9}, {200, 1}, {320, 1.2}, {1268, 5}, {4000, 5.5}, {10000, 6}} + // + // solution = + // Minimize[Plus @@ ((MyFunctionTemplate[#[[1]], a, b, c, d] - #[[2]])^2 & /@ samples), + // {a, b, c, d}][[2]] + // + // And the code below (to initialize a, b, c, d) is generated by: + // + // Print["const double " <> ToString[#[[1]]] <> " = " <> + // If[#[[2]] < 0.00001, "0.0", ToString[#[[2]]]] <> ";"] & /@ solution + // + // We've long known the following to be true: + // - Small code blocks are cheap to optimize and so we should do it sooner rather + // than later. + // - Large code blocks are expensive to optimize and so we should postpone doing so, + // and sometimes have a large enough threshold that we never optimize them. + // - The difference in cost is not totally linear because (a) just invoking the + // DFG incurs some base cost and (b) for large code blocks there is enough slop + // in the correlation between instruction count and the actual compilation cost + // that for those large blocks, the instruction count should not have a strong + // influence on our threshold. + // + // I knew the goals but I didn't know how to achieve them; so I picked an interesting + // example where the heuristics were right (code block in 3d-cube with instruction + // count 320, which got compiled early as it should have been) and one where they were + // totally wrong (code block in 3d-cube with instruction count 1268, which was expensive + // to compile and didn't run often enough to warrant compilation in my opinion), and + // then threw in additional data points that represented my own guess of what our + // heuristics should do for some round-numbered examples. + // + // The expression to which I decided to fit the data arose because I started with an + // affine function, and then did two things: put the linear part in an Abs to ensure + // that the fit didn't end up choosing a negative value of c (which would result in + // the function turning over and going negative for large x) and I threw in a Sqrt + // term because Sqrt represents my intution that the function should be more sensitive + // to small changes in small values of x, but less sensitive when x gets large. + + // Note that the current fit essentially eliminates the linear portion of the + // expression (c == 0.0). + const double a = 0.061504; + const double b = 1.02406; + const double c = 0.0; + const double d = 0.825914; + + double instructionCount = this->instructionCount(); + + ASSERT(instructionCount); // Make sure this is called only after we have an instruction stream; otherwise it'll just return the value of d, which makes no sense. + + double result = d + a * sqrt(instructionCount + b) + c * instructionCount; + + result *= codeTypeThresholdMultiplier(); + + if (Options::verboseOSR()) { + dataLog( + *this, ": instruction count is ", instructionCount, + ", scaling execution counter by ", result, " * ", codeTypeThresholdMultiplier(), + "\n"); } + return result; +} + +static int32_t clipThreshold(double threshold) +{ + if (threshold < 1.0) + return 1; + + if (threshold > static_cast(std::numeric_limits::max())) + return std::numeric_limits::max(); + + return static_cast(threshold); +} - for (size_t size = m_structureStubInfos.size(), i = 0; i < size; ++i) - m_structureStubInfos[i].visitAggregate(visitor); +int32_t CodeBlock::adjustedCounterValue(int32_t desiredThreshold) +{ + return clipThreshold( + static_cast(desiredThreshold) * + optimizationThresholdScalingFactor() * + (1 << reoptimizationRetryCounter())); +} - for (size_t size = m_methodCallLinkInfos.size(), i = 0; i < size; ++i) { - if (m_methodCallLinkInfos[i].cachedStructure) { - // Both members must be filled at the same time - visitor.append(&m_methodCallLinkInfos[i].cachedStructure); - ASSERT(!!m_methodCallLinkInfos[i].cachedPrototypeStructure); - visitor.append(&m_methodCallLinkInfos[i].cachedPrototypeStructure); - visitor.append(&m_methodCallLinkInfos[i].cachedFunction); - visitor.append(&m_methodCallLinkInfos[i].cachedPrototype); +bool CodeBlock::checkIfOptimizationThresholdReached() +{ +#if ENABLE(DFG_JIT) + if (DFG::Worklist* worklist = DFG::existingGlobalDFGWorklistOrNull()) { + if (worklist->compilationState(DFG::CompilationKey(this, DFG::DFGMode)) + == DFG::Worklist::Compiled) { + optimizeNextInvocation(); + return true; } } #endif + + return m_jitExecuteCounter.checkIfThresholdCrossedAndSet(this); } -HandlerInfo* CodeBlock::handlerForBytecodeOffset(unsigned bytecodeOffset) +void CodeBlock::optimizeNextInvocation() { - ASSERT(bytecodeOffset < m_instructionCount); + if (Options::verboseOSR()) + dataLog(*this, ": Optimizing next invocation.\n"); + m_jitExecuteCounter.setNewThreshold(0, this); +} - if (!m_rareData) - return 0; - - Vector& exceptionHandlers = m_rareData->m_exceptionHandlers; - for (size_t i = 0; i < exceptionHandlers.size(); ++i) { - // Handlers are ordered innermost first, so the first handler we encounter - // that contains the source address is the correct handler to use. - if (exceptionHandlers[i].start <= bytecodeOffset && exceptionHandlers[i].end >= bytecodeOffset) - return &exceptionHandlers[i]; - } +void CodeBlock::dontOptimizeAnytimeSoon() +{ + if (Options::verboseOSR()) + dataLog(*this, ": Not optimizing anytime soon.\n"); + m_jitExecuteCounter.deferIndefinitely(); +} - return 0; +void CodeBlock::optimizeAfterWarmUp() +{ + if (Options::verboseOSR()) + dataLog(*this, ": Optimizing after warm-up.\n"); +#if ENABLE(DFG_JIT) + m_jitExecuteCounter.setNewThreshold( + adjustedCounterValue(Options::thresholdForOptimizeAfterWarmUp()), this); +#endif } -int CodeBlock::lineNumberForBytecodeOffset(unsigned bytecodeOffset) +void CodeBlock::optimizeAfterLongWarmUp() { - ASSERT(bytecodeOffset < m_instructionCount); + if (Options::verboseOSR()) + dataLog(*this, ": Optimizing after long warm-up.\n"); +#if ENABLE(DFG_JIT) + m_jitExecuteCounter.setNewThreshold( + adjustedCounterValue(Options::thresholdForOptimizeAfterLongWarmUp()), this); +#endif +} - if (!m_rareData) - return m_ownerExecutable->source().firstLine(); +void CodeBlock::optimizeSoon() +{ + if (Options::verboseOSR()) + dataLog(*this, ": Optimizing soon.\n"); +#if ENABLE(DFG_JIT) + m_jitExecuteCounter.setNewThreshold( + adjustedCounterValue(Options::thresholdForOptimizeSoon()), this); +#endif +} - Vector& lineInfo = m_rareData->m_lineInfo; +void CodeBlock::forceOptimizationSlowPathConcurrently() +{ + if (Options::verboseOSR()) + dataLog(*this, ": Forcing slow path concurrently.\n"); + m_jitExecuteCounter.forceSlowPathConcurrently(); +} - int low = 0; - int high = lineInfo.size(); - while (low < high) { - int mid = low + (high - low) / 2; - if (lineInfo[mid].instructionOffset <= bytecodeOffset) - low = mid + 1; +#if ENABLE(DFG_JIT) +void CodeBlock::setOptimizationThresholdBasedOnCompilationResult(CompilationResult result) +{ + JITCode::JITType type = jitType(); + if (type != JITCode::BaselineJIT) { + dataLog(*this, ": expected to have baseline code but have ", type, "\n"); + RELEASE_ASSERT_NOT_REACHED(); + } + + CodeBlock* theReplacement = replacement(); + if ((result == CompilationSuccessful) != (theReplacement != this)) { + dataLog(*this, ": we have result = ", result, " but "); + if (theReplacement == this) + dataLog("we are our own replacement.