| 1 | /* |
| 2 | * Copyright (C) 2012-2015 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #include "config.h" |
| 27 | #include "DFGFixupPhase.h" |
| 28 | |
| 29 | #if ENABLE(DFG_JIT) |
| 30 | |
| 31 | #include "ArrayPrototype.h" |
| 32 | #include "DFGGraph.h" |
| 33 | #include "DFGInsertionSet.h" |
| 34 | #include "DFGPhase.h" |
| 35 | #include "DFGPredictionPropagationPhase.h" |
| 36 | #include "DFGVariableAccessDataDump.h" |
| 37 | #include "JSCInlines.h" |
| 38 | #include "TypeLocation.h" |
| 39 | |
| 40 | namespace JSC { namespace DFG { |
| 41 | |
| 42 | class FixupPhase : public Phase { |
| 43 | public: |
| 44 | FixupPhase(Graph& graph) |
| 45 | : Phase(graph, "fixup") |
| 46 | , m_insertionSet(graph) |
| 47 | { |
| 48 | } |
| 49 | |
| 50 | bool run() |
| 51 | { |
| 52 | ASSERT(m_graph.m_fixpointState == BeforeFixpoint); |
| 53 | ASSERT(m_graph.m_form == ThreadedCPS); |
| 54 | |
| 55 | m_profitabilityChanged = false; |
| 56 | for (BlockIndex blockIndex = 0; blockIndex < m_graph.numBlocks(); ++blockIndex) |
| 57 | fixupBlock(m_graph.block(blockIndex)); |
| 58 | |
| 59 | while (m_profitabilityChanged) { |
| 60 | m_profitabilityChanged = false; |
| 61 | |
| 62 | for (unsigned i = m_graph.m_argumentPositions.size(); i--;) |
| 63 | m_graph.m_argumentPositions[i].mergeArgumentUnboxingAwareness(); |
| 64 | |
| 65 | for (BlockIndex blockIndex = 0; blockIndex < m_graph.numBlocks(); ++blockIndex) |
| 66 | fixupGetAndSetLocalsInBlock(m_graph.block(blockIndex)); |
| 67 | } |
| 68 | |
| 69 | for (BlockIndex blockIndex = 0; blockIndex < m_graph.numBlocks(); ++blockIndex) |
| 70 | injectTypeConversionsInBlock(m_graph.block(blockIndex)); |
| 71 | |
| 72 | m_graph.m_planStage = PlanStage::AfterFixup; |
| 73 | |
| 74 | return true; |
| 75 | } |
| 76 | |
| 77 | private: |
| 78 | void fixupBlock(BasicBlock* block) |
| 79 | { |
| 80 | if (!block) |
| 81 | return; |
| 82 | ASSERT(block->isReachable); |
| 83 | m_block = block; |
| 84 | for (m_indexInBlock = 0; m_indexInBlock < block->size(); ++m_indexInBlock) { |
| 85 | m_currentNode = block->at(m_indexInBlock); |
| 86 | fixupNode(m_currentNode); |
| 87 | } |
| 88 | m_insertionSet.execute(block); |
| 89 | } |
| 90 | |
| 91 | void fixupNode(Node* node) |
| 92 | { |
| 93 | NodeType op = node->op(); |
| 94 | |
| 95 | switch (op) { |
| 96 | case SetLocal: { |
| 97 | // This gets handled by fixupGetAndSetLocalsInBlock(). |
| 98 | return; |
| 99 | } |
| 100 | |
| 101 | case BitAnd: |
| 102 | case BitOr: |
| 103 | case BitXor: |
| 104 | case BitRShift: |
| 105 | case BitLShift: |
| 106 | case BitURShift: { |
| 107 | fixIntConvertingEdge(node->child1()); |
| 108 | fixIntConvertingEdge(node->child2()); |
| 109 | break; |
| 110 | } |
| 111 | |
| 112 | case ArithIMul: { |
| 113 | fixIntConvertingEdge(node->child1()); |
| 114 | fixIntConvertingEdge(node->child2()); |
| 115 | node->setOp(ArithMul); |
| 116 | node->setArithMode(Arith::Unchecked); |
| 117 | node->child1().setUseKind(Int32Use); |
| 118 | node->child2().setUseKind(Int32Use); |
| 119 | break; |
| 120 | } |
| 121 | |
| 122 | case ArithClz32: { |
| 123 | fixIntConvertingEdge(node->child1()); |
| 124 | node->setArithMode(Arith::Unchecked); |
| 125 | break; |
| 126 | } |
| 127 | |
| 128 | case UInt32ToNumber: { |
| 129 | fixIntConvertingEdge(node->child1()); |
| 130 | if (bytecodeCanTruncateInteger(node->arithNodeFlags())) |
| 131 | node->convertToIdentity(); |
| 132 | else if (node->canSpeculateInt32(FixupPass)) |
| 133 | node->setArithMode(Arith::CheckOverflow); |
| 134 | else { |
| 135 | node->setArithMode(Arith::DoOverflow); |
| 136 | node->setResult(NodeResultDouble); |
| 137 | } |
| 138 | break; |
| 139 | } |
| 140 | |
| 141 | case ValueAdd: { |
| 142 | if (attemptToMakeIntegerAdd(node)) { |
| 143 | node->setOp(ArithAdd); |
| 144 | break; |
| 145 | } |
| 146 | if (Node::shouldSpeculateNumberOrBooleanExpectingDefined(node->child1().node(), node->child2().node())) { |
| 147 | fixDoubleOrBooleanEdge(node->child1()); |
| 148 | fixDoubleOrBooleanEdge(node->child2()); |
| 149 | node->setOp(ArithAdd); |
| 150 | node->setResult(NodeResultDouble); |
| 151 | break; |
| 152 | } |
| 153 | |
| 154 | // FIXME: Optimize for the case where one of the operands is the |
| 155 | // empty string. Also consider optimizing for the case where we don't |
| 156 | // believe either side is the emtpy string. Both of these things should |
| 157 | // be easy. |
| 158 | |
| 159 | if (node->child1()->shouldSpeculateString() |
| 160 | && attemptToMakeFastStringAdd<StringUse>(node, node->child1(), node->child2())) |
| 161 | break; |
| 162 | if (node->child2()->shouldSpeculateString() |
| 163 | && attemptToMakeFastStringAdd<StringUse>(node, node->child2(), node->child1())) |
| 164 | break; |
| 165 | if (node->child1()->shouldSpeculateStringObject() |
| 166 | && attemptToMakeFastStringAdd<StringObjectUse>(node, node->child1(), node->child2())) |
| 167 | break; |
| 168 | if (node->child2()->shouldSpeculateStringObject() |
| 169 | && attemptToMakeFastStringAdd<StringObjectUse>(node, node->child2(), node->child1())) |
| 170 | break; |
| 171 | if (node->child1()->shouldSpeculateStringOrStringObject() |
| 172 | && attemptToMakeFastStringAdd<StringOrStringObjectUse>(node, node->child1(), node->child2())) |
| 173 | break; |
| 174 | if (node->child2()->shouldSpeculateStringOrStringObject() |
| 175 | && attemptToMakeFastStringAdd<StringOrStringObjectUse>(node, node->child2(), node->child1())) |
| 176 | break; |
| 177 | break; |
| 178 | } |
| 179 | |
| 180 | case MakeRope: { |
| 181 | fixupMakeRope(node); |
| 182 | break; |
| 183 | } |
| 184 | |
| 185 | case ArithAdd: |
| 186 | case ArithSub: { |
| 187 | if (attemptToMakeIntegerAdd(node)) |
| 188 | break; |
| 189 | fixDoubleOrBooleanEdge(node->child1()); |
| 190 | fixDoubleOrBooleanEdge(node->child2()); |
| 191 | node->setResult(NodeResultDouble); |
| 192 | break; |
| 193 | } |
| 194 | |
| 195 | case ArithNegate: { |
| 196 | if (m_graph.negateShouldSpeculateInt32(node, FixupPass)) { |
| 197 | fixIntOrBooleanEdge(node->child1()); |
| 198 | if (bytecodeCanTruncateInteger(node->arithNodeFlags())) |
| 199 | node->setArithMode(Arith::Unchecked); |
| 200 | else if (bytecodeCanIgnoreNegativeZero(node->arithNodeFlags())) |
| 201 | node->setArithMode(Arith::CheckOverflow); |
| 202 | else |
| 203 | node->setArithMode(Arith::CheckOverflowAndNegativeZero); |
| 204 | break; |
| 205 | } |
| 206 | if (m_graph.negateShouldSpeculateMachineInt(node, FixupPass)) { |
| 207 | fixEdge<Int52RepUse>(node->child1()); |
| 208 | if (bytecodeCanIgnoreNegativeZero(node->arithNodeFlags())) |
| 209 | node->setArithMode(Arith::CheckOverflow); |
| 210 | else |
| 211 | node->setArithMode(Arith::CheckOverflowAndNegativeZero); |
| 212 | node->setResult(NodeResultInt52); |
| 213 | break; |
| 214 | } |
| 215 | fixDoubleOrBooleanEdge(node->child1()); |
| 216 | node->setResult(NodeResultDouble); |
| 217 | break; |
| 218 | } |
| 219 | |
| 220 | case ArithMul: { |
| 221 | if (m_graph.mulShouldSpeculateInt32(node, FixupPass)) { |
| 222 | fixIntOrBooleanEdge(node->child1()); |
| 223 | fixIntOrBooleanEdge(node->child2()); |
| 224 | if (bytecodeCanTruncateInteger(node->arithNodeFlags())) |
| 225 | node->setArithMode(Arith::Unchecked); |
| 226 | else if (bytecodeCanIgnoreNegativeZero(node->arithNodeFlags())) |
| 227 | node->setArithMode(Arith::CheckOverflow); |
| 228 | else |
| 229 | node->setArithMode(Arith::CheckOverflowAndNegativeZero); |
| 230 | break; |
| 231 | } |
| 232 | if (m_graph.mulShouldSpeculateMachineInt(node, FixupPass)) { |
| 233 | fixEdge<Int52RepUse>(node->child1()); |
| 234 | fixEdge<Int52RepUse>(node->child2()); |
| 235 | if (bytecodeCanIgnoreNegativeZero(node->arithNodeFlags())) |
| 236 | node->setArithMode(Arith::CheckOverflow); |
| 237 | else |
| 238 | node->setArithMode(Arith::CheckOverflowAndNegativeZero); |
| 239 | node->setResult(NodeResultInt52); |
| 240 | break; |
| 241 | } |
| 242 | fixDoubleOrBooleanEdge(node->child1()); |
| 243 | fixDoubleOrBooleanEdge(node->child2()); |
| 244 | node->setResult(NodeResultDouble); |
| 245 | break; |
| 246 | } |
| 247 | |
| 248 | case ArithDiv: |
| 249 | case ArithMod: { |
| 250 | if (Node::shouldSpeculateInt32OrBooleanForArithmetic(node->child1().node(), node->child2().node()) |
| 251 | && node->canSpeculateInt32(FixupPass)) { |
| 252 | if (optimizeForX86() || optimizeForARM64() || optimizeForARMv7IDIVSupported()) { |
| 253 | fixIntOrBooleanEdge(node->child1()); |
| 254 | fixIntOrBooleanEdge(node->child2()); |
| 255 | if (bytecodeCanTruncateInteger(node->arithNodeFlags())) |
| 256 | node->setArithMode(Arith::Unchecked); |
| 257 | else if (bytecodeCanIgnoreNegativeZero(node->arithNodeFlags())) |
| 258 | node->setArithMode(Arith::CheckOverflow); |
| 259 | else |
| 260 | node->setArithMode(Arith::CheckOverflowAndNegativeZero); |
| 261 | break; |
| 262 | } |
| 263 | |
| 264 | // This will cause conversion nodes to be inserted later. |
| 265 | fixDoubleOrBooleanEdge(node->child1()); |
| 266 | fixDoubleOrBooleanEdge(node->child2()); |
| 267 | |
| 268 | // We don't need to do ref'ing on the children because we're stealing them from |
| 269 | // the original division. |
| 270 | Node* newDivision = m_insertionSet.insertNode( |
| 271 | m_indexInBlock, SpecBytecodeDouble, *node); |
| 272 | newDivision->setResult(NodeResultDouble); |
| 273 | |
| 274 | node->setOp(DoubleAsInt32); |
| 275 | node->children.initialize(Edge(newDivision, DoubleRepUse), Edge(), Edge()); |
| 276 | if (bytecodeCanIgnoreNegativeZero(node->arithNodeFlags())) |
| 277 | node->setArithMode(Arith::CheckOverflow); |
| 278 | else |
| 279 | node->setArithMode(Arith::CheckOverflowAndNegativeZero); |
| 280 | break; |
| 281 | } |
| 282 | fixDoubleOrBooleanEdge(node->child1()); |
| 283 | fixDoubleOrBooleanEdge(node->child2()); |
| 284 | node->setResult(NodeResultDouble); |
| 285 | break; |
| 286 | } |
| 287 | |
| 288 | case ArithMin: |
| 289 | case ArithMax: { |
| 290 | if (Node::shouldSpeculateInt32OrBooleanForArithmetic(node->child1().node(), node->child2().node()) |
| 291 | && node->canSpeculateInt32(FixupPass)) { |
| 292 | fixIntOrBooleanEdge(node->child1()); |
| 293 | fixIntOrBooleanEdge(node->child2()); |
| 294 | break; |
| 295 | } |
