/*
*******************************************************************************
-* Copyright (C) 1997-2009, International Business Machines Corporation and *
+* Copyright (C) 1997-2014, International Business Machines Corporation and *
* others. All Rights Reserved. *
*******************************************************************************
*
* 02/22/99 stephen Removed character literals for EBCDIC safety
* 06/24/99 helena Integrated Alan's NF enhancements and Java2 bug fixes
* 06/28/99 stephen Fixed bugs in toPattern().
-* 06/29/99 stephen Fixed operator= to copy fFormatWidth, fPad,
+* 06/29/99 stephen Fixed operator= to copy fFormatWidth, fPad,
* fPadPosition
********************************************************************************
*/
-
+
#include "unicode/utypes.h"
#if !UCONFIG_NO_FORMATTING
+#include "fphdlimp.h"
#include "unicode/decimfmt.h"
#include "unicode/choicfmt.h"
#include "unicode/ucurr.h"
#include "unicode/uchar.h"
#include "unicode/uniset.h"
#include "unicode/curramt.h"
-#include "decfmtst.h"
+#include "unicode/currpinf.h"
+#include "unicode/plurrule.h"
+#include "unicode/utf16.h"
+#include "unicode/numsys.h"
+#include "unicode/localpointer.h"
+#include "uresimp.h"
#include "ucurrimp.h"
-#include "util.h"
-#include "digitlst.h"
+#include "charstr.h"
#include "cmemory.h"
+#include "patternprops.h"
+#include "digitlst.h"
#include "cstring.h"
#include "umutex.h"
#include "uassert.h"
#include "putilimp.h"
+#include <math.h>
+#include "hash.h"
+#include "decfmtst.h"
+#include "dcfmtimp.h"
+#include "plurrule_impl.h"
+#include "decimalformatpattern.h"
+
+/*
+ * On certain platforms, round is a macro defined in math.h
+ * This undefine is to avoid conflict between the macro and
+ * the function defined below.
+ */
+#ifdef round
+#undef round
+#endif
-U_NAMESPACE_BEGIN
-//#define FMT_DEBUG
+U_NAMESPACE_BEGIN
#ifdef FMT_DEBUG
#include <stdio.h>
-static void debugout(UnicodeString s) {
+static void _debugout(const char *f, int l, const UnicodeString& s) {
char buf[2000];
- s.extract((int32_t) 0, s.length(), buf);
- printf("%s\n", buf);
+ s.extract((int32_t) 0, s.length(), buf, "utf-8");
+ printf("%s:%d: %s\n", f,l, buf);
}
-#define debug(x) printf("%s\n", x);
+#define debugout(x) _debugout(__FILE__,__LINE__,x)
+#define debug(x) printf("%s:%d: %s\n", __FILE__,__LINE__, x);
+static const UnicodeString dbg_null("<NULL>","");
+#define DEREFSTR(x) ((x!=NULL)?(*x):(dbg_null))
#else
#define debugout(x)
#define debug(x)
#endif
-// Set to 1 to make leading zeroes be an error
-// when doing a strict parse.
-#define CHECK_FOR_LEADING_ZERO 0
-// Set to 1 to make misplaced grouping separators
-// be an error when doing a strict parse.
-#define CHECK_FOR_MISPLACED_GROUPING 0
+
+/* == Fastpath calculation. ==
+ */
+#if UCONFIG_FORMAT_FASTPATHS_49
+inline DecimalFormatInternal& internalData(uint8_t *reserved) {
+ return *reinterpret_cast<DecimalFormatInternal*>(reserved);
+}
+inline const DecimalFormatInternal& internalData(const uint8_t *reserved) {
+ return *reinterpret_cast<const DecimalFormatInternal*>(reserved);
+}
+#else
+#endif
+
+/* For currency parsing purose,
+ * Need to remember all prefix patterns and suffix patterns of
+ * every currency format pattern,
+ * including the pattern of default currecny style
+ * and plural currency style. And the patterns are set through applyPattern.
+ */
+struct AffixPatternsForCurrency : public UMemory {
+ // negative prefix pattern
+ UnicodeString negPrefixPatternForCurrency;
+ // negative suffix pattern
+ UnicodeString negSuffixPatternForCurrency;
+ // positive prefix pattern
+ UnicodeString posPrefixPatternForCurrency;
+ // positive suffix pattern
+ UnicodeString posSuffixPatternForCurrency;
+ int8_t patternType;
+
+ AffixPatternsForCurrency(const UnicodeString& negPrefix,
+ const UnicodeString& negSuffix,
+ const UnicodeString& posPrefix,
+ const UnicodeString& posSuffix,
+ int8_t type) {
+ negPrefixPatternForCurrency = negPrefix;
+ negSuffixPatternForCurrency = negSuffix;
+ posPrefixPatternForCurrency = posPrefix;
+ posSuffixPatternForCurrency = posSuffix;
+ patternType = type;
+ }
+#ifdef FMT_DEBUG
+ void dump() const {
+ debugout( UnicodeString("AffixPatternsForCurrency( -=\"") +
+ negPrefixPatternForCurrency + (UnicodeString)"\"/\"" +
+ negSuffixPatternForCurrency + (UnicodeString)"\" +=\"" +
+ posPrefixPatternForCurrency + (UnicodeString)"\"/\"" +
+ posSuffixPatternForCurrency + (UnicodeString)"\" )");
+ }
+#endif
+};
+
+/* affix for currency formatting when the currency sign in the pattern
+ * equals to 3, such as the pattern contains 3 currency sign or
+ * the formatter style is currency plural format style.