\n"); else - high = mid; + dataLog("our replacement is ", pointerDump(theReplacement), "\n"); + RELEASE_ASSERT_NOT_REACHED(); + } + + switch (result) { + case CompilationSuccessful: + RELEASE_ASSERT(JITCode::isOptimizingJIT(replacement()->jitType())); + optimizeNextInvocation(); + return; + case CompilationFailed: + dontOptimizeAnytimeSoon(); + return; + case CompilationDeferred: + // We'd like to do dontOptimizeAnytimeSoon() but we cannot because + // forceOptimizationSlowPathConcurrently() is inherently racy. It won't + // necessarily guarantee anything. So, we make sure that even if that + // function ends up being a no-op, we still eventually retry and realize + // that we have optimized code ready. + optimizeAfterWarmUp(); + return; + case CompilationInvalidated: + // Retry with exponential backoff. + countReoptimization(); + optimizeAfterWarmUp(); + return; + } + + dataLog("Unrecognized result: ", static_cast(result), "\n"); + RELEASE_ASSERT_NOT_REACHED(); +} + +#endif + +uint32_t CodeBlock::adjustedExitCountThreshold(uint32_t desiredThreshold) +{ + ASSERT(JITCode::isOptimizingJIT(jitType())); + // Compute this the lame way so we don't saturate. This is called infrequently + // enough that this loop won't hurt us. + unsigned result = desiredThreshold; + for (unsigned n = baselineVersion()->reoptimizationRetryCounter(); n--;) { + unsigned newResult = result << 1; + if (newResult < result) + return std::numeric_limits::max(); + result = newResult; } + return result; +} - if (!low) - return m_ownerExecutable->source().firstLine(); - return lineInfo[low - 1].lineNumber; +uint32_t CodeBlock::exitCountThresholdForReoptimization() +{ + return adjustedExitCountThreshold(Options::osrExitCountForReoptimization() * codeTypeThresholdMultiplier()); } -void CodeBlock::expressionRangeForBytecodeOffset(unsigned bytecodeOffset, int& divot, int& startOffset, int& endOffset) +uint32_t CodeBlock::exitCountThresholdForReoptimizationFromLoop() { - ASSERT(bytecodeOffset < m_instructionCount); + return adjustedExitCountThreshold(Options::osrExitCountForReoptimizationFromLoop() * codeTypeThresholdMultiplier()); +} - if (!m_rareData) { - startOffset = 0; - endOffset = 0; - divot = 0; - return; - } +bool CodeBlock::shouldReoptimizeNow() +{ + return osrExitCounter() >= exitCountThresholdForReoptimization(); +} - Vector& expressionInfo = m_rareData->m_expressionInfo; +bool CodeBlock::shouldReoptimizeFromLoopNow() +{ + return osrExitCounter() >= exitCountThresholdForReoptimizationFromLoop(); +} +#endif - int low = 0; - int high = expressionInfo.size(); - while (low < high) { - int mid = low + (high - low) / 2; - if (expressionInfo[mid].instructionOffset <= bytecodeOffset) - low = mid + 1; - else - high = mid; +ArrayProfile* CodeBlock::getArrayProfile(unsigned bytecodeOffset) +{ + for (unsigned i = 0; i < m_arrayProfiles.size(); ++i) { + if (m_arrayProfiles[i].bytecodeOffset() == bytecodeOffset) + return &m_arrayProfiles[i]; } + return 0; +} - ASSERT(low); - if (!low) { - startOffset = 0; - endOffset = 0; - divot = 0; - return; +ArrayProfile* CodeBlock::getOrAddArrayProfile(unsigned bytecodeOffset) +{ + ArrayProfile* result = getArrayProfile(bytecodeOffset); + if (result) + return result; + return addArrayProfile(bytecodeOffset); +} + +void CodeBlock::updateAllPredictionsAndCountLiveness(unsigned& numberOfLiveNonArgumentValueProfiles, unsigned& numberOfSamplesInProfiles) +{ + ConcurrentJITLocker locker(m_lock); + + numberOfLiveNonArgumentValueProfiles = 0; + numberOfSamplesInProfiles = 0; // If this divided