| 296 | fixDoubleOrBooleanEdge(node->child1()); |
| 297 | fixDoubleOrBooleanEdge(node->child2()); |
| 298 | node->setResult(NodeResultDouble); |
| 299 | break; |
| 300 | } |
| 301 | |
| 302 | case ArithAbs: { |
| 303 | if (node->child1()->shouldSpeculateInt32OrBooleanForArithmetic() |
| 304 | && node->canSpeculateInt32(FixupPass)) { |
| 305 | fixIntOrBooleanEdge(node->child1()); |
| 306 | break; |
| 307 | } |
| 308 | fixDoubleOrBooleanEdge(node->child1()); |
| 309 | node->setResult(NodeResultDouble); |
| 310 | break; |
| 311 | } |
| 312 | |
| 313 | case ArithPow: { |
| 314 | node->setResult(NodeResultDouble); |
| 315 | if (node->child2()->shouldSpeculateInt32OrBooleanForArithmetic()) { |
| 316 | fixDoubleOrBooleanEdge(node->child1()); |
| 317 | fixIntOrBooleanEdge(node->child2()); |
| 318 | break; |
| 319 | } |
| 320 | |
| 321 | fixDoubleOrBooleanEdge(node->child1()); |
| 322 | fixDoubleOrBooleanEdge(node->child2()); |
| 323 | break; |
| 324 | } |
| 325 | |
| 326 | case ArithRound: { |
| 327 | if (node->child1()->shouldSpeculateInt32OrBooleanForArithmetic() && node->canSpeculateInt32(FixupPass)) { |
| 328 | fixIntOrBooleanEdge(node->child1()); |
| 329 | insertCheck<Int32Use>(m_indexInBlock, node->child1().node()); |
| 330 | node->convertToIdentity(); |
| 331 | break; |
| 332 | } |
| 333 | fixDoubleOrBooleanEdge(node->child1()); |
| 334 | |
| 335 | if (isInt32OrBooleanSpeculation(node->getHeapPrediction()) && m_graph.roundShouldSpeculateInt32(node, FixupPass)) { |
| 336 | node->setResult(NodeResultInt32); |
| 337 | if (bytecodeCanIgnoreNegativeZero(node->arithNodeFlags())) |
| 338 | node->setArithRoundingMode(Arith::RoundingMode::Int32); |
| 339 | else |
| 340 | node->setArithRoundingMode(Arith::RoundingMode::Int32WithNegativeZeroCheck); |
| 341 | } else { |
| 342 | node->setResult(NodeResultDouble); |
| 343 | node->setArithRoundingMode(Arith::RoundingMode::Double); |
| 344 | } |
| 345 | break; |
| 346 | } |
| 347 | |
| 348 | case ArithSqrt: |
| 349 | case ArithFRound: |
| 350 | case ArithSin: |
| 351 | case ArithCos: |
| 352 | case ArithLog: { |
| 353 | fixDoubleOrBooleanEdge(node->child1()); |
| 354 | node->setResult(NodeResultDouble); |
| 355 | break; |
| 356 | } |
| 357 | |
| 358 | case LogicalNot: { |
| 359 | if (node->child1()->shouldSpeculateBoolean()) |
| 360 | fixEdge<BooleanUse>(node->child1()); |
| 361 | else if (node->child1()->shouldSpeculateObjectOrOther()) |
| 362 | fixEdge<ObjectOrOtherUse>(node->child1()); |
| 363 | else if (node->child1()->shouldSpeculateInt32OrBoolean()) |
| 364 | fixIntOrBooleanEdge(node->child1()); |
| 365 | else if (node->child1()->shouldSpeculateNumber()) |
| 366 | fixEdge<DoubleRepUse>(node->child1()); |
| 367 | else if (node->child1()->shouldSpeculateString()) |
| 368 | fixEdge<StringUse>(node->child1()); |
| 369 | break; |
| 370 | } |
| 371 | |
| 372 | case CompareEqConstant: { |
| 373 | break; |
| 374 | } |
| 375 | |
| 376 | case CompareEq: |
| 377 | case CompareLess: |
| 378 | case CompareLessEq: |
| 379 | case CompareGreater: |
| 380 | case CompareGreaterEq: { |
| 381 | if (node->op() == CompareEq |
| 382 | && Node::shouldSpeculateBoolean(node->child1().node(), node->child2().node())) { |
| 383 | fixEdge<BooleanUse>(node->child1()); |
| 384 | fixEdge<BooleanUse>(node->child2()); |
| 385 | node->clearFlags(NodeMustGenerate); |
| 386 | break; |
| 387 | } |
| 388 | if (Node::shouldSpeculateInt32OrBoolean(node->child1().node(), node->child2().node())) { |
| 389 | fixIntOrBooleanEdge(node->child1()); |
| 390 | fixIntOrBooleanEdge(node->child2()); |
| 391 | node->clearFlags(NodeMustGenerate); |
| 392 | break; |
| 393 | } |
| 394 | if (enableInt52() |
| 395 | && Node::shouldSpeculateMachineInt(node->child1().node(), node->child2().node())) { |
| 396 | fixEdge<Int52RepUse>(node->child1()); |
| 397 | fixEdge<Int52RepUse>(node->child2()); |
| 398 | node->clearFlags(NodeMustGenerate); |
| 399 | break; |
| 400 | } |
| 401 | if (Node::shouldSpeculateNumberOrBoolean(node->child1().node(), node->child2().node())) { |
| 402 | fixDoubleOrBooleanEdge(node->child1()); |
| 403 | fixDoubleOrBooleanEdge(node->child2()); |
| 404 | node->clearFlags(NodeMustGenerate); |
| 405 | break; |
| 406 | } |
| 407 | if (node->op() != CompareEq) |
| 408 | break; |
| 409 | if (node->child1()->shouldSpeculateStringIdent() && node->child2()->shouldSpeculateStringIdent()) { |
| 410 | fixEdge<StringIdentUse>(node->child1()); |
| 411 | fixEdge<StringIdentUse>(node->child2()); |
| 412 | node->clearFlags(NodeMustGenerate); |
| 413 | break; |
| 414 | } |
| 415 | if (node->child1()->shouldSpeculateString() && node->child2()->shouldSpeculateString() && GPRInfo::numberOfRegisters >= 7) { |
| 416 | fixEdge<StringUse>(node->child1()); |
| 417 | fixEdge<StringUse>(node->child2()); |
| 418 | node->clearFlags(NodeMustGenerate); |
| 419 | break; |
| 420 | } |
| 421 | if (node->child1()->shouldSpeculateObject() && node->child2()->shouldSpeculateObject()) { |
| 422 | fixEdge<ObjectUse>(node->child1()); |
| 423 | fixEdge<ObjectUse>(node->child2()); |
| 424 | node->clearFlags(NodeMustGenerate); |
| 425 | break; |
| 426 | } |
| 427 | if (node->child1()->shouldSpeculateObject() && node->child2()->shouldSpeculateObjectOrOther()) { |
| 428 | fixEdge<ObjectUse>(node->child1()); |
| 429 | fixEdge<ObjectOrOtherUse>(node->child2()); |
| 430 | node->clearFlags(NodeMustGenerate); |
| 431 | break; |
| 432 | } |
| 433 | if (node->child1()->shouldSpeculateObjectOrOther() && node->child2()->shouldSpeculateObject()) { |
| 434 | fixEdge<ObjectOrOtherUse>(node->child1()); |
| 435 | fixEdge<ObjectUse>(node->child2()); |
| 436 | node->clearFlags(NodeMustGenerate); |
| 437 | break; |
| 438 | } |
| 439 | break; |
| 440 | } |
| 441 | |
| 442 | case CompareStrictEq: { |
| 443 | if (Node::shouldSpeculateBoolean(node->child1().node(), node->child2().node())) { |
| 444 | fixEdge<BooleanUse>(node->child1()); |
| 445 | fixEdge<BooleanUse>(node->child2()); |
| 446 | break; |
| 447 | } |
| 448 | if (Node::shouldSpeculateInt32(node->child1().node(), node->child2().node())) { |
| 449 | fixEdge<Int32Use>(node->child1()); |
| 450 | fixEdge<Int32Use>(node->child2()); |
| 451 | break; |
| 452 | } |
| 453 | if (enableInt52() |
| 454 | && Node::shouldSpeculateMachineInt(node->child1().node(), node->child2().node())) { |
| 455 | fixEdge<Int52RepUse>(node->child1()); |
| 456 | fixEdge<Int52RepUse>(node->child2()); |
| 457 | break; |
| 458 | } |
| 459 | if (Node::shouldSpeculateNumber(node->child1().node(), node->child2().node())) { |
| 460 | fixEdge<DoubleRepUse>(node->child1()); |
| 461 | fixEdge<DoubleRepUse>(node->child2()); |
| 462 | break; |
| 463 | } |
| 464 | if (node->child1()->shouldSpeculateStringIdent() && node->child2()->shouldSpeculateStringIdent()) { |
| 465 | fixEdge<StringIdentUse>(node->child1()); |
| 466 | fixEdge<StringIdentUse>(node->child2()); |
| 467 | break; |
| 468 | } |
| 469 | if (node->child1()->shouldSpeculateString() && node->child2()->shouldSpeculateString() && ((GPRInfo::numberOfRegisters >= 7) || isFTL(m_graph.m_plan.mode))) { |
| 470 | fixEdge<StringUse>(node->child1()); |
| 471 | fixEdge<StringUse>(node->child2()); |
| 472 | break; |
| 473 | } |
| 474 | WatchpointSet* masqueradesAsUndefinedWatchpoint = m_graph.globalObjectFor(node->origin.semantic)->masqueradesAsUndefinedWatchpoint(); |
| 475 | if (masqueradesAsUndefinedWatchpoint->isStillValid()) { |
| 476 | |
| 477 | if (node->child1()->shouldSpeculateObject()) { |
| 478 | m_graph.watchpoints().addLazily(masqueradesAsUndefinedWatchpoint); |
| 479 | fixEdge<ObjectUse>(node->child1()); |
| 480 | break; |
| 481 | } |
| 482 | if (node->child2()->shouldSpeculateObject()) { |
| 483 | m_graph.watchpoints().addLazily(masqueradesAsUndefinedWatchpoint); |
| 484 | fixEdge<ObjectUse>(node->child2()); |
| 485 | break; |
| 486 | } |
| 487 | |
| 488 | } else if (node->child1()->shouldSpeculateObject() && node->child2()->shouldSpeculateObject()) { |
| 489 | fixEdge<ObjectUse>(node->child1()); |
| 490 | fixEdge<ObjectUse>(node->child2()); |
| 491 | break; |
| 492 | } |
| 493 | if (node->child1()->shouldSpeculateMisc()) { |
| 494 | fixEdge<MiscUse>(node->child1()); |
| 495 | break; |
| 496 | } |
| 497 | if (node->child2()->shouldSpeculateMisc()) { |
| 498 | fixEdge<MiscUse>(node->child2()); |
| 499 | break; |
| 500 | } |
| 501 | if (node->child1()->shouldSpeculateStringIdent() |
| 502 | && node->child2()->shouldSpeculateNotStringVar()) { |
| 503 | fixEdge<StringIdentUse>(node->child1()); |
| 504 | fixEdge<NotStringVarUse>(node->child2()); |
| 505 | break; |
| 506 | } |
| 507 | if (node->child2()->shouldSpeculateStringIdent() |
| 508 | && node->child1()->shouldSpeculateNotStringVar()) { |
| 509 | fixEdge<StringIdentUse>(node->child2()); |
| 510 | fixEdge<NotStringVarUse>(node->child1()); |
| 511 | break; |
| 512 | } |
| 513 | if (node->child1()->shouldSpeculateString() && ((GPRInfo::numberOfRegisters >= 8) || isFTL(m_graph.m_plan.mode))) { |
| 514 | fixEdge<StringUse>(node->child1()); |
| 515 | break; |
| 516 | } |
| 517 | if (node->child2()->shouldSpeculateString() && ((GPRInfo::numberOfRegisters >= 8) || isFTL(m_graph.m_plan.mode))) { |
| 518 | fixEdge<StringUse>(node->child2()); |
| 519 | break; |
| 520 | } |
| 521 | break; |
| 522 | } |
| 523 | |
| 524 | case StringFromCharCode: |
| 525 | fixEdge<Int32Use>(node->child1()); |
| 526 | break; |
| 527 | |
| 528 | case StringCharAt: |
| 529 | case StringCharCodeAt: { |
| 530 | // Currently we have no good way of refining these. |
| 531 | ASSERT(node->arrayMode() == ArrayMode(Array::String)); |
| 532 | blessArrayOperation(node->child1(), node->child2(), node->child3()); |
| 533 | fixEdge<KnownCellUse>(node->child1()); |
| 534 | fixEdge<Int32Use>(node->child2()); |
| 535 | break; |
| 536 | } |
| 537 | |
| 538 | case GetByVal: { |
| 539 | if (!node->prediction()) { |
| 540 | m_insertionSet.insertNode( |
| 541 | m_indexInBlock, SpecNone, ForceOSRExit, node->origin); |
| 542 | } |
| 543 | |
| 544 | node->setArrayMode( |
| 545 | node->arrayMode().refine( |
| 546 | m_graph, node, |
| 547 | node->child1()->prediction(), |
| 548 | node->child2()->prediction(), |
| 549 | SpecNone)); |
| 550 | |
| 551 | blessArrayOperation(node->child1(), node->child2(), node->child3()); |