+ */
+struct AffixesForCurrency : public UMemory {
+ // negative prefix
+ UnicodeString negPrefixForCurrency;
+ // negative suffix
+ UnicodeString negSuffixForCurrency;
+ // positive prefix
+ UnicodeString posPrefixForCurrency;
+ // positive suffix
+ UnicodeString posSuffixForCurrency;
+
+ int32_t formatWidth;
+
+ AffixesForCurrency(const UnicodeString& negPrefix,
+ const UnicodeString& negSuffix,
+ const UnicodeString& posPrefix,
+ const UnicodeString& posSuffix) {
+ negPrefixForCurrency = negPrefix;
+ negSuffixForCurrency = negSuffix;
+ posPrefixForCurrency = posPrefix;
+ posSuffixForCurrency = posSuffix;
+ }
+#ifdef FMT_DEBUG
+ void dump() const {
+ debugout( UnicodeString("AffixesForCurrency( -=\"") +
+ negPrefixForCurrency + (UnicodeString)"\"/\"" +
+ negSuffixForCurrency + (UnicodeString)"\" +=\"" +
+ posPrefixForCurrency + (UnicodeString)"\"/\"" +
+ posSuffixForCurrency + (UnicodeString)"\" )");
+ }
+#endif
+};
+
+U_CDECL_BEGIN
+
+/**
+ * @internal ICU 4.2
+ */
+static UBool U_CALLCONV decimfmtAffixValueComparator(UHashTok val1, UHashTok val2);
+
+/**
+ * @internal ICU 4.2
+ */
+static UBool U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2);
+
+
+static UBool
+U_CALLCONV decimfmtAffixValueComparator(UHashTok val1, UHashTok val2) {
+ const AffixesForCurrency* affix_1 =
+ (AffixesForCurrency*)val1.pointer;
+ const AffixesForCurrency* affix_2 =
+ (AffixesForCurrency*)val2.pointer;
+ return affix_1->negPrefixForCurrency == affix_2->negPrefixForCurrency &&
+ affix_1->negSuffixForCurrency == affix_2->negSuffixForCurrency &&
+ affix_1->posPrefixForCurrency == affix_2->posPrefixForCurrency &&
+ affix_1->posSuffixForCurrency == affix_2->posSuffixForCurrency;
+}
+
+
+static UBool
+U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2) {
+ const AffixPatternsForCurrency* affix_1 =
+ (AffixPatternsForCurrency*)val1.pointer;
+ const AffixPatternsForCurrency* affix_2 =
+ (AffixPatternsForCurrency*)val2.pointer;
+ return affix_1->negPrefixPatternForCurrency ==
+ affix_2->negPrefixPatternForCurrency &&
+ affix_1->negSuffixPatternForCurrency ==
+ affix_2->negSuffixPatternForCurrency &&
+ affix_1->posPrefixPatternForCurrency ==
+ affix_2->posPrefixPatternForCurrency &&
+ affix_1->posSuffixPatternForCurrency ==
+ affix_2->posSuffixPatternForCurrency &&
+ affix_1->patternType == affix_2->patternType;
+}
+
+U_CDECL_END
+
+
+
// *****************************************************************************
// class DecimalFormat
* These are the tags we expect to see in normal resource bundle files associated
* with a locale.
*/
-const char DecimalFormat::fgNumberPatterns[]="NumberPatterns";
+const char DecimalFormat::fgNumberPatterns[]="NumberPatterns"; // Deprecated - not used
+static const char fgNumberElements[]="NumberElements";
+static const char fgLatn[]="latn";
+static const char fgPatterns[]="patterns";
+static const char fgDecimalFormat[]="decimalFormat";
+static const char fgCurrencyFormat[]="currencyFormat";
+
+static const UChar fgTripleCurrencySign[] = {0xA4, 0xA4, 0xA4, 0};
inline int32_t _min(int32_t a, int32_t b) { return (a<b) ? a : b; }
inline int32_t _max(int32_t a, int32_t b) { return (a<b) ? b : a; }
+static void copyString(const UnicodeString& src, UBool isBogus, UnicodeString *& dest, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return;
+ }
+ if (isBogus) {
+ delete dest;
+ dest = NULL;
+ } else {
+ if (dest != NULL) {
+ *dest = src;
+ } else {
+ dest = new UnicodeString(src);
+ if (dest == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ return;
+ }
+ }
+ }
+}
+
+
//------------------------------------------------------------------------------
// Constructs a DecimalFormat instance in the default locale.
-
-DecimalFormat::DecimalFormat(UErrorCode& status)
-: NumberFormat(),
- fPosPrefixPattern(0),
- fPosSuffixPattern(0),
- fNegPrefixPattern(0),
- fNegSuffixPattern(0),
- fCurrencyChoice(0),
- fMultiplier(0),
- fGroupingSize(0),
- fGroupingSize2(0),
- fSymbols(0),
- fUseSignificantDigits(FALSE),
- fMinSignificantDigits(1),
- fMaxSignificantDigits(6),
- fMinExponentDigits(0),
- fRoundingIncrement(0),
- fPad(0),
- fFormatWidth(0)
-{
+
+DecimalFormat::DecimalFormat(UErrorCode& status) {
+ init();
UParseError parseError;
construct(status, parseError);
}
// pattern in the default locale.