by ValueProfile::numberOfBuckets equals numberOfValueProfiles() then value profiles are full. + for (unsigned i = 0; i < totalNumberOfValueProfiles(); ++i) { + ValueProfile* profile = getFromAllValueProfiles(i); + unsigned numSamples = profile->totalNumberOfSamples(); + if (numSamples > ValueProfile::numberOfBuckets) + numSamples = ValueProfile::numberOfBuckets; // We don't want profiles that are extremely hot to be given more weight. + numberOfSamplesInProfiles += numSamples; + if (profile->m_bytecodeOffset < 0) { + profile->computeUpdatedPrediction(locker); + continue; + } + if (profile->numberOfSamples() || profile->m_prediction != SpecNone) + numberOfLiveNonArgumentValueProfiles++; + profile->computeUpdatedPrediction(locker); } + +#if ENABLE(DFG_JIT) + m_lazyOperandValueProfiles.computeUpdatedPredictions(locker); +#endif +} - startOffset = expressionInfo[low - 1].startOffset; - endOffset = expressionInfo[low - 1].endOffset; - divot = expressionInfo[low - 1].divotPoint + m_sourceOffset; - return; +void CodeBlock::updateAllValueProfilePredictions() +{ + unsigned ignoredValue1, ignoredValue2; + updateAllPredictionsAndCountLiveness(ignoredValue1, ignoredValue2); } -#if ENABLE(INTERPRETER) -bool CodeBlock::hasGlobalResolveInstructionAtBytecodeOffset(unsigned bytecodeOffset) +void CodeBlock::updateAllArrayPredictions() { - if (m_globalResolveInstructions.isEmpty()) - return false; + ConcurrentJITLocker locker(m_lock); + + for (unsigned i = m_arrayProfiles.size(); i--;) + m_arrayProfiles[i].computeUpdatedPrediction(locker, this); + + // Don't count these either, for similar reasons. + for (unsigned i = m_arrayAllocationProfiles.size(); i--;) + m_arrayAllocationProfiles[i].updateIndexingType(); +} - int low = 0; - int high = m_globalResolveInstructions.size(); - while (low < high) { - int mid = low + (high - low) / 2; - if (m_globalResolveInstructions[mid] <= bytecodeOffset) - low = mid + 1; - else - high = mid; +void CodeBlock::updateAllPredictions() +{ + updateAllValueProfilePredictions(); + updateAllArrayPredictions(); +} + +bool CodeBlock::shouldOptimizeNow() +{ + if (Options::verboseOSR()) + dataLog("Considering optimizing ", *this, "...\n"); + + if (m_optimizationDelayCounter >= Options::maximumOptimizationDelay()) + return true; + + updateAllArrayPredictions(); + + unsigned numberOfLiveNonArgumentValueProfiles; + unsigned numberOfSamplesInProfiles; + updateAllPredictionsAndCountLiveness(numberOfLiveNonArgumentValueProfiles, numberOfSamplesInProfiles); + + if (Options::verboseOSR()) { + dataLogF( + "Profile hotness: %lf (%u / %u), %lf (%u / %u)\n", + (double)numberOfLiveNonArgumentValueProfiles / numberOfValueProfiles(), + numberOfLiveNonArgumentValueProfiles, numberOfValueProfiles(), + (double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / numberOfValueProfiles(), + numberOfSamplesInProfiles, ValueProfile::numberOfBuckets * numberOfValueProfiles()); } - if (!low || m_globalResolveInstructions[low - 1] != bytecodeOffset) - return false; - return true; + if ((!numberOfValueProfiles() || (double)numberOfLiveNonArgumentValueProfiles / numberOfValueProfiles() >= Options::desiredProfileLivenessRate()) + && (!totalNumberOfValueProfiles() || (double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / totalNumberOfValueProfiles() >= Options::desiredProfileFullnessRate()) + && static_cast(m_optimizationDelayCounter) + 1 >= Options::minimumOptimizationDelay()) + return true; + + ASSERT(m_optimizationDelayCounter < std::numeric_limits::max()); + m_optimizationDelayCounter++; + optimizeAfterWarmUp(); + return false; } -#endif -#if ENABLE(JIT) -bool