| 552 | |
| 553 | ArrayMode arrayMode = node->arrayMode(); |
| 554 | switch (arrayMode.type()) { |
| 555 | case Array::Contiguous: |
| 556 | case Array::Double: |
| 557 | if (arrayMode.arrayClass() == Array::OriginalArray |
| 558 | && arrayMode.speculation() == Array::InBounds) { |
| 559 | JSGlobalObject* globalObject = m_graph.globalObjectFor(node->origin.semantic); |
| 560 | if (globalObject->arrayPrototypeChainIsSane()) { |
| 561 | // Check if SaneChain will work on a per-type basis. Note that: |
| 562 | // |
| 563 | // 1) We don't want double arrays to sometimes return undefined, since |
| 564 | // that would require a change to the return type and it would pessimise |
| 565 | // things a lot. So, we'd only want to do that if we actually had |
| 566 | // evidence that we could read from a hole. That's pretty annoying. |
| 567 | // Likely the best way to handle that case is with an equivalent of |
| 568 | // SaneChain for OutOfBounds. For now we just detect when Undefined and |
| 569 | // NaN are indistinguishable according to backwards propagation, and just |
| 570 | // use SaneChain in that case. This happens to catch a lot of cases. |
| 571 | // |
| 572 | // 2) We don't want int32 array loads to have to do a hole check just to |
| 573 | // coerce to Undefined, since that would mean twice the checks. |
| 574 | // |
| 575 | // This has two implications. First, we have to do more checks than we'd |
| 576 | // like. It's unfortunate that we have to do the hole check. Second, |
| 577 | // some accesses that hit a hole will now need to take the full-blown |
| 578 | // out-of-bounds slow path. We can fix that with: |
| 579 | // https://bugs.webkit.org/show_bug.cgi?id=144668 |
| 580 | |
| 581 | bool canDoSaneChain = false; |
| 582 | switch (arrayMode.type()) { |
| 583 | case Array::Contiguous: |
| 584 | // This is happens to be entirely natural. We already would have |
| 585 | // returned any JSValue, and now we'll return Undefined. We still do |
| 586 | // the check but it doesn't require taking any kind of slow path. |
| 587 | canDoSaneChain = true; |
| 588 | break; |
| 589 | |
| 590 | case Array::Double: |
| 591 | if (!(node->flags() & NodeBytecodeUsesAsOther)) { |
| 592 | // Holes look like NaN already, so if the user doesn't care |
| 593 | // about the difference between Undefined and NaN then we can |
| 594 | // do this. |
| 595 | canDoSaneChain = true; |
| 596 | } |
| 597 | break; |
| 598 | |
| 599 | default: |
| 600 | break; |
| 601 | } |
| 602 | |
| 603 | if (canDoSaneChain) { |
| 604 | m_graph.watchpoints().addLazily( |
| 605 | globalObject->arrayPrototype()->structure()->transitionWatchpointSet()); |
| 606 | m_graph.watchpoints().addLazily( |
| 607 | globalObject->objectPrototype()->structure()->transitionWatchpointSet()); |
| 608 | node->setArrayMode(arrayMode.withSpeculation(Array::SaneChain)); |
| 609 | } |
| 610 | } |
| 611 | } |
| 612 | break; |
| 613 | |
| 614 | case Array::String: |
| 615 | if ((node->prediction() & ~SpecString) |
| 616 | || m_graph.hasExitSite(node->origin.semantic, OutOfBounds)) |
| 617 | node->setArrayMode(arrayMode.withSpeculation(Array::OutOfBounds)); |
| 618 | break; |
| 619 | |
| 620 | default: |
| 621 | break; |
| 622 | } |
| 623 | |
| 624 | arrayMode = node->arrayMode(); |
| 625 | switch (arrayMode.type()) { |
| 626 | case Array::SelectUsingPredictions: |
| 627 | case Array::Unprofiled: |
| 628 | case Array::Undecided: |
| 629 | RELEASE_ASSERT_NOT_REACHED(); |
| 630 | break; |
| 631 | case Array::Generic: |
| 632 | #if USE(JSVALUE32_64) |
| 633 | fixEdge<CellUse>(node->child1()); // Speculating cell due to register pressure on 32-bit. |
| 634 | #endif |
| 635 | break; |
| 636 | case Array::ForceExit: |
| 637 | break; |
| 638 | default: |
| 639 | fixEdge<KnownCellUse>(node->child1()); |
| 640 | fixEdge<Int32Use>(node->child2()); |
| 641 | break; |
| 642 | } |
| 643 | |
| 644 | switch (arrayMode.type()) { |
| 645 | case Array::Double: |
| 646 | if (!arrayMode.isOutOfBounds()) |
| 647 | node->setResult(NodeResultDouble); |
| 648 | break; |
| 649 | |
| 650 | case Array::Float32Array: |
| 651 | case Array::Float64Array: |
| 652 | node->setResult(NodeResultDouble); |
| 653 | break; |
| 654 | |
| 655 | case Array::Uint32Array: |
| 656 | if (node->shouldSpeculateInt32()) |
| 657 | break; |
| 658 | if (node->shouldSpeculateMachineInt() && enableInt52()) |
| 659 | node->setResult(NodeResultInt52); |
| 660 | else |
| 661 | node->setResult(NodeResultDouble); |
| 662 | break; |
| 663 | |
| 664 | default: |
| 665 | break; |
| 666 | } |
| 667 | |
| 668 | break; |
| 669 | } |
| 670 | |
| 671 | case PutByValDirect: |
| 672 | case PutByVal: |
| 673 | case PutByValAlias: { |
| 674 | Edge& child1 = m_graph.varArgChild(node, 0); |
| 675 | Edge& child2 = m_graph.varArgChild(node, 1); |
| 676 | Edge& child3 = m_graph.varArgChild(node, 2); |
| 677 | |
| 678 | node->setArrayMode( |
| 679 | node->arrayMode().refine( |
| 680 | m_graph, node, |
| 681 | child1->prediction(), |
| 682 | child2->prediction(), |
| 683 | child3->prediction())); |
| 684 | |
| 685 | blessArrayOperation(child1, child2, m_graph.varArgChild(node, 3)); |
| 686 | |
| 687 | switch (node->arrayMode().modeForPut().type()) { |
| 688 | case Array::SelectUsingPredictions: |
| 689 | case Array::Unprofiled: |
| 690 | case Array::Undecided: |
| 691 | RELEASE_ASSERT_NOT_REACHED(); |
| 692 | break; |
| 693 | case Array::ForceExit: |
| 694 | case Array::Generic: |
| 695 | #if USE(JSVALUE32_64) |
| 696 | // Due to register pressure on 32-bit, we speculate cell and |
| 697 | // ignore the base-is-not-cell case entirely by letting the |
| 698 | // baseline JIT handle it. |
| 699 | fixEdge<CellUse>(child1); |
| 700 | #endif |
| 701 | break; |
| 702 | case Array::Int32: |
| 703 | fixEdge<KnownCellUse>(child1); |
| 704 | fixEdge<Int32Use>(child2); |
| 705 | fixEdge<Int32Use>(child3); |
| 706 | break; |
| 707 | case Array::Double: |
| 708 | fixEdge<KnownCellUse>(child1); |
| 709 | fixEdge<Int32Use>(child2); |
| 710 | fixEdge<DoubleRepRealUse>(child3); |
| 711 | break; |
| 712 | case Array::Int8Array: |
| 713 | case Array::Int16Array: |
| 714 | case Array::Int32Array: |
| 715 | case Array::Uint8Array: |
| 716 | case Array::Uint8ClampedArray: |
| 717 | case Array::Uint16Array: |
| 718 | case Array::Uint32Array: |
| 719 | fixEdge<KnownCellUse>(child1); |
| 720 | fixEdge<Int32Use>(child2); |
| 721 | if (child3->shouldSpeculateInt32()) |
| 722 | fixIntOrBooleanEdge(child3); |
| 723 | else if (child3->shouldSpeculateMachineInt()) |
| 724 | fixEdge<Int52RepUse>(child3); |
| 725 | else |
| 726 | fixDoubleOrBooleanEdge(child3); |
| 727 | break; |
| 728 | case Array::Float32Array: |
| 729 | case Array::Float64Array: |
| 730 | fixEdge<KnownCellUse>(child1); |
| 731 | fixEdge<Int32Use>(child2); |
| 732 | fixDoubleOrBooleanEdge(child3); |
| 733 | break; |
| 734 | case Array::Contiguous: |
| 735 | case Array::ArrayStorage: |
| 736 | case Array::SlowPutArrayStorage: |
| 737 | fixEdge<KnownCellUse>(child1); |
| 738 | fixEdge<Int32Use>(child2); |
| 739 | speculateForBarrier(child3); |
| 740 | break; |
| 741 | default: |
| 742 | fixEdge<KnownCellUse>(child1); |
| 743 | fixEdge<Int32Use>(child2); |
| 744 | break; |
| 745 | } |
| 746 | break; |
| 747 | } |
| 748 | |
| 749 | case ArrayPush: { |
| 750 | // May need to refine the array mode in case the value prediction contravenes |
| 751 | // the array prediction. For example, we may have evidence showing that the |
| 752 | // array is in Int32 mode, but the value we're storing is likely to be a double. |
| 753 | // Then we should turn this into a conversion to Double array followed by the |
| 754 | // push. On the other hand, we absolutely don't want to refine based on the |
| 755 | // base prediction. If it has non-cell garbage in it, then we want that to be |
| 756 | // ignored. That's because ArrayPush can't handle any array modes that aren't |
| 757 | // array-related - so if refine() turned this into a "Generic" ArrayPush then |
| 758 | // that would break things. |
| 759 | node->setArrayMode( |
| 760 | node->arrayMode().refine( |
| 761 | m_graph, node, |
| 762 | node->child1()->prediction() & SpecCell, |
| 763 | SpecInt32, |
| 764 | node->child2()->prediction())); |
| 765 | blessArrayOperation(node->child1(), Edge(), node->child3()); |
| 766 | fixEdge<KnownCellUse>(node->child1()); |
| 767 | |
| 768 | switch (node->arrayMode().type()) { |
| 769 | case Array::Int32: |
| 770 | fixEdge<Int32Use>(node->child2()); |
| 771 | break; |
| 772 | case Array::Double: |
| 773 | fixEdge<DoubleRepRealUse>(node->child2()); |
| 774 | break; |
| 775 | case Array::Contiguous: |
| 776 | case Array::ArrayStorage: |
| 777 | speculateForBarrier(node->child2()); |
| 778 | break; |
| 779 | default: |
| 780 | break; |
| 781 | } |
| 782 | break; |
| 783 | } |
| 784 | |
| 785 | case ArrayPop: { |
| 786 | blessArrayOperation(node->child1(), Edge(), node->child2()); |
| 787 | fixEdge<KnownCellUse>(node->child1()); |
| 788 | break; |
| 789 | } |
| 790 | |
| 791 | case RegExpExec: |
| 792 | case RegExpTest: { |
| 793 | fixEdge<CellUse>(node->child1()); |
| 794 | fixEdge<CellUse>(node->child2()); |
| 795 | break; |
| 796 | } |
| 797 | |
| 798 | case Branch: { |
| 799 | if (node->child1()->shouldSpeculateBoolean()) |
| 800 | fixEdge<BooleanUse>(node->child1()); |
| 801 | else if (node->child1()->shouldSpeculateObjectOrOther()) |
| 802 | fixEdge<ObjectOrOtherUse>(node->child1()); |
| 803 | else if (node->child1()->shouldSpeculateInt32OrBoolean()) |
| 804 | fixIntOrBooleanEdge(node->child1()); |
| 805 | else if (node->child1()->shouldSpeculateNumber()) |
| 806 | fixEdge<DoubleRepUse>(node->child1()); |
| 807 | else if (node->child1()->shouldSpeculateString()) |
| 808 | fixEdge<StringUse>(node->child1()); |
| 809 | break; |
| 810 | } |
| 811 | |
| 812 | case Switch: { |
| 813 | SwitchData* data = node->switchData(); |
| 814 | switch (data->kind) { |
| 815 | case SwitchImm: |
| 816 | if (node->child1()->shouldSpeculateInt32()) |
| 817 | fixEdge<Int32Use>(node->child1()); |
| 818 | break; |
| 819 | case SwitchChar: |
| 820 | if (node->child1()->shouldSpeculateString()) |
| 821 | fixEdge<StringUse>(node->child1()); |