DecimalFormat::DecimalFormat(const UnicodeString& pattern,
- UErrorCode& status)
-: NumberFormat(),
- fPosPrefixPattern(0),
- fPosSuffixPattern(0),
- fNegPrefixPattern(0),
- fNegSuffixPattern(0),
- fCurrencyChoice(0),
- fMultiplier(0),
- fGroupingSize(0),
- fGroupingSize2(0),
- fSymbols(0),
- fUseSignificantDigits(FALSE),
- fMinSignificantDigits(1),
- fMaxSignificantDigits(6),
- fMinExponentDigits(0),
- fRoundingIncrement(0),
- fPad(0),
- fFormatWidth(0)
-{
+ UErrorCode& status) {
+ init();
UParseError parseError;
construct(status, parseError, &pattern);
}
DecimalFormat::DecimalFormat(const UnicodeString& pattern,
DecimalFormatSymbols* symbolsToAdopt,
- UErrorCode& status)
-: NumberFormat(),
- fPosPrefixPattern(0),
- fPosSuffixPattern(0),
- fNegPrefixPattern(0),
- fNegSuffixPattern(0),
- fCurrencyChoice(0),
- fMultiplier(0),
- fGroupingSize(0),
- fGroupingSize2(0),
- fSymbols(0),
- fUseSignificantDigits(FALSE),
- fMinSignificantDigits(1),
- fMaxSignificantDigits(6),
- fMinExponentDigits(0),
- fRoundingIncrement(0),
- fPad(0),
- fFormatWidth(0)
-{
+ UErrorCode& status) {
+ init();
UParseError parseError;
if (symbolsToAdopt == NULL)
status = U_ILLEGAL_ARGUMENT_ERROR;
construct(status, parseError, &pattern, symbolsToAdopt);
}
-
+
DecimalFormat::DecimalFormat( const UnicodeString& pattern,
DecimalFormatSymbols* symbolsToAdopt,
UParseError& parseErr,
- UErrorCode& status)
-: NumberFormat(),
- fPosPrefixPattern(0),
- fPosSuffixPattern(0),
- fNegPrefixPattern(0),
- fNegSuffixPattern(0),
- fCurrencyChoice(0),
- fMultiplier(0),
- fGroupingSize(0),
- fGroupingSize2(0),
- fSymbols(0),
- fUseSignificantDigits(FALSE),
- fMinSignificantDigits(1),
- fMaxSignificantDigits(6),
- fMinExponentDigits(0),
- fRoundingIncrement(0),
- fPad(0),
- fFormatWidth(0)
-{
+ UErrorCode& status) {
+ init();
if (symbolsToAdopt == NULL)
status = U_ILLEGAL_ARGUMENT_ERROR;
construct(status,parseErr, &pattern, symbolsToAdopt);
}
+
//------------------------------------------------------------------------------
// Constructs a DecimalFormat instance with the specified number format
// pattern and the number format symbols in the default locale. The
// created instance owns the clone of the symbols.
-
+
DecimalFormat::DecimalFormat(const UnicodeString& pattern,
const DecimalFormatSymbols& symbols,
- UErrorCode& status)
-: NumberFormat(),
- fPosPrefixPattern(0),
- fPosSuffixPattern(0),
- fNegPrefixPattern(0),
- fNegSuffixPattern(0),
- fCurrencyChoice(0),
- fMultiplier(0),
- fGroupingSize(0),
- fGroupingSize2(0),
- fSymbols(0),
- fUseSignificantDigits(FALSE),
- fMinSignificantDigits(1),
- fMaxSignificantDigits(6),
- fMinExponentDigits(0),
- fRoundingIncrement(0),
- fPad(0),
- fFormatWidth(0)
-{
+ UErrorCode& status) {
+ init();
UParseError parseError;
construct(status, parseError, &pattern, new DecimalFormatSymbols(symbols));
}
+//------------------------------------------------------------------------------
+// Constructs a DecimalFormat instance with the specified number format
+// pattern, the number format symbols, and the number format style.
+// The created instance owns the clone of the symbols.
+
+DecimalFormat::DecimalFormat(const UnicodeString& pattern,
+ DecimalFormatSymbols* symbolsToAdopt,
+ UNumberFormatStyle style,
+ UErrorCode& status) {
+ init();
+ fStyle = style;
+ UParseError parseError;
+ construct(status, parseError, &pattern, symbolsToAdopt);
+}
+
+//-----------------------------------------------------------------------------
+// Common DecimalFormat initialization.
+// Put all fields of an uninitialized object into a known state.
+// Common code, shared by all constructors.
+// Can not fail. Leave the object in good enough shape that the destructor
+// or assignment operator can run successfully.
+void
+DecimalFormat::init() {
+ fPosPrefixPattern = 0;
+ fPosSuffixPattern = 0;
+ fNegPrefixPattern = 0;
+ fNegSuffixPattern = 0;
+ fCurrencyChoice = 0;
+ fMultiplier = NULL;
+ fScale = 0;
+ fGroupingSize = 0;
+ fGroupingSize2 = 0;
+ fDecimalSeparatorAlwaysShown = FALSE;
+ fSymbols = NULL;
+ fUseSignificantDigits = FALSE;
+ fMinSignificantDigits = 1;
+ fMaxSignificantDigits = 6;
+ fUseExponentialNotation = FALSE;
+ fMinExponentDigits = 0;
+ fExponentSignAlwaysShown = FALSE;
+ fBoolFlags.clear();
+ fRoundingIncrement = 0;
+ fRoundingMode = kRoundHalfEven;
+ fPad = 0;
+ fFormatWidth = 0;
+ fPadPosition = kPadBeforePrefix;
+ fStyle = UNUM_DECIMAL;
+ fCurrencySignCount = fgCurrencySignCountZero;
+ fAffixPatternsForCurrency = NULL;
+ fAffixesForCurrency = NULL;
+ fPluralAffixesForCurrency = NULL;
+ fCurrencyPluralInfo = NULL;
+#if UCONFIG_HAVE_PARSEALLINPUT
+ fParseAllInput = UNUM_MAYBE;
+#endif
+
+#if UCONFIG_FORMAT_FASTPATHS_49
+ DecimalFormatInternal &data = internalData(fReserved);
+ data.fFastFormatStatus=kFastpathUNKNOWN; // don't try to calculate the fastpath until later.