CodeBlock::hasGlobalResolveInfoAtBytecodeOffset(unsigned bytecodeOffset) + +#if ENABLE(DFG_JIT) +void CodeBlock::tallyFrequentExitSites() { - if (m_globalResolveInfos.isEmpty()) - return false; + ASSERT(JITCode::isOptimizingJIT(jitType())); + ASSERT(alternative()->jitType() == JITCode::BaselineJIT); + + CodeBlock* profiledBlock = alternative(); + + switch (jitType()) { + case JITCode::DFGJIT: { + DFG::JITCode* jitCode = m_jitCode->dfg(); + for (unsigned i = 0; i < jitCode->osrExit.size(); ++i) { + DFG::OSRExit& exit = jitCode->osrExit[i]; + exit.considerAddingAsFrequentExitSite(profiledBlock); + } + break; + } - int low = 0; - int high = m_globalResolveInfos.size(); - while (low < high) { - int mid = low + (high - low) / 2; - if (m_globalResolveInfos[mid].bytecodeOffset <= bytecodeOffset) - low = mid + 1; - else - high = mid; +#if ENABLE(FTL_JIT) + case JITCode::FTLJIT: { + // There is no easy way to avoid duplicating this code since the FTL::JITCode::osrExit + // vector contains a totally different type, that just so happens to behave like + // DFG::JITCode::osrExit. + FTL::JITCode* jitCode = m_jitCode->ftl(); + for (unsigned i = 0; i < jitCode->osrExit.size(); ++i) { + FTL::OSRExit& exit = jitCode->osrExit[i]; + exit.considerAddingAsFrequentExitSite(profiledBlock); + } + break; + } +#endif + + default: + RELEASE_ASSERT_NOT_REACHED(); + break; } +} +#endif // ENABLE(DFG_JIT) - if (!low || m_globalResolveInfos[low - 1].bytecodeOffset != bytecodeOffset) - return false; - return true; +#if ENABLE(VERBOSE_VALUE_PROFILE) +void CodeBlock::dumpValueProfiles() +{ + dataLog("ValueProfile for ", *this, ":\n"); + for (unsigned i = 0; i < totalNumberOfValueProfiles(); ++i) { + ValueProfile* profile = getFromAllValueProfiles(i); + if (profile->m_bytecodeOffset < 0) { + ASSERT(profile->m_bytecodeOffset == -1); + dataLogF(" arg = %u: ", i); + } else + dataLogF(" bc = %d: ", profile->m_bytecodeOffset); + if (!profile->numberOfSamples() && profile->m_prediction == SpecNone) { + dataLogF("\n"); + continue; + } + profile->dump(WTF::dataFile()); + dataLogF("\n"); + } + dataLog("RareCaseProfile for ", *this, ":\n"); + for (unsigned i = 0; i < numberOfRareCaseProfiles(); ++i) { + RareCaseProfile* profile = rareCaseProfile(i); + dataLogF(" bc = %d: %u\n", profile->m_bytecodeOffset, profile->m_counter); + } + dataLog("SpecialFastCaseProfile for ", *this, ":\n"); + for (unsigned i = 0; i < numberOfSpecialFastCaseProfiles(); ++i) { + RareCaseProfile* profile = specialFastCaseProfile(i); + dataLogF(" bc = %d: %u\n", profile->m_bytecodeOffset, profile->m_counter); + } } -#endif +#endif // ENABLE(VERBOSE_VALUE_PROFILE) -void CodeBlock::shrinkToFit() +unsigned CodeBlock::frameRegisterCount() { - m_instructions.shrinkToFit(); + switch (jitType()) { + case JITCode::InterpreterThunk: + return LLInt::frameRegisterCountFor(this); -#if ENABLE(INTERPRETER) - m_propertyAccessInstructions.shrinkToFit(); - m_globalResolveInstructions.shrinkToFit(); -#endif #if ENABLE(JIT) - m_structureStubInfos.shrinkToFit(); - m_globalResolveInfos.shrinkToFit(); - m_callLinkInfos.shrinkToFit(); -#endif + case JITCode::BaselineJIT: + return JIT::frameRegisterCountFor(this); +#endif // ENABLE(JIT) + +#if ENABLE(DFG_JIT) + case JITCode::DFGJIT: + case JITCode::FTLJIT: + return jitCode()->dfgCommon()->frameRegisterCount; +#endif // ENABLE(DFG_JIT) + + default: + RELEASE_ASSERT_NOT_REACHED(); + return 0; + } +} + +int CodeBlock::stackPointerOffset() +{ + return virtualRegisterForLocal(frameRegisterCount() - 1).offset(); +} + +size_t CodeBlock::predictedMachineCodeSize() +{ + // This will be