| 822 | break; |
| 823 | case SwitchString: |
| 824 | if (node->child1()->shouldSpeculateStringIdent()) |
| 825 | fixEdge<StringIdentUse>(node->child1()); |
| 826 | else if (node->child1()->shouldSpeculateString()) |
| 827 | fixEdge<StringUse>(node->child1()); |
| 828 | break; |
| 829 | case SwitchCell: |
| 830 | if (node->child1()->shouldSpeculateCell()) |
| 831 | fixEdge<CellUse>(node->child1()); |
| 832 | // else it's fine for this to have UntypedUse; we will handle this by just making |
| 833 | // non-cells take the default case. |
| 834 | break; |
| 835 | } |
| 836 | break; |
| 837 | } |
| 838 | |
| 839 | case ToPrimitive: { |
| 840 | fixupToPrimitive(node); |
| 841 | break; |
| 842 | } |
| 843 | |
| 844 | case ToString: |
| 845 | case CallStringConstructor: { |
| 846 | fixupToStringOrCallStringConstructor(node); |
| 847 | break; |
| 848 | } |
| 849 | |
| 850 | case NewStringObject: { |
| 851 | fixEdge<KnownStringUse>(node->child1()); |
| 852 | break; |
| 853 | } |
| 854 | |
| 855 | case NewArray: { |
| 856 | for (unsigned i = m_graph.varArgNumChildren(node); i--;) { |
| 857 | node->setIndexingType( |
| 858 | leastUpperBoundOfIndexingTypeAndType( |
| 859 | node->indexingType(), m_graph.varArgChild(node, i)->prediction())); |
| 860 | } |
| 861 | switch (node->indexingType()) { |
| 862 | case ALL_BLANK_INDEXING_TYPES: |
| 863 | CRASH(); |
| 864 | break; |
| 865 | case ALL_UNDECIDED_INDEXING_TYPES: |
| 866 | if (node->numChildren()) { |
| 867 | // This will only happen if the children have no type predictions. We |
| 868 | // would have already exited by now, but insert a forced exit just to |
| 869 | // be safe. |
| 870 | m_insertionSet.insertNode( |
| 871 | m_indexInBlock, SpecNone, ForceOSRExit, node->origin); |
| 872 | } |
| 873 | break; |
| 874 | case ALL_INT32_INDEXING_TYPES: |
| 875 | for (unsigned operandIndex = 0; operandIndex < node->numChildren(); ++operandIndex) |
| 876 | fixEdge<Int32Use>(m_graph.m_varArgChildren[node->firstChild() + operandIndex]); |
| 877 | break; |
| 878 | case ALL_DOUBLE_INDEXING_TYPES: |
| 879 | for (unsigned operandIndex = 0; operandIndex < node->numChildren(); ++operandIndex) |
| 880 | fixEdge<DoubleRepRealUse>(m_graph.m_varArgChildren[node->firstChild() + operandIndex]); |
| 881 | break; |
| 882 | case ALL_CONTIGUOUS_INDEXING_TYPES: |
| 883 | case ALL_ARRAY_STORAGE_INDEXING_TYPES: |
| 884 | break; |
| 885 | default: |
| 886 | CRASH(); |
| 887 | break; |
| 888 | } |
| 889 | break; |
| 890 | } |
| 891 | |
| 892 | case NewTypedArray: { |
| 893 | if (node->child1()->shouldSpeculateInt32()) { |
| 894 | fixEdge<Int32Use>(node->child1()); |
| 895 | node->clearFlags(NodeMustGenerate); |
| 896 | break; |
| 897 | } |
| 898 | break; |
| 899 | } |
| 900 | |
| 901 | case NewArrayWithSize: { |
| 902 | fixEdge<Int32Use>(node->child1()); |
| 903 | break; |
| 904 | } |
| 905 | |
| 906 | case ToThis: { |
| 907 | ECMAMode ecmaMode = m_graph.executableFor(node->origin.semantic)->isStrictMode() ? StrictMode : NotStrictMode; |
| 908 | |
| 909 | if (node->child1()->shouldSpeculateOther()) { |
| 910 | if (ecmaMode == StrictMode) { |
| 911 | fixEdge<OtherUse>(node->child1()); |
| 912 | node->convertToIdentity(); |
| 913 | break; |
| 914 | } |
| 915 | |
| 916 | m_insertionSet.insertNode( |
| 917 | m_indexInBlock, SpecNone, Check, node->origin, |
| 918 | Edge(node->child1().node(), OtherUse)); |
| 919 | observeUseKindOnNode<OtherUse>(node->child1().node()); |
| 920 | m_graph.convertToConstant( |
| 921 | node, m_graph.globalThisObjectFor(node->origin.semantic)); |
| 922 | break; |
| 923 | } |
| 924 | |
| 925 | if (isFinalObjectSpeculation(node->child1()->prediction())) { |
| 926 | fixEdge<FinalObjectUse>(node->child1()); |
| 927 | node->convertToIdentity(); |
| 928 | break; |
| 929 | } |
| 930 | |
| 931 | break; |
| 932 | } |
| 933 | |
| 934 | case PutStructure: { |
| 935 | fixEdge<KnownCellUse>(node->child1()); |
| 936 | break; |
| 937 | } |
| 938 | |
| 939 | case GetClosureVar: |
| 940 | case GetFromArguments: { |
| 941 | fixEdge<KnownCellUse>(node->child1()); |
| 942 | break; |
| 943 | } |
| 944 | |
| 945 | case PutClosureVar: |
| 946 | case PutToArguments: { |
| 947 | fixEdge<KnownCellUse>(node->child1()); |
| 948 | speculateForBarrier(node->child2()); |
| 949 | break; |
| 950 | } |
| 951 | |
| 952 | case SkipScope: |
| 953 | case GetScope: |
| 954 | case GetGetter: |
| 955 | case GetSetter: { |
| 956 | fixEdge<KnownCellUse>(node->child1()); |
| 957 | break; |
| 958 | } |
| 959 | |
| 960 | case AllocatePropertyStorage: |
| 961 | case ReallocatePropertyStorage: { |
| 962 | fixEdge<KnownCellUse>(node->child1()); |
| 963 | break; |
| 964 | } |
| 965 | |
| 966 | case GetById: |
| 967 | case GetByIdFlush: { |
| 968 | if (!node->child1()->shouldSpeculateCell()) |
| 969 | break; |
| 970 | |
| 971 | // If we hadn't exited because of BadCache, BadIndexingType, or ExoticObjectMode, then |
| 972 | // leave this as a GetById. |
| 973 | if (!m_graph.hasExitSite(node->origin.semantic, BadCache) |
| 974 | && !m_graph.hasExitSite(node->origin.semantic, BadIndexingType) |
| 975 | && !m_graph.hasExitSite(node->origin.semantic, ExoticObjectMode)) { |
| 976 | auto uid = m_graph.identifiers()[node->identifierNumber()]; |
| 977 | if (uid == vm().propertyNames->length.impl()) { |
| 978 | attemptToMakeGetArrayLength(node); |
| 979 | break; |
| 980 | } |
| 981 | if (uid == vm().propertyNames->byteLength.impl()) { |
| 982 | attemptToMakeGetTypedArrayByteLength(node); |
| 983 | break; |
| 984 | } |
| 985 | if (uid == vm().propertyNames->byteOffset.impl()) { |
| 986 | attemptToMakeGetTypedArrayByteOffset(node); |
| 987 | break; |
| 988 | } |
| 989 | } |
| 990 | fixEdge<CellUse>(node->child1()); |
| 991 | break; |
| 992 | } |
| 993 | |
| 994 | case PutById: |
| 995 | case PutByIdFlush: |
| 996 | case PutByIdDirect: { |
| 997 | fixEdge<CellUse>(node->child1()); |
| 998 | speculateForBarrier(node->child2()); |
| 999 | break; |
| 1000 | } |
| 1001 | |
| 1002 | case GetExecutable: { |
| 1003 | fixEdge<FunctionUse>(node->child1()); |
| 1004 | break; |
| 1005 | } |
| 1006 | |
| 1007 | case CheckStructure: |
| 1008 | case CheckCell: |
| 1009 | case CheckHasInstance: |
| 1010 | case CreateThis: |
| 1011 | case GetButterfly: { |
| 1012 | fixEdge<CellUse>(node->child1()); |
| 1013 | break; |
| 1014 | } |
| 1015 | |
| 1016 | case Arrayify: |
| 1017 | case ArrayifyToStructure: { |
| 1018 | fixEdge<CellUse>(node->child1()); |
| 1019 | if (node->child2()) |
| 1020 | fixEdge<Int32Use>(node->child2()); |
| 1021 | break; |
| 1022 | } |
| 1023 | |
| 1024 | case GetByOffset: |
| 1025 | case GetGetterSetterByOffset: { |
| 1026 | if (!node->child1()->hasStorageResult()) |
| 1027 | fixEdge<KnownCellUse>(node->child1()); |
| 1028 | fixEdge<KnownCellUse>(node->child2()); |
| 1029 | break; |
| 1030 | } |
| 1031 | |
| 1032 | case MultiGetByOffset: { |
| 1033 | fixEdge<CellUse>(node->child1()); |
| 1034 | break; |
| 1035 | } |
| 1036 | |
| 1037 | case PutByOffset: { |
| 1038 | if (!node->child1()->hasStorageResult()) |
| 1039 | fixEdge<KnownCellUse>(node->child1()); |
| 1040 | fixEdge<KnownCellUse>(node->child2()); |
| 1041 | speculateForBarrier(node->child3()); |
| 1042 | break; |
| 1043 | } |
| 1044 | |
| 1045 | case MultiPutByOffset: { |
| 1046 | fixEdge<CellUse>(node->child1()); |
| 1047 | speculateForBarrier(node->child2()); |
| 1048 | break; |
| 1049 | } |
| 1050 | |
| 1051 | case InstanceOf: { |
| 1052 | if (!(node->child1()->prediction() & ~SpecCell)) |
| 1053 | fixEdge<CellUse>(node->child1()); |
| 1054 | fixEdge<CellUse>(node->child2()); |
| 1055 | break; |
| 1056 | } |
| 1057 | |
| 1058 | case In: { |
| 1059 | // FIXME: We should at some point have array profiling on op_in, in which |
| 1060 | // case we would be able to turn this into a kind of GetByVal. |
| 1061 | |
| 1062 | fixEdge<CellUse>(node->child2()); |
| 1063 | break; |
| 1064 | } |
| 1065 | |
| 1066 | case Check: { |
| 1067 | m_graph.doToChildren( |
| 1068 | node, |
| 1069 | [&] (Edge& edge) { |
| 1070 | switch (edge.useKind()) { |
| 1071 | case NumberUse: |
| 1072 | if (edge->shouldSpeculateInt32ForArithmetic()) |
| 1073 | edge.setUseKind(Int32Use); |
| 1074 | break; |
| 1075 | default: |
| 1076 | break; |
| 1077 | } |
| 1078 | observeUseKindOnEdge(edge); |
| 1079 | }); |
| 1080 | break; |
| 1081 | } |
| 1082 | |
| 1083 | case Phantom: |
| 1084 | // Phantoms are meaningless past Fixup. We recreate them on-demand in the backend. |
| 1085 | node->remove(); |
| 1086 | break; |
| 1087 | |
| 1088 | case FiatInt52: { |
| 1089 | RELEASE_ASSERT(enableInt52()); |
| 1090 | node->convertToIdentity(); |
| 1091 | fixEdge<Int52RepUse>(node->child1()); |
| 1092 | node->setResult(NodeResultInt52); |
| 1093 | break; |
| 1094 | } |
| 1095 | |
| 1096 | case GetArrayLength: |
| 1097 | case Phi: |
| 1098 | case Upsilon: |
| 1099 | case GetIndexedPropertyStorage: |
| 1100 | case GetTypedArrayByteOffset: |
| 1101 | case LastNodeType: |
| 1102 | case CheckTierUpInLoop: |
| 1103 | case CheckTierUpAtReturn: |
| 1104 | case CheckTierUpAndOSREnter: |
| 1105 | case CheckTierUpWithNestedTriggerAndOSREnter: |
| 1106 | case InvalidationPoint: |
| 1107 | case CheckArray: |
| 1108 | case CheckInBounds: |
| 1109 | case ConstantStoragePointer: |
| 1110 | case DoubleAsInt32: |
| 1111 | case ValueToInt32: |
| 1112 | case DoubleRep: |
| 1113 | case ValueRep: |
| 1114 | case Int52Rep: |
| 1115 | case Int52Constant: |
| 1116 | case Identity: // This should have been cleaned up. |
| 1117 | case BooleanToNumber: |
| 1118 | case PhantomNewObject: |
| 1119 | case PhantomNewFunction: |
| 1120 | case PhantomCreateActivation: |
| 1121 | case PhantomDirectArguments: |
| 1122 | case PhantomClonedArguments: |
| 1123 | case ForwardVarargs: |
| 1124 | case GetMyArgumentByVal: |
| 1125 | case PutHint: |
| 1126 | case CheckStructureImmediate: |
| 1127 | case MaterializeNewObject: |
| 1128 | case MaterializeCreateActivation: |
| 1129 | case PutStack: |
| 1130 | case KillStack: |
| 1131 | case GetStack: |
| 1132 | case StoreBarrier: |
| 1133 | // These are just nodes that we don't currently expect to see during fixup. |
| 1134 | // If we ever wanted to insert them prior to fixup, then we just have to create |