+ data.fFastParseStatus=kFastpathUNKNOWN; // don't try to calculate the fastpath until later.
+#endif
+ fStaticSets = NULL;
+}
+
//------------------------------------------------------------------------------
// Constructs a DecimalFormat instance with the specified number format
// pattern and the number format symbols in the desired locale. The
// created instance owns the symbols.
void
-DecimalFormat::construct(UErrorCode& status,
+DecimalFormat::construct(UErrorCode& status,
UParseError& parseErr,
const UnicodeString* pattern,
DecimalFormatSymbols* symbolsToAdopt)
{
fSymbols = symbolsToAdopt; // Do this BEFORE aborting on status failure!!!
-// fDigitList = new DigitList(); // Do this BEFORE aborting on status failure!!!
fRoundingIncrement = NULL;
- fRoundingDouble = 0.0;
fRoundingMode = kRoundHalfEven;
fPad = kPatternPadEscape;
fPadPosition = kPadBeforePrefix;
fPosPrefixPattern = fPosSuffixPattern = NULL;
fNegPrefixPattern = fNegSuffixPattern = NULL;
- fMultiplier = 1;
+ setMultiplier(1);
fGroupingSize = 3;
fGroupingSize2 = 0;
fDecimalSeparatorAlwaysShown = FALSE;
- fIsCurrencyFormat = FALSE;
fUseExponentialNotation = FALSE;
fMinExponentDigits = 0;
if (fSymbols == NULL)
{
fSymbols = new DecimalFormatSymbols(Locale::getDefault(), status);
- /* test for NULL */
if (fSymbols == 0) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
}
+ fStaticSets = DecimalFormatStaticSets::getStaticSets(status);
+ if (U_FAILURE(status)) {
+ return;
+ }
+ UErrorCode nsStatus = U_ZERO_ERROR;
+ NumberingSystem *ns = NumberingSystem::createInstance(nsStatus);
+ if (U_FAILURE(nsStatus)) {
+ status = nsStatus;
+ return;
+ }
UnicodeString str;
// Uses the default locale's number format pattern if there isn't
if (pattern == NULL)
{
int32_t len = 0;
- UResourceBundle *resource = ures_open(NULL, Locale::getDefault().getName(), &status);
-
- resource = ures_getByKey(resource, fgNumberPatterns, resource, &status);
- const UChar *resStr = ures_getStringByIndex(resource, (int32_t)0, &len, &status);
+ UResourceBundle *top = ures_open(NULL, Locale::getDefault().getName(), &status);
+
+ UResourceBundle *resource = ures_getByKeyWithFallback(top, fgNumberElements, NULL, &status);
+ resource = ures_getByKeyWithFallback(resource, ns->getName(), resource, &status);
+ resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &status);
+ const UChar *resStr = ures_getStringByKeyWithFallback(resource, fgDecimalFormat, &len, &status);
+ if ( status == U_MISSING_RESOURCE_ERROR && uprv_strcmp(fgLatn,ns->getName())) {
+ status = U_ZERO_ERROR;
+ resource = ures_getByKeyWithFallback(top, fgNumberElements, resource, &status);
+ resource = ures_getByKeyWithFallback(resource, fgLatn, resource, &status);
+ resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &status);
+ resStr = ures_getStringByKeyWithFallback(resource, fgDecimalFormat, &len, &status);
+ }
str.setTo(TRUE, resStr, len);
pattern = &str;
ures_close(resource);
+ ures_close(top);
}
+ delete ns;
+
if (U_FAILURE(status))
{
return;
// then do the time consuming lookup.
setCurrencyForSymbols();
} else {
- setCurrency(NULL, status);
+ setCurrencyInternally(NULL, status);
+ }
+
+ const UnicodeString* patternUsed;
+ UnicodeString currencyPluralPatternForOther;
+ // apply pattern
+ if (fStyle == UNUM_CURRENCY_PLURAL) {
+ fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
+ if (U_FAILURE(status)) {
+ return;
+ }
+
+ // the pattern used in format is not fixed until formatting,
+ // in which, the number is known and
+ // will be used to pick the right pattern based on plural count.
+ // Here, set the pattern as the pattern of plural count == "other".
+ // For most locale, the patterns are probably the same for all
+ // plural count. If not, the right pattern need to be re-applied
+ // during format.
+ fCurrencyPluralInfo->getCurrencyPluralPattern(UNICODE_STRING("other", 5), currencyPluralPatternForOther);
+ patternUsed = ¤cyPluralPatternForOther;
+ // TODO: not needed?
+ setCurrencyForSymbols();
+
+ } else {
+ patternUsed = pattern;
+ }
+
+ if (patternUsed->indexOf(kCurrencySign) != -1) {
+ // initialize for currency, not only for plural format,
+ // but also for mix parsing
+ if (fCurrencyPluralInfo == NULL) {
+ fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
+ if (U_FAILURE(status)) {
+ return;
+ }
+ }
+ // need it for mix parsing
+ setupCurrencyAffixPatterns(status);
+ // expanded affixes for plural names
+ if (patternUsed->indexOf(fgTripleCurrencySign, 3, 0) != -1) {
+ setupCurrencyAffixes(*patternUsed, TRUE, TRUE, status);
+ }
+ }
+
+ applyPatternWithoutExpandAffix(*patternUsed,FALSE, parseErr, status);
+
+ // expand affixes
+ if (fCurrencySignCount != fgCurrencySignCountInPluralFormat) {
+ expandAffixAdjustWidth(NULL);
}
- applyPattern(*pattern, FALSE /*not localized*/,parseErr, status);
-
// If it was a currency format, apply the appropriate rounding by
// resetting the currency. NOTE: this copies fCurrency on top of itself.