called from CodeBlock::CodeBlock before either m_vm or the + // instructions have been initialized. It's OK to return 0 because what will really + // matter is the recomputation of this value when the slow path is triggered. + if (!m_vm) + return 0; + + if (!m_vm->machineCodeBytesPerBytecodeWordForBaselineJIT) + return 0; // It's as good of a prediction as we'll get. + + // Be conservative: return a size that will be an overestimation 84% of the time. + double multiplier = m_vm->machineCodeBytesPerBytecodeWordForBaselineJIT.mean() + + m_vm->machineCodeBytesPerBytecodeWordForBaselineJIT.standardDeviation(); + + // Be paranoid: silently reject bogus multipiers. Silently doing the "wrong" thing + // here is OK, since this whole method is just a heuristic. + if (multiplier < 0 || multiplier > 1000) + return 0; + + double doubleResult = multiplier * m_instructions.size(); + + // Be even more paranoid: silently reject values that won't fit into a size_t. If + // the function is so huge that we can't even fit it into virtual memory then we + // should probably have some other guards in place to prevent us from even getting + // to this point. + if (doubleResult > std::numeric_limits::max()) + return 0; + + return static_cast(doubleResult); +} - m_identifiers.shrinkToFit(); - m_functionDecls.shrinkToFit(); - m_functionExprs.shrinkToFit(); - m_constantRegisters.shrinkToFit(); +bool CodeBlock::usesOpcode(OpcodeID opcodeID) +{ + Interpreter* interpreter = vm()->interpreter; + Instruction* instructionsBegin = instructions().begin(); + unsigned instructionCount = instructions().size(); + + for (unsigned bytecodeOffset = 0; bytecodeOffset < instructionCount; ) { + switch (interpreter->getOpcodeID(instructionsBegin[bytecodeOffset].u.opcode)) { +#define DEFINE_OP(curOpcode, length) \ + case curOpcode: \ + if (curOpcode == opcodeID) \ + return true; \ + bytecodeOffset += length; \ + break; + FOR_EACH_OPCODE_ID(DEFINE_OP) +#undef DEFINE_OP + default: + RELEASE_ASSERT_NOT_REACHED(); + break; + } + } + + return false; +} - if (m_rareData) { - m_rareData->m_exceptionHandlers.shrinkToFit(); - m_rareData->m_regexps.shrinkToFit(); - m_rareData->m_immediateSwitchJumpTables.shrinkToFit(); - m_rareData->m_characterSwitchJumpTables.shrinkToFit(); - m_rareData->m_stringSwitchJumpTables.shrinkToFit(); - m_rareData->m_expressionInfo.shrinkToFit(); - m_rareData->m_lineInfo.shrinkToFit(); +String CodeBlock::nameForRegister(VirtualRegister virtualRegister) +{ + ConcurrentJITLocker locker(symbolTable()->m_lock); + SymbolTable::Map::iterator end = symbolTable()->end(locker); + for (SymbolTable::Map::iterator ptr = symbolTable()->begin(locker); ptr != end; ++ptr) { + if (ptr->value.varOffset() == VarOffset(virtualRegister)) { + // FIXME: This won't work from the compilation thread. + // https://bugs.webkit.org/show_bug.cgi?id=115300 + return ptr->key.get(); + } } + if (virtualRegister == thisRegister()) + return ASCIILiteral("this"); + if (virtualRegister.isArgument()) + return String::format("arguments[%3d]", virtualRegister.toArgument()); + + return ""; } -void CodeBlock::createActivation(CallFrame* callFrame) +ValueProfile* CodeBlock::valueProfileForBytecodeOffset(int bytecodeOffset) { - ASSERT(codeType() == FunctionCode); - ASSERT(needsFullScopeChain()); - ASSERT(!callFrame->uncheckedR(activationRegister()).jsValue()); - JSActivation* activation = new (callFrame) JSActivation(callFrame, static_cast(ownerExecutable())); - callFrame->uncheckedR(activationRegister()) = JSValue(activation); - callFrame->setScopeChain(callFrame->scopeChain()->push(activation)); + ValueProfile* result = binarySearch( + m_valueProfiles, m_valueProfiles.size(), bytecodeOffset, + getValueProfileBytecodeOffset); + ASSERT(result->m_bytecodeOffset != -1); + ASSERT(instructions()[bytecodeOffset + opcodeLength( + m_vm->interpreter->getOpcodeID( + instructions()[bytecodeOffset].u.opcode)) - 1].u.profile == result); + return result; } + +void CodeBlock::validate() +{ + BytecodeLivenessAnalysis liveness(this); // Compute directly from scratch so it doesn't effect CodeBlock footprint. + FastBitVector liveAtHead = liveness.getLivenessInfoAtBytecodeOffset(0); + + if (liveAtHead.numBits() != static_cast(m_numCalleeRegisters)) { + beginValidationDidFail(); + dataLog(" Wrong number of bits in result!\n"); + dataLog(" Result: ", liveAtHead, "\n"); + dataLog(" Bit count: ", liveAtHead.numBits(), "\n"); + endValidationDidFail(); + } + + for (unsigned i = m_numCalleeRegisters; i--;) { + VirtualRegister reg = virtualRegisterForLocal(i); + + if (liveAtHead.get(i)) { + beginValidationDidFail(); + dataLog(" Variable ", reg, " is expected to be dead.\n"); + dataLog(" Result: ", liveAtHead, "\n"); + endValidationDidFail(); + } + } +} + +void CodeBlock::beginValidationDidFail() +{ + dataLog("Validation failure in ", *this, ":\n"); + dataLog("\n"); +} + +void CodeBlock::endValidationDidFail() +{ + dataLog("\n"); + dumpBytecode(); + dataLog("\n"); + dataLog("Validation failure.\n"); + RELEASE_ASSERT_NOT_REACHED(); +} + +void CodeBlock::addBreakpoint(unsigned numBreakpoints) +{ + m_numBreakpoints += numBreakpoints; + ASSERT(m_numBreakpoints); + if (JITCode::isOptimizingJIT(jitType())) + jettison(Profiler::JettisonDueToDebuggerBreakpoint); +} + +void CodeBlock::setSteppingMode(CodeBlock::SteppingMode mode) +{ + m_steppingMode = mode; + if (mode == SteppingModeEnabled && JITCode::isOptimizingJIT(jitType())) + jettison(Profiler::JettisonDueToDebuggerStepping); +} + +RareCaseProfile* CodeBlock::rareCaseProfileForBytecodeOffset(int bytecodeOffset) +{ + return tryBinarySearch( + m_rareCaseProfiles, m_rareCaseProfiles.size(), bytecodeOffset, + getRareCaseProfileBytecodeOffset); +} + #if ENABLE(JIT) -void CodeBlock::unlinkCalls() +DFG::CapabilityLevel CodeBlock::capabilityLevel() { - if (!(m_callLinkInfos.size() || m_methodCallLinkInfos.size())) - return; - if (!m_globalData->canUseJIT()) - return; - RepatchBuffer repatchBuffer(this); - for (size_t i = 0; i < m_callLinkInfos.size(); i++) { - if (!m_callLinkInfos[i].isLinked()) - continue; - repatchBuffer.relink(m_callLinkInfos[i].callReturnLocation, m_callLinkInfos[i].isCall ? m_globalData->jitStubs->ctiVirtualCallLink() : m_globalData->jitStubs->ctiVirtualConstructLink()); - m_callLinkInfos[i].unlink(); - } + DFG::CapabilityLevel result = capabilityLevelInternal(); + m_capabilityLevelState = result; + return result; } #endif -void CodeBlock::clearEvalCache() +void CodeBlock::insertBasicBlockBoundariesForControlFlowProfiler(Vector& instructions) { - if (!m_rareData) - return; - m_rareData->m_evalCodeCache.clear(); + const Vector& bytecodeOffsets = unlinkedCodeBlock()->opProfileControlFlowBytecodeOffsets(); + for (size_t i = 0, offsetsLength = bytecodeOffsets.size(); i < offsetsLength; i++) { + // Because op_profile_control_flow is emitted at the beginning of every basic block, finding + // the next op_profile_control_flow will give us the text range of a single basic block. + size_t startIdx = bytecodeOffsets[i]; + RELEASE_ASSERT(vm()->interpreter->getOpcodeID(instructions[startIdx].u.opcode) == op_profile_control_flow); + int basicBlockStartOffset = instructions[startIdx + 1].u.operand; + int basicBlockEndOffset; + if (i + 1 < offsetsLength) { + size_t endIdx = bytecodeOffsets[i + 1]; + RELEASE_ASSERT(vm()->interpreter->getOpcodeID(instructions[endIdx].u.opcode) == op_profile_control_flow); + basicBlockEndOffset = instructions[endIdx + 1].u.operand - 1; + } else { + basicBlockEndOffset = m_sourceOffset + m_ownerExecutable->source().length() - 1; // Offset before the closing brace. + basicBlockStartOffset = std::min(basicBlockStartOffset, basicBlockEndOffset); // Some start offsets may be at the closing brace, ensure it is the offset before. + } + + // The following check allows for the same textual JavaScript basic block to have its bytecode emitted more + // than once and still play nice with the control flow profiler. When basicBlockStartOffset is larger than + // basicBlockEndOffset, it indicates that the bytecode generator has emitted code for the same AST node + // more than once (for example: ForInNode, Finally blocks in TryNode, etc). Though these are different + // basic blocks at the bytecode level, they are generated from the same textual basic block in the JavaScript + // program. The condition: + // (basicBlockEndOffset < basicBlockStartOffset) + // is encountered when op_profile_control_flow lies across the boundary of these duplicated bytecode basic + // blocks and the textual offset goes from the end of the duplicated block back to the beginning. These + // ranges are dummy ranges and are ignored. The duplicated bytecode basic blocks point to the same + // internal data structure, so if any of them execute, it will record the same textual basic block in the + // JavaScript program as executing. + // At the bytecode level, this situation looks like: + // j: op_profile_control_flow (from j->k, we have basicBlockEndOffset < basicBlockStartOffset) + // ... + // k: op_profile_control_flow (we want to skip over the j->k block and start fresh at offset k as the start of a new basic block k->m). + // ... + // m: op_profile_control_flow + if (basicBlockEndOffset < basicBlockStartOffset) { + RELEASE_ASSERT(i + 1 < offsetsLength); // We should never encounter dummy blocks at the end of a CodeBlock. + instructions[startIdx + 1].u.basicBlockLocation = vm()->controlFlowProfiler()->dummyBasicBlock(); + continue; + } + + BasicBlockLocation* basicBlockLocation = vm()->controlFlowProfiler()->getBasicBlockLocation(m_ownerExecutable->sourceID(), basicBlockStartOffset, basicBlockEndOffset); + + // Find all functions that are enclosed within the range: [basicBlockStartOffset, basicBlockEndOffset] + // and insert these functions' start/end offsets as gaps in the current BasicBlockLocation. + // This is necessary because in the original source text of a JavaScript program, + // function literals form new basic blocks boundaries, but they aren't represented + // inside the CodeBlock's instruction stream. + auto insertFunctionGaps = [basicBlockLocation, basicBlockStartOffset, basicBlockEndOffset] (const WriteBarrier& functionExecutable) { + const UnlinkedFunctionExecutable* executable = functionExecutable->unlinkedExecutable(); + int functionStart = executable->typeProfilingStartOffset(); + int functionEnd = executable->typeProfilingEndOffset(); + if (functionStart >= basicBlockStartOffset && functionEnd <= basicBlockEndOffset) + basicBlockLocation->insertGap(functionStart, functionEnd); + }; + + for (const WriteBarrier& executable : m_functionDecls) + insertFunctionGaps(executable); + for (const WriteBarrier& executable : m_functionExprs) + insertFunctionGaps(executable); + + instructions[startIdx + 1].u.basicBlockLocation = basicBlockLocation; + } } } // namespace JSC