| 1135 | // fixup rules for them. |
| 1136 | DFG_CRASH(m_graph, node, "Unexpected node during fixup"); |
| 1137 | break; |
| 1138 | |
| 1139 | case PutGlobalVar: { |
| 1140 | fixEdge<CellUse>(node->child1()); |
| 1141 | speculateForBarrier(node->child2()); |
| 1142 | break; |
| 1143 | } |
| 1144 | |
| 1145 | case IsString: |
| 1146 | if (node->child1()->shouldSpeculateString()) { |
| 1147 | m_insertionSet.insertNode( |
| 1148 | m_indexInBlock, SpecNone, Check, node->origin, |
| 1149 | Edge(node->child1().node(), StringUse)); |
| 1150 | m_graph.convertToConstant(node, jsBoolean(true)); |
| 1151 | observeUseKindOnNode<StringUse>(node); |
| 1152 | } |
| 1153 | break; |
| 1154 | |
| 1155 | case IsObject: |
| 1156 | if (node->child1()->shouldSpeculateObject()) { |
| 1157 | m_insertionSet.insertNode( |
| 1158 | m_indexInBlock, SpecNone, Check, node->origin, |
| 1159 | Edge(node->child1().node(), ObjectUse)); |
| 1160 | m_graph.convertToConstant(node, jsBoolean(true)); |
| 1161 | observeUseKindOnNode<ObjectUse>(node); |
| 1162 | } |
| 1163 | break; |
| 1164 | |
| 1165 | case GetEnumerableLength: { |
| 1166 | fixEdge<CellUse>(node->child1()); |
| 1167 | break; |
| 1168 | } |
| 1169 | case HasGenericProperty: { |
| 1170 | fixEdge<CellUse>(node->child2()); |
| 1171 | break; |
| 1172 | } |
| 1173 | case HasStructureProperty: { |
| 1174 | fixEdge<StringUse>(node->child2()); |
| 1175 | fixEdge<KnownCellUse>(node->child3()); |
| 1176 | break; |
| 1177 | } |
| 1178 | case HasIndexedProperty: { |
| 1179 | node->setArrayMode( |
| 1180 | node->arrayMode().refine( |
| 1181 | m_graph, node, |
| 1182 | node->child1()->prediction(), |
| 1183 | node->child2()->prediction(), |
| 1184 | SpecNone)); |
| 1185 | |
| 1186 | blessArrayOperation(node->child1(), node->child2(), node->child3()); |
| 1187 | fixEdge<CellUse>(node->child1()); |
| 1188 | fixEdge<KnownInt32Use>(node->child2()); |
| 1189 | break; |
| 1190 | } |
| 1191 | case GetDirectPname: { |
| 1192 | Edge& base = m_graph.varArgChild(node, 0); |
| 1193 | Edge& property = m_graph.varArgChild(node, 1); |
| 1194 | Edge& index = m_graph.varArgChild(node, 2); |
| 1195 | Edge& enumerator = m_graph.varArgChild(node, 3); |
| 1196 | fixEdge<CellUse>(base); |
| 1197 | fixEdge<KnownCellUse>(property); |
| 1198 | fixEdge<KnownInt32Use>(index); |
| 1199 | fixEdge<KnownCellUse>(enumerator); |
| 1200 | break; |
| 1201 | } |
| 1202 | case GetPropertyEnumerator: { |
| 1203 | fixEdge<CellUse>(node->child1()); |
| 1204 | break; |
| 1205 | } |
| 1206 | case GetEnumeratorStructurePname: { |
| 1207 | fixEdge<KnownCellUse>(node->child1()); |
| 1208 | fixEdge<KnownInt32Use>(node->child2()); |
| 1209 | break; |
| 1210 | } |
| 1211 | case GetEnumeratorGenericPname: { |
| 1212 | fixEdge<KnownCellUse>(node->child1()); |
| 1213 | fixEdge<KnownInt32Use>(node->child2()); |
| 1214 | break; |
| 1215 | } |
| 1216 | case ToIndexString: { |
| 1217 | fixEdge<KnownInt32Use>(node->child1()); |
| 1218 | break; |
| 1219 | } |
| 1220 | case ProfileType: { |
| 1221 | // We want to insert type checks based on the instructionTypeSet of the TypeLocation, not the globalTypeSet. |
| 1222 | // Because the instructionTypeSet is contained in globalTypeSet, if we produce a type check for |
| 1223 | // type T for the instructionTypeSet, the global type set must also have information for type T. |
| 1224 | // So if it the type check succeeds for type T in the instructionTypeSet, a type check for type T |
| 1225 | // in the globalTypeSet would've also succeeded. |
| 1226 | // (The other direction does not hold in general). |
| 1227 | |
| 1228 | RefPtr<TypeSet> typeSet = node->typeLocation()->m_instructionTypeSet; |
| 1229 | RuntimeTypeMask seenTypes = typeSet->seenTypes(); |
| 1230 | if (typeSet->doesTypeConformTo(TypeMachineInt)) { |
| 1231 | if (node->child1()->shouldSpeculateInt32()) |
| 1232 | fixEdge<Int32Use>(node->child1()); |
| 1233 | else |
| 1234 | fixEdge<MachineIntUse>(node->child1()); |
| 1235 | node->remove(); |
| 1236 | } else if (typeSet->doesTypeConformTo(TypeNumber | TypeMachineInt)) { |
| 1237 | fixEdge<NumberUse>(node->child1()); |
| 1238 | node->remove(); |
| 1239 | } else if (typeSet->doesTypeConformTo(TypeString)) { |
| 1240 | fixEdge<StringUse>(node->child1()); |
| 1241 | node->remove(); |
| 1242 | } else if (typeSet->doesTypeConformTo(TypeBoolean)) { |
| 1243 | fixEdge<BooleanUse>(node->child1()); |
| 1244 | node->remove(); |
| 1245 | } else if (typeSet->doesTypeConformTo(TypeUndefined | TypeNull) && (seenTypes & TypeUndefined) && (seenTypes & TypeNull)) { |
| 1246 | fixEdge<OtherUse>(node->child1()); |
| 1247 | node->remove(); |
| 1248 | } else if (typeSet->doesTypeConformTo(TypeObject)) { |
| 1249 | StructureSet set = typeSet->structureSet(); |
| 1250 | if (!set.isEmpty()) { |
| 1251 | fixEdge<CellUse>(node->child1()); |
| 1252 | node->convertToCheckStructure(m_graph.addStructureSet(set)); |
| 1253 | } |
| 1254 | } |
| 1255 | |
| 1256 | break; |
| 1257 | } |
| 1258 | |
| 1259 | case CreateScopedArguments: |
| 1260 | case CreateActivation: |
| 1261 | case NewFunction: { |
| 1262 | fixEdge<CellUse>(node->child1()); |
| 1263 | break; |
| 1264 | } |
| 1265 | |
| 1266 | #if !ASSERT_DISABLED |
| 1267 | // Have these no-op cases here to ensure that nobody forgets to add handlers for new opcodes. |
| 1268 | case SetArgument: |
| 1269 | case JSConstant: |
| 1270 | case DoubleConstant: |
| 1271 | case GetLocal: |
| 1272 | case GetCallee: |
| 1273 | case GetArgumentCount: |
| 1274 | case Flush: |
| 1275 | case PhantomLocal: |
| 1276 | case GetLocalUnlinked: |
| 1277 | case GetGlobalVar: |
| 1278 | case NotifyWrite: |
| 1279 | case VarInjectionWatchpoint: |
| 1280 | case Call: |
| 1281 | case Construct: |
| 1282 | case CallVarargs: |
| 1283 | case ConstructVarargs: |
| 1284 | case CallForwardVarargs: |
| 1285 | case ConstructForwardVarargs: |
| 1286 | case LoadVarargs: |
| 1287 | case ProfileControlFlow: |
| 1288 | case NativeCall: |
| 1289 | case NativeConstruct: |
| 1290 | case NewObject: |
| 1291 | case NewArrayBuffer: |
| 1292 | case NewRegexp: |
| 1293 | case Breakpoint: |
| 1294 | case ProfileWillCall: |
| 1295 | case ProfileDidCall: |
| 1296 | case IsUndefined: |
| 1297 | case IsBoolean: |
| 1298 | case IsNumber: |
| 1299 | case IsObjectOrNull: |
| 1300 | case IsFunction: |
| 1301 | case CreateDirectArguments: |
| 1302 | case CreateClonedArguments: |
| 1303 | case Jump: |
| 1304 | case Return: |
| 1305 | case Throw: |
| 1306 | case ThrowReferenceError: |
| 1307 | case CountExecution: |
| 1308 | case ForceOSRExit: |
| 1309 | case CheckBadCell: |
| 1310 | case CheckNotEmpty: |
| 1311 | case CheckWatchdogTimer: |
| 1312 | case Unreachable: |
| 1313 | case ExtractOSREntryLocal: |
| 1314 | case LoopHint: |
| 1315 | case MovHint: |
| 1316 | case ZombieHint: |
| 1317 | case BottomValue: |
| 1318 | case TypeOf: |
| 1319 | break; |
| 1320 | #else |
| 1321 | default: |
| 1322 | break; |
| 1323 | #endif |
| 1324 | } |
| 1325 | } |
| 1326 | |
| 1327 | template<UseKind useKind> |
| 1328 | void createToString(Node* node, Edge& edge) |
| 1329 | { |
| 1330 | edge.setNode(m_insertionSet.insertNode( |
| 1331 | m_indexInBlock, SpecString, ToString, node->origin, |
| 1332 | Edge(edge.node(), useKind))); |
| 1333 | } |
| 1334 | |
| 1335 | template<UseKind useKind> |
| 1336 | void attemptToForceStringArrayModeByToStringConversion(ArrayMode& arrayMode, Node* node) |
| 1337 | { |
| 1338 | ASSERT(arrayMode == ArrayMode(Array::Generic)); |
| 1339 | |
| 1340 | if (!canOptimizeStringObjectAccess(node->origin.semantic)) |
| 1341 | return; |
| 1342 | |
| 1343 | createToString<useKind>(node, node->child1()); |
| 1344 | arrayMode = ArrayMode(Array::String); |
| 1345 | } |
| 1346 | |
| 1347 | template<UseKind useKind> |
| 1348 | bool isStringObjectUse() |
| 1349 | { |
| 1350 | switch (useKind) { |
| 1351 | case StringObjectUse: |
| 1352 | case StringOrStringObjectUse: |
| 1353 | return true; |
| 1354 | default: |
| 1355 | return false; |
| 1356 | } |
| 1357 | } |
| 1358 | |
| 1359 | template<UseKind useKind> |
| 1360 | void convertStringAddUse(Node* node, Edge& edge) |
| 1361 | { |
| 1362 | if (useKind == StringUse) { |
| 1363 | // This preserves the binaryUseKind() invariant ot ValueAdd: ValueAdd's |
| 1364 | // two edges will always have identical use kinds, which makes the |
| 1365 | // decision process much easier. |
| 1366 | observeUseKindOnNode<StringUse>(edge.node()); |
| 1367 | m_insertionSet.insertNode( |
| 1368 | m_indexInBlock, SpecNone, Check, node->origin, |
| 1369 | Edge(edge.node(), StringUse)); |
| 1370 | edge.setUseKind(KnownStringUse); |
| 1371 | return; |
| 1372 | } |
| 1373 | |
| 1374 | // FIXME: We ought to be able to have a ToPrimitiveToString node. |
| 1375 | |
| 1376 | observeUseKindOnNode<useKind>(edge.node()); |
| 1377 | createToString<useKind>(node, edge); |
| 1378 | } |
| 1379 | |
| 1380 | void convertToMakeRope(Node* node) |
| 1381 | { |
| 1382 | node->setOpAndDefaultFlags(MakeRope); |
| 1383 | fixupMakeRope(node); |
| 1384 | } |
| 1385 | |
| 1386 | void fixupMakeRope(Node* node) |
| 1387 | { |
| 1388 | for (unsigned i = 0; i < AdjacencyList::Size; ++i) { |
| 1389 | Edge& edge = node->children.child(i); |
| 1390 | if (!edge) |
| 1391 | break; |
| 1392 | edge.setUseKind(KnownStringUse); |
| 1393 | JSString* string = edge->dynamicCastConstant<JSString*>(); |
| 1394 | if (!string) |
| 1395 | continue; |
| 1396 | if (string->length()) |
| 1397 | continue; |
| 1398 | |
| 1399 | // Don't allow the MakeRope to have zero children. |
| 1400 | if (!i && !node->child2()) |
| 1401 | break; |
| 1402 | |
| 1403 | node->children.removeEdge(i--); |
| 1404 | } |
| 1405 | |
| 1406 | if (!node->child2()) { |
| 1407 | ASSERT(!node->child3()); |
| 1408 | node->convertToIdentity(); |
| 1409 | } |
| 1410 | } |
| 1411 | |
| 1412 | void fixupToPrimitive(Node* node) |
| 1413 | { |
| 1414 | if (node->child1()->shouldSpeculateInt32()) { |
| 1415 | fixEdge<Int32Use>(node->child1()); |
| 1416 | node->convertToIdentity(); |
| 1417 | return; |
| 1418 | } |
| 1419 | |
| 1420 | if (node->child1()->shouldSpeculateString()) { |
| 1421 | fixEdge<StringUse>(node->child1()); |
| 1422 | node->convertToIdentity(); |
| 1423 | return; |
| 1424 | } |
| 1425 | |