- if (fIsCurrencyFormat) {
- setCurrency(getCurrency(), status);
+ if (fCurrencySignCount != fgCurrencySignCountZero) {
+ setCurrencyInternally(getCurrency(), status);
+ }
+#if UCONFIG_FORMAT_FASTPATHS_49
+ DecimalFormatInternal &data = internalData(fReserved);
+ data.fFastFormatStatus = kFastpathNO; // allow it to be calculated
+ data.fFastParseStatus = kFastpathNO; // allow it to be calculated
+ handleChanged();
+#endif
+}
+
+
+void
+DecimalFormat::setupCurrencyAffixPatterns(UErrorCode& status) {
+ if (U_FAILURE(status)) {
+ return;
+ }
+ UParseError parseErr;
+ fAffixPatternsForCurrency = initHashForAffixPattern(status);
+ if (U_FAILURE(status)) {
+ return;
+ }
+
+ NumberingSystem *ns = NumberingSystem::createInstance(fSymbols->getLocale(),status);
+ if (U_FAILURE(status)) {
+ return;
+ }
+
+ // Save the default currency patterns of this locale.
+ // Here, chose onlyApplyPatternWithoutExpandAffix without
+ // expanding the affix patterns into affixes.
+ UnicodeString currencyPattern;
+ UErrorCode error = U_ZERO_ERROR;
+
+ UResourceBundle *resource = ures_open(NULL, fSymbols->getLocale().getName(), &error);
+ UResourceBundle *numElements = ures_getByKeyWithFallback(resource, fgNumberElements, NULL, &error);
+ resource = ures_getByKeyWithFallback(numElements, ns->getName(), resource, &error);
+ resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &error);
+ int32_t patLen = 0;
+ const UChar *patResStr = ures_getStringByKeyWithFallback(resource, fgCurrencyFormat, &patLen, &error);
+ if ( error == U_MISSING_RESOURCE_ERROR && uprv_strcmp(ns->getName(),fgLatn)) {
+ error = U_ZERO_ERROR;
+ resource = ures_getByKeyWithFallback(numElements, fgLatn, resource, &error);
+ resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &error);
+ patResStr = ures_getStringByKeyWithFallback(resource, fgCurrencyFormat, &patLen, &error);
+ }
+ ures_close(numElements);
+ ures_close(resource);
+ delete ns;
+
+ if (U_SUCCESS(error)) {
+ applyPatternWithoutExpandAffix(UnicodeString(patResStr, patLen), false,
+ parseErr, status);
+ AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency(
+ *fNegPrefixPattern,
+ *fNegSuffixPattern,
+ *fPosPrefixPattern,
+ *fPosSuffixPattern,
+ UCURR_SYMBOL_NAME);
+ fAffixPatternsForCurrency->put(UNICODE_STRING("default", 7), affixPtn, status);
+ }
+
+ // save the unique currency plural patterns of this locale.
+ Hashtable* pluralPtn = fCurrencyPluralInfo->fPluralCountToCurrencyUnitPattern;
+ const UHashElement* element = NULL;
+ int32_t pos = -1;
+ Hashtable pluralPatternSet;
+ while ((element = pluralPtn->nextElement(pos)) != NULL) {
+ const UHashTok valueTok = element->value;
+ const UnicodeString* value = (UnicodeString*)valueTok.pointer;
+ const UHashTok keyTok = element->key;
+ const UnicodeString* key = (UnicodeString*)keyTok.pointer;
+ if (pluralPatternSet.geti(*value) != 1) {
+ pluralPatternSet.puti(*value, 1, status);
+ applyPatternWithoutExpandAffix(*value, false, parseErr, status);
+ AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency(
+ *fNegPrefixPattern,
+ *fNegSuffixPattern,
+ *fPosPrefixPattern,
+ *fPosSuffixPattern,
+ UCURR_LONG_NAME);
+ fAffixPatternsForCurrency->put(*key, affixPtn, status);
+ }
+ }
+}
+
+
+void
+DecimalFormat::setupCurrencyAffixes(const UnicodeString& pattern,
+ UBool setupForCurrentPattern,
+ UBool setupForPluralPattern,
+ UErrorCode& status) {
+ if (U_FAILURE(status)) {
+ return;
+ }
+ UParseError parseErr;
+ if (setupForCurrentPattern) {
+ if (fAffixesForCurrency) {
+ deleteHashForAffix(fAffixesForCurrency);
+ }
+ fAffixesForCurrency = initHashForAffix(status);
+ if (U_SUCCESS(status)) {
+ applyPatternWithoutExpandAffix(pattern, false, parseErr, status);
+ const PluralRules* pluralRules = fCurrencyPluralInfo->getPluralRules();
+ StringEnumeration* keywords = pluralRules->getKeywords(status);
+ if (U_SUCCESS(status)) {
+ const UnicodeString* pluralCount;
+ while ((pluralCount = keywords->snext(status)) != NULL) {
+ if ( U_SUCCESS(status) ) {
+ expandAffixAdjustWidth(pluralCount);
+ AffixesForCurrency* affix = new AffixesForCurrency(
+ fNegativePrefix, fNegativeSuffix, fPositivePrefix, fPositiveSuffix);
+ fAffixesForCurrency->put(*pluralCount, affix, status);
+ }
+ }
+ }
+ delete keywords;
+ }
+ }
+
+ if (U_FAILURE(status)) {
+ return;
+ }
+
+ if (setupForPluralPattern) {
+ if (fPluralAffixesForCurrency) {
+ deleteHashForAffix(fPluralAffixesForCurrency);
+ }
+ fPluralAffixesForCurrency = initHashForAffix(status);
+ if (U_SUCCESS(status)) {
+ const PluralRules* pluralRules = fCurrencyPluralInfo->getPluralRules();
+ StringEnumeration* keywords = pluralRules->getKeywords(status);