| 1426 | if (node->child1()->shouldSpeculateStringObject() |
| 1427 | && canOptimizeStringObjectAccess(node->origin.semantic)) { |
| 1428 | fixEdge<StringObjectUse>(node->child1()); |
| 1429 | node->convertToToString(); |
| 1430 | return; |
| 1431 | } |
| 1432 | |
| 1433 | if (node->child1()->shouldSpeculateStringOrStringObject() |
| 1434 | && canOptimizeStringObjectAccess(node->origin.semantic)) { |
| 1435 | fixEdge<StringOrStringObjectUse>(node->child1()); |
| 1436 | node->convertToToString(); |
| 1437 | return; |
| 1438 | } |
| 1439 | } |
| 1440 | |
| 1441 | void fixupToStringOrCallStringConstructor(Node* node) |
| 1442 | { |
| 1443 | if (node->child1()->shouldSpeculateString()) { |
| 1444 | fixEdge<StringUse>(node->child1()); |
| 1445 | node->convertToIdentity(); |
| 1446 | return; |
| 1447 | } |
| 1448 | |
| 1449 | if (node->child1()->shouldSpeculateStringObject() |
| 1450 | && canOptimizeStringObjectAccess(node->origin.semantic)) { |
| 1451 | fixEdge<StringObjectUse>(node->child1()); |
| 1452 | return; |
| 1453 | } |
| 1454 | |
| 1455 | if (node->child1()->shouldSpeculateStringOrStringObject() |
| 1456 | && canOptimizeStringObjectAccess(node->origin.semantic)) { |
| 1457 | fixEdge<StringOrStringObjectUse>(node->child1()); |
| 1458 | return; |
| 1459 | } |
| 1460 | |
| 1461 | if (node->child1()->shouldSpeculateCell()) { |
| 1462 | fixEdge<CellUse>(node->child1()); |
| 1463 | return; |
| 1464 | } |
| 1465 | } |
| 1466 | |
| 1467 | template<UseKind leftUseKind> |
| 1468 | bool attemptToMakeFastStringAdd(Node* node, Edge& left, Edge& right) |
| 1469 | { |
| 1470 | ASSERT(leftUseKind == StringUse || leftUseKind == StringObjectUse || leftUseKind == StringOrStringObjectUse); |
| 1471 | |
| 1472 | if (isStringObjectUse<leftUseKind>() && !canOptimizeStringObjectAccess(node->origin.semantic)) |
| 1473 | return false; |
| 1474 | |
| 1475 | convertStringAddUse<leftUseKind>(node, left); |
| 1476 | |
| 1477 | if (right->shouldSpeculateString()) |
| 1478 | convertStringAddUse<StringUse>(node, right); |
| 1479 | else if (right->shouldSpeculateStringObject() && canOptimizeStringObjectAccess(node->origin.semantic)) |
| 1480 | convertStringAddUse<StringObjectUse>(node, right); |
| 1481 | else if (right->shouldSpeculateStringOrStringObject() && canOptimizeStringObjectAccess(node->origin.semantic)) |
| 1482 | convertStringAddUse<StringOrStringObjectUse>(node, right); |
| 1483 | else { |
| 1484 | // At this point we know that the other operand is something weird. The semantically correct |
| 1485 | // way of dealing with this is: |
| 1486 | // |
| 1487 | // MakeRope(@left, ToString(ToPrimitive(@right))) |
| 1488 | // |
| 1489 | // So that's what we emit. NB, we need to do all relevant type checks on @left before we do |
| 1490 | // anything to @right, since ToPrimitive may be effectful. |
| 1491 | |
| 1492 | Node* toPrimitive = m_insertionSet.insertNode( |
| 1493 | m_indexInBlock, resultOfToPrimitive(right->prediction()), ToPrimitive, |
| 1494 | node->origin, Edge(right.node())); |
| 1495 | Node* toString = m_insertionSet.insertNode( |
| 1496 | m_indexInBlock, SpecString, ToString, node->origin, Edge(toPrimitive)); |
| 1497 | |
| 1498 | fixupToPrimitive(toPrimitive); |
| 1499 | |
| 1500 | // Don't fix up ToString. ToString and ToPrimitive are originated from the same bytecode and |
| 1501 | // ToPrimitive may have an observable side effect. ToString should not be converted into Check |
| 1502 | // with speculative type check because OSR exit reproduce an observable side effect done in |
| 1503 | // ToPrimitive. |
| 1504 | |
| 1505 | right.setNode(toString); |
| 1506 | } |
| 1507 | |
| 1508 | convertToMakeRope(node); |
| 1509 | return true; |
| 1510 | } |
| 1511 | |
| 1512 | bool isStringPrototypeMethodSane( |
| 1513 | JSObject* stringPrototype, Structure* stringPrototypeStructure, UniquedStringImpl* uid) |
| 1514 | { |
| 1515 | unsigned attributesUnused; |
| 1516 | PropertyOffset offset = |
| 1517 | stringPrototypeStructure->getConcurrently(uid, attributesUnused); |
| 1518 | if (!isValidOffset(offset)) |
| 1519 | return false; |
| 1520 | |
| 1521 | JSValue value = m_graph.tryGetConstantProperty( |
| 1522 | stringPrototype, stringPrototypeStructure, offset); |
| 1523 | if (!value) |
| 1524 | return false; |
| 1525 | |
| 1526 | JSFunction* function = jsDynamicCast<JSFunction*>(value); |
| 1527 | if (!function) |
| 1528 | return false; |
| 1529 | |
| 1530 | if (function->executable()->intrinsicFor(CodeForCall) != StringPrototypeValueOfIntrinsic) |
| 1531 | return false; |
| 1532 | |
| 1533 | return true; |
| 1534 | } |
| 1535 | |
| 1536 | bool canOptimizeStringObjectAccess(const CodeOrigin& codeOrigin) |
| 1537 | { |
| 1538 | if (m_graph.hasExitSite(codeOrigin, NotStringObject)) |
| 1539 | return false; |
| 1540 | |
| 1541 | Structure* stringObjectStructure = m_graph.globalObjectFor(codeOrigin)->stringObjectStructure(); |
| 1542 | ASSERT(stringObjectStructure->storedPrototype().isObject()); |
| 1543 | ASSERT(stringObjectStructure->storedPrototype().asCell()->classInfo() == StringPrototype::info()); |
| 1544 | |
| 1545 | JSObject* stringPrototypeObject = asObject(stringObjectStructure->storedPrototype()); |
| 1546 | Structure* stringPrototypeStructure = stringPrototypeObject->structure(); |
| 1547 | if (m_graph.registerStructure(stringPrototypeStructure) != StructureRegisteredAndWatched) |
| 1548 | return false; |
| 1549 | |
| 1550 | if (stringPrototypeStructure->isDictionary()) |
| 1551 | return false; |
| 1552 | |
| 1553 | // We're being conservative here. We want DFG's ToString on StringObject to be |
| 1554 | // used in both numeric contexts (that would call valueOf()) and string contexts |
| 1555 | // (that would call toString()). We don't want the DFG to have to distinguish |
| 1556 | // between the two, just because that seems like it would get confusing. So we |
| 1557 | // just require both methods to be sane. |
| 1558 | if (!isStringPrototypeMethodSane(stringPrototypeObject, stringPrototypeStructure, vm().propertyNames->valueOf.impl())) |
| 1559 | return false; |
| 1560 | if (!isStringPrototypeMethodSane(stringPrototypeObject, stringPrototypeStructure, vm().propertyNames->toString.impl())) |
| 1561 | return false; |
| 1562 | |
| 1563 | return true; |
| 1564 | } |
| 1565 | |
| 1566 | void fixupGetAndSetLocalsInBlock(BasicBlock* block) |
| 1567 | { |
| 1568 | if (!block) |
| 1569 | return; |
| 1570 | ASSERT(block->isReachable); |
| 1571 | m_block = block; |
| 1572 | for (m_indexInBlock = 0; m_indexInBlock < block->size(); ++m_indexInBlock) { |
| 1573 | Node* node = m_currentNode = block->at(m_indexInBlock); |
| 1574 | if (node->op() != SetLocal && node->op() != GetLocal) |
| 1575 | continue; |
| 1576 | |
| 1577 | VariableAccessData* variable = node->variableAccessData(); |
| 1578 | switch (node->op()) { |
| 1579 | case GetLocal: |
| 1580 | switch (variable->flushFormat()) { |
| 1581 | case FlushedDouble: |
| 1582 | node->setResult(NodeResultDouble); |
| 1583 | break; |
| 1584 | case FlushedInt52: |
| 1585 | node->setResult(NodeResultInt52); |
| 1586 | break; |
| 1587 | default: |
| 1588 | break; |
| 1589 | } |
| 1590 | break; |
| 1591 | |
| 1592 | case SetLocal: |
| 1593 | switch (variable->flushFormat()) { |
| 1594 | case FlushedJSValue: |
| 1595 | break; |
| 1596 | case FlushedDouble: |
| 1597 | fixEdge<DoubleRepUse>(node->child1()); |
| 1598 | break; |
| 1599 | case FlushedInt32: |
| 1600 | fixEdge<Int32Use>(node->child1()); |
| 1601 | break; |
| 1602 | case FlushedInt52: |
| 1603 | fixEdge<Int52RepUse>(node->child1()); |
| 1604 | break; |
| 1605 | case FlushedCell: |
| 1606 | fixEdge<CellUse>(node->child1()); |
| 1607 | break; |
| 1608 | case FlushedBoolean: |
| 1609 | fixEdge<BooleanUse>(node->child1()); |
| 1610 | break; |
| 1611 | default: |
| 1612 | RELEASE_ASSERT_NOT_REACHED(); |
| 1613 | break; |
| 1614 | } |
| 1615 | break; |
| 1616 | |
| 1617 | default: |
| 1618 | RELEASE_ASSERT_NOT_REACHED(); |
| 1619 | break; |
| 1620 | } |
| 1621 | } |
| 1622 | m_insertionSet.execute(block); |
| 1623 | } |
| 1624 | |
| 1625 | Node* checkArray(ArrayMode arrayMode, const NodeOrigin& origin, Node* array, Node* index, bool (*storageCheck)(const ArrayMode&) = canCSEStorage) |
| 1626 | { |
| 1627 | ASSERT(arrayMode.isSpecific()); |
| 1628 | |
| 1629 | if (arrayMode.type() == Array::String) { |
| 1630 | m_insertionSet.insertNode( |
| 1631 | m_indexInBlock, SpecNone, Check, origin, Edge(array, StringUse)); |
| 1632 | } else { |
| 1633 | // Note that we only need to be using a structure check if we opt for SaneChain, since |
| 1634 | // that needs to protect against JSArray's __proto__ being changed. |
| 1635 | Structure* structure = arrayMode.originalArrayStructure(m_graph, origin.semantic); |
| 1636 | |
| 1637 | Edge indexEdge = index ? Edge(index, Int32Use) : Edge(); |
| 1638 | |
| 1639 | if (arrayMode.doesConversion()) { |
| 1640 | if (structure) { |
| 1641 | m_insertionSet.insertNode( |
| 1642 | m_indexInBlock, SpecNone, ArrayifyToStructure, origin, |
| 1643 | OpInfo(structure), OpInfo(arrayMode.asWord()), Edge(array, CellUse), indexEdge); |
| 1644 | } else { |
| 1645 | m_insertionSet.insertNode( |
| 1646 | m_indexInBlock, SpecNone, Arrayify, origin, |
| 1647 | OpInfo(arrayMode.asWord()), Edge(array, CellUse), indexEdge); |
| 1648 | } |
| 1649 | } else { |
| 1650 | if (structure) { |
| 1651 | m_insertionSet.insertNode( |
| 1652 | m_indexInBlock, SpecNone, CheckStructure, origin, |
| 1653 | OpInfo(m_graph.addStructureSet(structure)), Edge(array, CellUse)); |
| 1654 | } else { |
| 1655 | m_insertionSet.insertNode( |
| 1656 | m_indexInBlock, SpecNone, CheckArray, origin, |
| 1657 | OpInfo(arrayMode.asWord()), Edge(array, CellUse)); |
| 1658 | } |
| 1659 | } |
| 1660 | } |
| 1661 | |
| 1662 | if (!storageCheck(arrayMode)) |
| 1663 | return 0; |
| 1664 | |
| 1665 | if (arrayMode.usesButterfly()) { |
| 1666 | return m_insertionSet.insertNode( |
| 1667 | m_indexInBlock, SpecNone, GetButterfly, origin, Edge(array, CellUse)); |
| 1668 | } |
| 1669 | |
| 1670 | return m_insertionSet.insertNode( |
| 1671 | m_indexInBlock, SpecNone, GetIndexedPropertyStorage, origin, |
| 1672 | OpInfo(arrayMode.asWord()), Edge(array, KnownCellUse)); |