+ if (U_SUCCESS(status)) {
+ const UnicodeString* pluralCount;
+ while ((pluralCount = keywords->snext(status)) != NULL) {
+ if ( U_SUCCESS(status) ) {
+ UnicodeString ptn;
+ fCurrencyPluralInfo->getCurrencyPluralPattern(*pluralCount, ptn);
+ applyPatternInternally(*pluralCount, ptn, false, parseErr, status);
+ AffixesForCurrency* affix = new AffixesForCurrency(
+ fNegativePrefix, fNegativeSuffix, fPositivePrefix, fPositiveSuffix);
+ fPluralAffixesForCurrency->put(*pluralCount, affix, status);
+ }
+ }
+ }
+ delete keywords;
+ }
}
}
+
//------------------------------------------------------------------------------
DecimalFormat::~DecimalFormat()
{
-// delete fDigitList;
delete fPosPrefixPattern;
delete fPosSuffixPattern;
delete fNegPrefixPattern;
delete fNegSuffixPattern;
delete fCurrencyChoice;
+ delete fMultiplier;
delete fSymbols;
delete fRoundingIncrement;
+ deleteHashForAffixPattern();
+ deleteHashForAffix(fAffixesForCurrency);
+ deleteHashForAffix(fPluralAffixesForCurrency);
+ delete fCurrencyPluralInfo;
}
//------------------------------------------------------------------------------
// copy constructor
-DecimalFormat::DecimalFormat(const DecimalFormat &source)
-: NumberFormat(source),
-// fDigitList(NULL),
- fPosPrefixPattern(NULL),
- fPosSuffixPattern(NULL),
- fNegPrefixPattern(NULL),
- fNegSuffixPattern(NULL),
- fCurrencyChoice(NULL),
- fSymbols(NULL),
- fRoundingIncrement(NULL)
-{
+DecimalFormat::DecimalFormat(const DecimalFormat &source) :
+ NumberFormat(source) {
+ init();
*this = source;
}
//------------------------------------------------------------------------------
// assignment operator
-// Note that fDigitList is not considered a significant part of the
-// DecimalFormat because it's used as a buffer to process the numbers.
-static void _copy_us_ptr(UnicodeString** pdest, const UnicodeString* source) {
+template <class T>
+static void _copy_ptr(T** pdest, const T* source) {
if (source == NULL) {
delete *pdest;
*pdest = NULL;
} else if (*pdest == NULL) {
- *pdest = new UnicodeString(*source);
+ *pdest = new T(*source);
+ } else {
+ **pdest = *source;
+ }
+}
+
+template <class T>
+static void _clone_ptr(T** pdest, const T* source) {
+ delete *pdest;
+ if (source == NULL) {
+ *pdest = NULL;
} else {
- **pdest = *source;
+ *pdest = static_cast<T*>(source->clone());
}
}
DecimalFormat::operator=(const DecimalFormat& rhs)
{
if(this != &rhs) {
+ UErrorCode status = U_ZERO_ERROR;
NumberFormat::operator=(rhs);
+ fStaticSets = DecimalFormatStaticSets::getStaticSets(status);
fPositivePrefix = rhs.fPositivePrefix;
fPositiveSuffix = rhs.fPositiveSuffix;
fNegativePrefix = rhs.fNegativePrefix;
fNegativeSuffix = rhs.fNegativeSuffix;
- _copy_us_ptr(&fPosPrefixPattern, rhs.fPosPrefixPattern);
- _copy_us_ptr(&fPosSuffixPattern, rhs.fPosSuffixPattern);
- _copy_us_ptr(&fNegPrefixPattern, rhs.fNegPrefixPattern);
- _copy_us_ptr(&fNegSuffixPattern, rhs.fNegSuffixPattern);
- if (rhs.fCurrencyChoice == 0) {
- delete fCurrencyChoice;
- fCurrencyChoice = 0;
- } else {
- fCurrencyChoice = (ChoiceFormat*) rhs.fCurrencyChoice->clone();
- }
- if(rhs.fRoundingIncrement == NULL) {
- delete fRoundingIncrement;
- fRoundingIncrement = NULL;
- }
- else if(fRoundingIncrement == NULL) {
- fRoundingIncrement = new DigitList(*rhs.fRoundingIncrement);
- }
- else {
- *fRoundingIncrement = *rhs.fRoundingIncrement;
- }
- fRoundingDouble = rhs.fRoundingDouble;
+ _copy_ptr(&fPosPrefixPattern, rhs.fPosPrefixPattern);
+ _copy_ptr(&fPosSuffixPattern, rhs.fPosSuffixPattern);
+ _copy_ptr(&fNegPrefixPattern, rhs.fNegPrefixPattern);
+ _copy_ptr(&fNegSuffixPattern, rhs.fNegSuffixPattern);
+ _clone_ptr(&fCurrencyChoice, rhs.fCurrencyChoice);
+ setRoundingIncrement(rhs.getRoundingIncrement());
fRoundingMode = rhs.fRoundingMode;
- fMultiplier = rhs.fMultiplier;
+ setMultiplier(rhs.getMultiplier());
fGroupingSize = rhs.fGroupingSize;
fGroupingSize2 = rhs.fGroupingSize2;
fDecimalSeparatorAlwaysShown = rhs.fDecimalSeparatorAlwaysShown;
- if(fSymbols == NULL) {
- fSymbols = new DecimalFormatSymbols(*rhs.fSymbols);
- } else {
- *fSymbols = *rhs.fSymbols;
- }
+ _copy_ptr(&fSymbols, rhs.fSymbols);
fUseExponentialNotation = rhs.fUseExponentialNotation;
fExponentSignAlwaysShown = rhs.fExponentSignAlwaysShown;
+ fBoolFlags = rhs.fBoolFlags;
/*Bertrand A. D. Update 98.03.17*/
- fIsCurrencyFormat = rhs.fIsCurrencyFormat;
+ fCurrencySignCount = rhs.fCurrencySignCount;
/*end of Update*/
fMinExponentDigits = rhs.fMinExponentDigits;
- // if (fDigitList == NULL)
- // fDigitList = new DigitList();
-
+
/* sfb 990629 */
fFormatWidth = rhs.fFormatWidth;
fPad = rhs.fPad;