| 1673 | } |
| 1674 | |
| 1675 | void blessArrayOperation(Edge base, Edge index, Edge& storageChild) |
| 1676 | { |
| 1677 | Node* node = m_currentNode; |
| 1678 | |
| 1679 | switch (node->arrayMode().type()) { |
| 1680 | case Array::ForceExit: { |
| 1681 | m_insertionSet.insertNode( |
| 1682 | m_indexInBlock, SpecNone, ForceOSRExit, node->origin); |
| 1683 | return; |
| 1684 | } |
| 1685 | |
| 1686 | case Array::SelectUsingPredictions: |
| 1687 | case Array::Unprofiled: |
| 1688 | RELEASE_ASSERT_NOT_REACHED(); |
| 1689 | return; |
| 1690 | |
| 1691 | case Array::Generic: |
| 1692 | return; |
| 1693 | |
| 1694 | default: { |
| 1695 | Node* storage = checkArray(node->arrayMode(), node->origin, base.node(), index.node()); |
| 1696 | if (!storage) |
| 1697 | return; |
| 1698 | |
| 1699 | storageChild = Edge(storage); |
| 1700 | return; |
| 1701 | } } |
| 1702 | } |
| 1703 | |
| 1704 | bool alwaysUnboxSimplePrimitives() |
| 1705 | { |
| 1706 | #if USE(JSVALUE64) |
| 1707 | return false; |
| 1708 | #else |
| 1709 | // Any boolean, int, or cell value is profitable to unbox on 32-bit because it |
| 1710 | // reduces traffic. |
| 1711 | return true; |
| 1712 | #endif |
| 1713 | } |
| 1714 | |
| 1715 | template<UseKind useKind> |
| 1716 | void observeUseKindOnNode(Node* node) |
| 1717 | { |
| 1718 | if (useKind == UntypedUse) |
| 1719 | return; |
| 1720 | observeUseKindOnNode(node, useKind); |
| 1721 | } |
| 1722 | |
| 1723 | void observeUseKindOnEdge(Edge edge) |
| 1724 | { |
| 1725 | observeUseKindOnNode(edge.node(), edge.useKind()); |
| 1726 | } |
| 1727 | |
| 1728 | void observeUseKindOnNode(Node* node, UseKind useKind) |
| 1729 | { |
| 1730 | if (node->op() != GetLocal) |
| 1731 | return; |
| 1732 | |
| 1733 | // FIXME: The way this uses alwaysUnboxSimplePrimitives() is suspicious. |
| 1734 | // https://bugs.webkit.org/show_bug.cgi?id=121518 |
| 1735 | |
| 1736 | VariableAccessData* variable = node->variableAccessData(); |
| 1737 | switch (useKind) { |
| 1738 | case Int32Use: |
| 1739 | if (alwaysUnboxSimplePrimitives() |
| 1740 | || isInt32Speculation(variable->prediction())) |
| 1741 | m_profitabilityChanged |= variable->mergeIsProfitableToUnbox(true); |
| 1742 | break; |
| 1743 | case NumberUse: |
| 1744 | case RealNumberUse: |
| 1745 | case DoubleRepUse: |
| 1746 | case DoubleRepRealUse: |
| 1747 | if (variable->doubleFormatState() == UsingDoubleFormat) |
| 1748 | m_profitabilityChanged |= variable->mergeIsProfitableToUnbox(true); |
| 1749 | break; |
| 1750 | case BooleanUse: |
| 1751 | if (alwaysUnboxSimplePrimitives() |
| 1752 | || isBooleanSpeculation(variable->prediction())) |
| 1753 | m_profitabilityChanged |= variable->mergeIsProfitableToUnbox(true); |
| 1754 | break; |
| 1755 | case Int52RepUse: |
| 1756 | if (isMachineIntSpeculation(variable->prediction())) |
| 1757 | m_profitabilityChanged |= variable->mergeIsProfitableToUnbox(true); |
| 1758 | break; |
| 1759 | case CellUse: |
| 1760 | case KnownCellUse: |
| 1761 | case ObjectUse: |
| 1762 | case FunctionUse: |
| 1763 | case StringUse: |
| 1764 | case KnownStringUse: |
| 1765 | case StringObjectUse: |
| 1766 | case StringOrStringObjectUse: |
| 1767 | if (alwaysUnboxSimplePrimitives() |
| 1768 | || isCellSpeculation(variable->prediction())) |
| 1769 | m_profitabilityChanged |= variable->mergeIsProfitableToUnbox(true); |
| 1770 | break; |
| 1771 | default: |
| 1772 | break; |
| 1773 | } |
| 1774 | } |
| 1775 | |
| 1776 | template<UseKind useKind> |
| 1777 | void fixEdge(Edge& edge) |
| 1778 | { |
| 1779 | observeUseKindOnNode<useKind>(edge.node()); |
| 1780 | edge.setUseKind(useKind); |
| 1781 | } |
| 1782 | |
| 1783 | void speculateForBarrier(Edge value) |
| 1784 | { |
| 1785 | // Currently, the DFG won't take advantage of this speculation. But, we want to do it in |
| 1786 | // the DFG anyway because if such a speculation would be wrong, we want to know before |
| 1787 | // we do an expensive compile. |
| 1788 | |
| 1789 | if (value->shouldSpeculateInt32()) { |
| 1790 | insertCheck<Int32Use>(m_indexInBlock, value.node()); |
| 1791 | return; |
| 1792 | } |
| 1793 | |
| 1794 | if (value->shouldSpeculateBoolean()) { |
| 1795 | insertCheck<BooleanUse>(m_indexInBlock, value.node()); |
| 1796 | return; |
| 1797 | } |
| 1798 | |
| 1799 | if (value->shouldSpeculateOther()) { |
| 1800 | insertCheck<OtherUse>(m_indexInBlock, value.node()); |
| 1801 | return; |
| 1802 | } |
| 1803 | |
| 1804 | if (value->shouldSpeculateNumber()) { |
| 1805 | insertCheck<NumberUse>(m_indexInBlock, value.node()); |
| 1806 | return; |
| 1807 | } |
| 1808 | |
| 1809 | if (value->shouldSpeculateNotCell()) { |
| 1810 | insertCheck<NotCellUse>(m_indexInBlock, value.node()); |
| 1811 | return; |
| 1812 | } |
| 1813 | } |
| 1814 | |
| 1815 | template<UseKind useKind> |
| 1816 | void insertCheck(unsigned indexInBlock, Node* node) |
| 1817 | { |
| 1818 | observeUseKindOnNode<useKind>(node); |
| 1819 | m_insertionSet.insertNode( |
| 1820 | indexInBlock, SpecNone, Check, m_currentNode->origin, Edge(node, useKind)); |
| 1821 | } |
| 1822 | |
| 1823 | void fixIntConvertingEdge(Edge& edge) |
| 1824 | { |
| 1825 | Node* node = edge.node(); |
| 1826 | if (node->shouldSpeculateInt32OrBoolean()) { |
| 1827 | fixIntOrBooleanEdge(edge); |
| 1828 | return; |
| 1829 | } |
| 1830 | |
| 1831 | UseKind useKind; |
| 1832 | if (node->shouldSpeculateMachineInt()) |
| 1833 | useKind = Int52RepUse; |
| 1834 | else if (node->shouldSpeculateNumber()) |
| 1835 | useKind = DoubleRepUse; |
| 1836 | else |
| 1837 | useKind = NotCellUse; |
| 1838 | Node* newNode = m_insertionSet.insertNode( |
| 1839 | m_indexInBlock, SpecInt32, ValueToInt32, m_currentNode->origin, |
| 1840 | Edge(node, useKind)); |
| 1841 | observeUseKindOnNode(node, useKind); |
| 1842 | |
| 1843 | edge = Edge(newNode, KnownInt32Use); |
| 1844 | } |
| 1845 | |
| 1846 | void fixIntOrBooleanEdge(Edge& edge) |
| 1847 | { |
| 1848 | Node* node = edge.node(); |
| 1849 | if (!node->sawBooleans()) { |
| 1850 | fixEdge<Int32Use>(edge); |
| 1851 | return; |
| 1852 | } |
| 1853 | |
| 1854 | UseKind useKind; |
| 1855 | if (node->shouldSpeculateBoolean()) |
| 1856 | useKind = BooleanUse; |
| 1857 | else |
| 1858 | useKind = UntypedUse; |
| 1859 | Node* newNode = m_insertionSet.insertNode( |
| 1860 | m_indexInBlock, SpecInt32, BooleanToNumber, m_currentNode->origin, |
| 1861 | Edge(node, useKind)); |
| 1862 | observeUseKindOnNode(node, useKind); |
| 1863 | |
| 1864 | edge = Edge(newNode, Int32Use); |
| 1865 | } |
| 1866 | |
| 1867 | void fixDoubleOrBooleanEdge(Edge& edge) |
| 1868 | { |
| 1869 | Node* node = edge.node(); |
| 1870 | if (!node->sawBooleans()) { |
| 1871 | fixEdge<DoubleRepUse>(edge); |
| 1872 | return; |
| 1873 | } |
| 1874 | |
| 1875 | UseKind useKind; |
| 1876 | if (node->shouldSpeculateBoolean()) |
| 1877 | useKind = BooleanUse; |
| 1878 | else |
| 1879 | useKind = UntypedUse; |
| 1880 | Node* newNode = m_insertionSet.insertNode( |
| 1881 | m_indexInBlock, SpecInt32, BooleanToNumber, m_currentNode->origin, |
| 1882 | Edge(node, useKind)); |
| 1883 | observeUseKindOnNode(node, useKind); |
| 1884 | |
| 1885 | edge = Edge(newNode, DoubleRepUse); |
| 1886 | } |
| 1887 | |
| 1888 | void truncateConstantToInt32(Edge& edge) |
| 1889 | { |
| 1890 | Node* oldNode = edge.node(); |
| 1891 | |
| 1892 | JSValue value = oldNode->asJSValue(); |
| 1893 | if (value.isInt32()) |
| 1894 | return; |
| 1895 | |
| 1896 | value = jsNumber(JSC::toInt32(value.asNumber())); |
| 1897 | ASSERT(value.isInt32()); |
| 1898 | edge.setNode(m_insertionSet.insertNode( |
| 1899 | m_indexInBlock, SpecInt32, JSConstant, m_currentNode->origin, |
| 1900 | OpInfo(m_graph.freeze(value)))); |
| 1901 | } |
| 1902 | |
| 1903 | void truncateConstantsIfNecessary(Node* node, AddSpeculationMode mode) |
| 1904 | { |
| 1905 | if (mode != SpeculateInt32AndTruncateConstants) |
| 1906 | return; |
| 1907 | |
| 1908 | ASSERT(node->child1()->hasConstant() || node->child2()->hasConstant()); |
| 1909 | if (node->child1()->hasConstant()) |
| 1910 | truncateConstantToInt32(node->child1()); |
| 1911 | else |
| 1912 | truncateConstantToInt32(node->child2()); |
| 1913 | } |
| 1914 | |
| 1915 | bool attemptToMakeIntegerAdd(Node* node) |
| 1916 | { |
| 1917 | AddSpeculationMode mode = m_graph.addSpeculationMode(node, FixupPass); |
| 1918 | if (mode != DontSpeculateInt32) { |
| 1919 | truncateConstantsIfNecessary(node, mode); |
| 1920 | fixIntOrBooleanEdge(node->child1()); |
| 1921 | fixIntOrBooleanEdge(node->child2()); |
| 1922 | if (bytecodeCanTruncateInteger(node->arithNodeFlags())) |
| 1923 | node->setArithMode(Arith::Unchecked); |
| 1924 | else |
| 1925 | node->setArithMode(Arith::CheckOverflow); |
| 1926 | return true; |
| 1927 | } |
| 1928 | |
| 1929 | if (m_graph.addShouldSpeculateMachineInt(node)) { |
| 1930 | fixEdge<Int52RepUse>(node->child1()); |
| 1931 | fixEdge<Int52RepUse>(node->child2()); |
| 1932 | node->setArithMode(Arith::CheckOverflow); |
| 1933 | node->setResult(NodeResultInt52); |
| 1934 | return true; |
| 1935 | } |
| 1936 | |
| 1937 | return false; |
| 1938 | } |
| 1939 | |
| 1940 | bool attemptToMakeGetArrayLength(Node* node) |
| 1941 | { |
| 1942 | if (!isInt32Speculation(node->prediction())) |
| 1943 | return false; |
| 1944 | CodeBlock* profiledBlock = m_graph.baselineCodeBlockFor(node->origin.semantic); |
| 1945 | ArrayProfile* arrayProfile = |
| 1946 | profiledBlock->getArrayProfile(node->origin.semantic.bytecodeIndex); |
| 1947 | ArrayMode arrayMode = ArrayMode(Array::SelectUsingPredictions); |
| 1948 | if (arrayProfile) { |
| 1949 | ConcurrentJITLocker locker(profiledBlock->m_lock); |
| 1950 | arrayProfile->computeUpdatedPrediction(locker, profiledBlock); |
| 1951 | arrayMode = ArrayMode::fromObserved(locker, arrayProfile, Array::Read, false); |
| 1952 | if (arrayMode.type() == Array::Unprofiled) { |
| 1953 | // For normal array operations, it makes sense to treat Unprofiled |
| 1954 | // accesses as ForceExit and get more data rather than using |
| 1955 | // predictions and then possibly ending up with a Generic. But here, |
| 1956 | // we treat anything that is Unprofiled as Generic and keep the |
| 1957 | // GetById. I.e. ForceExit = Generic. So, there is no harm - and only |