fMinSignificantDigits = rhs.fMinSignificantDigits;
fMaxSignificantDigits = rhs.fMaxSignificantDigits;
fUseSignificantDigits = rhs.fUseSignificantDigits;
+ fFormatPattern = rhs.fFormatPattern;
+ fStyle = rhs.fStyle;
+ _clone_ptr(&fCurrencyPluralInfo, rhs.fCurrencyPluralInfo);
+ deleteHashForAffixPattern();
+ if (rhs.fAffixPatternsForCurrency) {
+ UErrorCode status = U_ZERO_ERROR;
+ fAffixPatternsForCurrency = initHashForAffixPattern(status);
+ copyHashForAffixPattern(rhs.fAffixPatternsForCurrency,
+ fAffixPatternsForCurrency, status);
+ }
+ deleteHashForAffix(fAffixesForCurrency);
+ if (rhs.fAffixesForCurrency) {
+ UErrorCode status = U_ZERO_ERROR;
+ fAffixesForCurrency = initHashForAffixPattern(status);
+ copyHashForAffix(rhs.fAffixesForCurrency, fAffixesForCurrency, status);
+ }
+ deleteHashForAffix(fPluralAffixesForCurrency);
+ if (rhs.fPluralAffixesForCurrency) {
+ UErrorCode status = U_ZERO_ERROR;
+ fPluralAffixesForCurrency = initHashForAffixPattern(status);
+ copyHashForAffix(rhs.fPluralAffixesForCurrency, fPluralAffixesForCurrency, status);
+ }
+#if UCONFIG_FORMAT_FASTPATHS_49
+ DecimalFormatInternal &data = internalData(fReserved);
+ const DecimalFormatInternal &rhsData = internalData(rhs.fReserved);
+ data = rhsData;
+#endif
}
return *this;
}
if (!NumberFormat::operator==(that)) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("NumberFormat::!=");
- }
+ } else {
if (!((fPosPrefixPattern == other->fPosPrefixPattern && // both null
fPositivePrefix == other->fPositivePrefix)
|| (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 &&
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("Rounding Increment !=");
}
- if (fMultiplier != other->fMultiplier) {
+ if (fRoundingMode != other->fRoundingMode) {
+ if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
+ printf("Rounding Mode %d != %d", (int)fRoundingMode, (int)other->fRoundingMode);
+ }
+ if (getMultiplier() != other->getMultiplier()) {
if (first) { printf("[ "); first = FALSE; }
- printf("Multiplier %ld != %ld", fMultiplier, other->fMultiplier);
+ printf("Multiplier %ld != %ld", getMultiplier(), other->getMultiplier());
}
if (fGroupingSize != other->fGroupingSize) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
}
if (fDecimalSeparatorAlwaysShown != other->fDecimalSeparatorAlwaysShown) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
- printf("Dec Sep Always %d != %d", fDecimalSeparatorAlwaysShown, other->fDecimalSeparatorAlwaysShown);
+ printf("fDecimalSeparatorAlwaysShown %d != %d", fDecimalSeparatorAlwaysShown, other->fDecimalSeparatorAlwaysShown);
}
if (fUseExponentialNotation != other->fUseExponentialNotation) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
- debug("Use Exp !=");
+ debug("fUseExponentialNotation !=");
+ }
+ if (fUseExponentialNotation &&
+ fMinExponentDigits != other->fMinExponentDigits) {
+ if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
+ debug("fMinExponentDigits !=");
}
- if (!(!fUseExponentialNotation ||
- fMinExponentDigits != other->fMinExponentDigits)) {
+ if (fUseExponentialNotation &&
+ fExponentSignAlwaysShown != other->fExponentSignAlwaysShown) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
- debug("Exp Digits !=");
+ debug("fExponentSignAlwaysShown !=");
+ }
+ if (fBoolFlags.getAll() != other->fBoolFlags.getAll()) {
+ if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
+ debug("fBoolFlags !=");
}
if (*fSymbols != *(other->fSymbols)) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("Symbols !=");
}
// TODO Add debug stuff for significant digits here
+ if (fUseSignificantDigits != other->fUseSignificantDigits) {
+ if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
+ debug("fUseSignificantDigits !=");
+ }
+ if (fUseSignificantDigits &&
+ fMinSignificantDigits != other->fMinSignificantDigits) {
+ if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
+ debug("fMinSignificantDigits !=");
+ }
+ if (fUseSignificantDigits &&
+ fMaxSignificantDigits != other->fMaxSignificantDigits) {
+ if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
+ debug("fMaxSignificantDigits !=");
+ }
+ if (fFormatWidth != other->fFormatWidth) {
+ if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
+ debug("fFormatWidth !=");
+ }
+ if (fPad != other->fPad) {
+ if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
+ debug("fPad !=");
+ }
+ if (fPadPosition != other->fPadPosition) {
+ if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
+ debug("fPadPosition !=");
+ }
+ if (fStyle == UNUM_CURRENCY_PLURAL &&
+ fStyle != other->fStyle)
+ if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
+ debug("fStyle !=");
+ }