| 1958 | // profit - from treating the Unprofiled case as |
| 1959 | // SelectUsingPredictions. |
| 1960 | arrayMode = ArrayMode(Array::SelectUsingPredictions); |
| 1961 | } |
| 1962 | } |
| 1963 | |
| 1964 | arrayMode = arrayMode.refine( |
| 1965 | m_graph, node, node->child1()->prediction(), node->prediction()); |
| 1966 | |
| 1967 | if (arrayMode.type() == Array::Generic) { |
| 1968 | // Check if the input is something that we can't get array length for, but for which we |
| 1969 | // could insert some conversions in order to transform it into something that we can do it |
| 1970 | // for. |
| 1971 | if (node->child1()->shouldSpeculateStringObject()) |
| 1972 | attemptToForceStringArrayModeByToStringConversion<StringObjectUse>(arrayMode, node); |
| 1973 | else if (node->child1()->shouldSpeculateStringOrStringObject()) |
| 1974 | attemptToForceStringArrayModeByToStringConversion<StringOrStringObjectUse>(arrayMode, node); |
| 1975 | } |
| 1976 | |
| 1977 | if (!arrayMode.supportsLength()) |
| 1978 | return false; |
| 1979 | |
| 1980 | convertToGetArrayLength(node, arrayMode); |
| 1981 | return true; |
| 1982 | } |
| 1983 | |
| 1984 | bool attemptToMakeGetTypedArrayByteLength(Node* node) |
| 1985 | { |
| 1986 | if (!isInt32Speculation(node->prediction())) |
| 1987 | return false; |
| 1988 | |
| 1989 | TypedArrayType type = typedArrayTypeFromSpeculation(node->child1()->prediction()); |
| 1990 | if (!isTypedView(type)) |
| 1991 | return false; |
| 1992 | |
| 1993 | if (elementSize(type) == 1) { |
| 1994 | convertToGetArrayLength(node, ArrayMode(toArrayType(type))); |
| 1995 | return true; |
| 1996 | } |
| 1997 | |
| 1998 | Node* length = prependGetArrayLength( |
| 1999 | node->origin, node->child1().node(), ArrayMode(toArrayType(type))); |
| 2000 | |
| 2001 | Node* shiftAmount = m_insertionSet.insertNode( |
| 2002 | m_indexInBlock, SpecInt32, JSConstant, node->origin, |
| 2003 | OpInfo(m_graph.freeze(jsNumber(logElementSize(type))))); |
| 2004 | |
| 2005 | // We can use a BitLShift here because typed arrays will never have a byteLength |
| 2006 | // that overflows int32. |
| 2007 | node->setOp(BitLShift); |
| 2008 | node->clearFlags(NodeMustGenerate); |
| 2009 | observeUseKindOnNode(length, Int32Use); |
| 2010 | observeUseKindOnNode(shiftAmount, Int32Use); |
| 2011 | node->child1() = Edge(length, Int32Use); |
| 2012 | node->child2() = Edge(shiftAmount, Int32Use); |
| 2013 | return true; |
| 2014 | } |
| 2015 | |
| 2016 | void convertToGetArrayLength(Node* node, ArrayMode arrayMode) |
| 2017 | { |
| 2018 | node->setOp(GetArrayLength); |
| 2019 | node->clearFlags(NodeMustGenerate); |
| 2020 | fixEdge<KnownCellUse>(node->child1()); |
| 2021 | node->setArrayMode(arrayMode); |
| 2022 | |
| 2023 | Node* storage = checkArray(arrayMode, node->origin, node->child1().node(), 0, lengthNeedsStorage); |
| 2024 | if (!storage) |
| 2025 | return; |
| 2026 | |
| 2027 | node->child2() = Edge(storage); |
| 2028 | } |
| 2029 | |
| 2030 | Node* prependGetArrayLength(NodeOrigin origin, Node* child, ArrayMode arrayMode) |
| 2031 | { |
| 2032 | Node* storage = checkArray(arrayMode, origin, child, 0, lengthNeedsStorage); |
| 2033 | return m_insertionSet.insertNode( |
| 2034 | m_indexInBlock, SpecInt32, GetArrayLength, origin, |
| 2035 | OpInfo(arrayMode.asWord()), Edge(child, KnownCellUse), Edge(storage)); |
| 2036 | } |
| 2037 | |
| 2038 | bool attemptToMakeGetTypedArrayByteOffset(Node* node) |
| 2039 | { |
| 2040 | if (!isInt32Speculation(node->prediction())) |
| 2041 | return false; |
| 2042 | |
| 2043 | TypedArrayType type = typedArrayTypeFromSpeculation(node->child1()->prediction()); |
| 2044 | if (!isTypedView(type)) |
| 2045 | return false; |
| 2046 | |
| 2047 | checkArray( |
| 2048 | ArrayMode(toArrayType(type)), node->origin, node->child1().node(), |
| 2049 | 0, neverNeedsStorage); |
| 2050 | |
| 2051 | node->setOp(GetTypedArrayByteOffset); |
| 2052 | node->clearFlags(NodeMustGenerate); |
| 2053 | fixEdge<KnownCellUse>(node->child1()); |
| 2054 | return true; |
| 2055 | } |
| 2056 | |
| 2057 | void injectTypeConversionsInBlock(BasicBlock* block) |
| 2058 | { |
| 2059 | if (!block) |
| 2060 | return; |
| 2061 | ASSERT(block->isReachable); |
| 2062 | m_block = block; |
| 2063 | for (m_indexInBlock = 0; m_indexInBlock < block->size(); ++m_indexInBlock) { |
| 2064 | m_currentNode = block->at(m_indexInBlock); |
| 2065 | tryToRelaxRepresentation(m_currentNode); |
| 2066 | DFG_NODE_DO_TO_CHILDREN(m_graph, m_currentNode, injectTypeConversionsForEdge); |
| 2067 | } |
| 2068 | m_insertionSet.execute(block); |
| 2069 | } |
| 2070 | |
| 2071 | void tryToRelaxRepresentation(Node* node) |
| 2072 | { |
| 2073 | // Some operations may be able to operate more efficiently over looser representations. |
| 2074 | // Identify those here. This avoids inserting a redundant representation conversion. |
| 2075 | // Also, for some operations, like MovHint, this is a necessary optimization: inserting |
| 2076 | // an otherwise-dead conversion just for a MovHint would break OSR's understanding of |
| 2077 | // the IR. |
| 2078 | |
| 2079 | switch (node->op()) { |
| 2080 | case MovHint: |
| 2081 | case Check: |
| 2082 | DFG_NODE_DO_TO_CHILDREN(m_graph, m_currentNode, fixEdgeRepresentation); |
| 2083 | break; |
| 2084 | |
| 2085 | case ValueToInt32: |
| 2086 | if (node->child1().useKind() == DoubleRepUse |
| 2087 | && !node->child1()->hasDoubleResult()) { |
| 2088 | node->child1().setUseKind(NumberUse); |
| 2089 | break; |
| 2090 | } |
| 2091 | break; |
| 2092 | |
| 2093 | default: |
| 2094 | break; |
| 2095 | } |
| 2096 | } |
| 2097 | |
| 2098 | void fixEdgeRepresentation(Node*, Edge& edge) |
| 2099 | { |
| 2100 | switch (edge.useKind()) { |
| 2101 | case DoubleRepUse: |
| 2102 | case DoubleRepRealUse: |
| 2103 | if (edge->hasDoubleResult()) |
| 2104 | break; |
| 2105 | |
| 2106 | if (edge->hasInt52Result()) |
| 2107 | edge.setUseKind(Int52RepUse); |
| 2108 | else if (edge.useKind() == DoubleRepUse) |
| 2109 | edge.setUseKind(NumberUse); |
| 2110 | break; |
| 2111 | |
| 2112 | case Int52RepUse: |
| 2113 | // Nothing we can really do. |
| 2114 | break; |
| 2115 | |
| 2116 | case UntypedUse: |
| 2117 | case NumberUse: |
| 2118 | if (edge->hasDoubleResult()) |
| 2119 | edge.setUseKind(DoubleRepUse); |
| 2120 | else if (edge->hasInt52Result()) |
| 2121 | edge.setUseKind(Int52RepUse); |
| 2122 | break; |
| 2123 | |
| 2124 | case RealNumberUse: |
| 2125 | if (edge->hasDoubleResult()) |
| 2126 | edge.setUseKind(DoubleRepRealUse); |
| 2127 | else if (edge->hasInt52Result()) |
| 2128 | edge.setUseKind(Int52RepUse); |
| 2129 | break; |
| 2130 | |
| 2131 | default: |
| 2132 | break; |
| 2133 | } |
| 2134 | } |
| 2135 | |
| 2136 | void injectTypeConversionsForEdge(Node* node, Edge& edge) |
| 2137 | { |
| 2138 | ASSERT(node == m_currentNode); |
| 2139 | Node* result = nullptr; |
| 2140 | |
| 2141 | switch (edge.useKind()) { |
| 2142 | case DoubleRepUse: |
| 2143 | case DoubleRepRealUse: |
| 2144 | case DoubleRepMachineIntUse: { |
| 2145 | if (edge->hasDoubleResult()) |
| 2146 | break; |
| 2147 | |
| 2148 | if (edge->isNumberConstant()) { |
| 2149 | result = m_insertionSet.insertNode( |
| 2150 | m_indexInBlock, SpecBytecodeDouble, DoubleConstant, node->origin, |
| 2151 | OpInfo(m_graph.freeze(jsDoubleNumber(edge->asNumber())))); |
| 2152 | } else if (edge->hasInt52Result()) { |
| 2153 | result = m_insertionSet.insertNode( |
| 2154 | m_indexInBlock, SpecInt52AsDouble, DoubleRep, node->origin, |
| 2155 | Edge(edge.node(), Int52RepUse)); |
| 2156 | } else { |
| 2157 | UseKind useKind; |
| 2158 | if (edge->shouldSpeculateDoubleReal()) |
| 2159 | useKind = RealNumberUse; |
| 2160 | else if (edge->shouldSpeculateNumber()) |
| 2161 | useKind = NumberUse; |
| 2162 | else |
| 2163 | useKind = NotCellUse; |
| 2164 | |
| 2165 | result = m_insertionSet.insertNode( |
| 2166 | m_indexInBlock, SpecBytecodeDouble, DoubleRep, node->origin, |
| 2167 | Edge(edge.node(), useKind)); |
| 2168 | } |
| 2169 | |
| 2170 | edge.setNode(result); |
| 2171 | break; |
| 2172 | } |
| 2173 | |
| 2174 | case Int52RepUse: { |
| 2175 | if (edge->hasInt52Result()) |
| 2176 | break; |
| 2177 | |
| 2178 | if (edge->isMachineIntConstant()) { |
| 2179 | result = m_insertionSet.insertNode( |
| 2180 | m_indexInBlock, SpecMachineInt, Int52Constant, node->origin, |
| 2181 | OpInfo(edge->constant())); |
| 2182 | } else if (edge->hasDoubleResult()) { |
| 2183 | result = m_insertionSet.insertNode( |
| 2184 | m_indexInBlock, SpecMachineInt, Int52Rep, node->origin, |
| 2185 | Edge(edge.node(), DoubleRepMachineIntUse)); |
| 2186 | } else if (edge->shouldSpeculateInt32ForArithmetic()) { |
| 2187 | result = m_insertionSet.insertNode( |
| 2188 | m_indexInBlock, SpecInt32, Int52Rep, node->origin, |
| 2189 | Edge(edge.node(), Int32Use)); |
| 2190 | } else { |
| 2191 | result = m_insertionSet.insertNode( |
| 2192 | m_indexInBlock, SpecMachineInt, Int52Rep, node->origin, |
| 2193 | Edge(edge.node(), MachineIntUse)); |
| 2194 | } |
| 2195 | |
| 2196 | edge.setNode(result); |
| 2197 | break; |
| 2198 | } |
| 2199 | |
| 2200 | default: { |
| 2201 | if (!edge->hasDoubleResult() && !edge->hasInt52Result()) |
| 2202 | break; |
| 2203 | |
| 2204 | if (edge->hasDoubleResult()) { |
| 2205 | result = m_insertionSet.insertNode( |
| 2206 | m_indexInBlock, SpecBytecodeDouble, ValueRep, node->origin, |
| 2207 | Edge(edge.node(), DoubleRepUse)); |
| 2208 | } else { |
| 2209 | result = m_insertionSet.insertNode( |
| 2210 | m_indexInBlock, SpecInt32 | SpecInt52AsDouble, ValueRep, node->origin, |
| 2211 | Edge(edge.node(), Int52RepUse)); |
| 2212 | } |
| 2213 | |
| 2214 | edge.setNode(result); |
| 2215 | break; |
| 2216 | } } |
| 2217 | } |
| 2218 | |
| 2219 | BasicBlock* m_block; |
| 2220 | unsigned m_indexInBlock; |
| 2221 | Node* m_currentNode; |
| 2222 | InsertionSet m_insertionSet; |
| 2223 | bool m_profitabilityChanged; |
| 2224 | }; |
| 2225 | |
| 2226 | bool performFixup(Graph& graph) |
| 2227 | { |
| 2228 | SamplingRegion samplingRegion("DFG Fixup Phase"); |
| 2229 | return runPhase<FixupPhase>(graph); |
| 2230 | } |
| 2231 | |
| 2232 | } } // namespace JSC::DFG |
| 2233 | |
| 2234 | #endif // ENABLE(DFG_JIT) |
| 2235 | |