+ if (fStyle == UNUM_CURRENCY_PLURAL &&
+ fFormatPattern != other->fFormatPattern) {
+ if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
+ debug("fFormatPattern !=");
+ }
+
if (!first) { printf(" ]"); }
+ if (fCurrencySignCount != other->fCurrencySignCount) {
+ debug("fCurrencySignCount !=");
+ }
+ if (fCurrencyPluralInfo == other->fCurrencyPluralInfo) {
+ debug("fCurrencyPluralInfo == ");
+ if (fCurrencyPluralInfo == NULL) {
+ debug("fCurrencyPluralInfo == NULL");
+ }
+ }
+ if (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo != NULL &&
+ *fCurrencyPluralInfo != *(other->fCurrencyPluralInfo)) {
+ debug("fCurrencyPluralInfo !=");
+ }
+ if (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo == NULL ||
+ fCurrencyPluralInfo == NULL && other->fCurrencyPluralInfo != NULL) {
+ debug("fCurrencyPluralInfo one NULL, the other not");
+ }
+ if (fCurrencyPluralInfo == NULL && other->fCurrencyPluralInfo == NULL) {
+ debug("fCurrencyPluralInfo == ");
+ }
+ }
#endif
- return (NumberFormat::operator==(that) &&
- ((fPosPrefixPattern == other->fPosPrefixPattern && // both null
- fPositivePrefix == other->fPositivePrefix)
- || (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 &&
- *fPosPrefixPattern == *other->fPosPrefixPattern)) &&
- ((fPosSuffixPattern == other->fPosSuffixPattern && // both null
- fPositiveSuffix == other->fPositiveSuffix)
- || (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 &&
- *fPosSuffixPattern == *other->fPosSuffixPattern)) &&
- ((fNegPrefixPattern == other->fNegPrefixPattern && // both null
- fNegativePrefix == other->fNegativePrefix)
- || (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 &&
- *fNegPrefixPattern == *other->fNegPrefixPattern)) &&
- ((fNegSuffixPattern == other->fNegSuffixPattern && // both null
- fNegativeSuffix == other->fNegativeSuffix)
- || (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 &&
- *fNegSuffixPattern == *other->fNegSuffixPattern)) &&
- ((fRoundingIncrement == other->fRoundingIncrement) // both null
- || (fRoundingIncrement != NULL &&
- other->fRoundingIncrement != NULL &&
- *fRoundingIncrement == *other->fRoundingIncrement)) &&
- fMultiplier == other->fMultiplier &&
+ return (
+ NumberFormat::operator==(that) &&
+
+ ((fCurrencySignCount == fgCurrencySignCountInPluralFormat) ?
+ (fAffixPatternsForCurrency->equals(*other->fAffixPatternsForCurrency)) :
+ (((fPosPrefixPattern == other->fPosPrefixPattern && // both null
+ fPositivePrefix == other->fPositivePrefix)
+ || (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 &&
+ *fPosPrefixPattern == *other->fPosPrefixPattern)) &&
+ ((fPosSuffixPattern == other->fPosSuffixPattern && // both null
+ fPositiveSuffix == other->fPositiveSuffix)
+ || (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 &&
+ *fPosSuffixPattern == *other->fPosSuffixPattern)) &&
+ ((fNegPrefixPattern == other->fNegPrefixPattern && // both null
+ fNegativePrefix == other->fNegativePrefix)
+ || (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 &&
+ *fNegPrefixPattern == *other->fNegPrefixPattern)) &&
+ ((fNegSuffixPattern == other->fNegSuffixPattern && // both null
+ fNegativeSuffix == other->fNegativeSuffix)
+ || (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 &&
+ *fNegSuffixPattern == *other->fNegSuffixPattern)))) &&
+
+ ((fRoundingIncrement == other->fRoundingIncrement) // both null
+ || (fRoundingIncrement != NULL &&
+ other->fRoundingIncrement != NULL &&
+ *fRoundingIncrement == *other->fRoundingIncrement)) &&
+
+ fRoundingMode == other->fRoundingMode &&
+ getMultiplier() == other->getMultiplier() &&
fGroupingSize == other->fGroupingSize &&
fGroupingSize2 == other->fGroupingSize2 &&
fDecimalSeparatorAlwaysShown == other->fDecimalSeparatorAlwaysShown &&
fUseExponentialNotation == other->fUseExponentialNotation &&
+
(!fUseExponentialNotation ||
- fMinExponentDigits == other->fMinExponentDigits) &&
+ (fMinExponentDigits == other->fMinExponentDigits && fExponentSignAlwaysShown == other->fExponentSignAlwaysShown)) &&
+
+ fBoolFlags.getAll() == other->fBoolFlags.getAll() &&
*fSymbols == *(other->fSymbols) &&
fUseSignificantDigits == other->fUseSignificantDigits &&
+
(!fUseSignificantDigits ||
- (fMinSignificantDigits == other->fMinSignificantDigits &&
- fMaxSignificantDigits == other->fMaxSignificantDigits)));
+ (fMinSignificantDigits == other->fMinSignificantDigits && fMaxSignificantDigits == other->fMaxSignificantDigits)) &&
+
+ fFormatWidth == other->fFormatWidth &&
+ fPad == other->fPad &&
+ fPadPosition == other->fPadPosition &&
+
+ (fStyle != UNUM_CURRENCY_PLURAL ||
+ (fStyle == other->fStyle && fFormatPattern == other->fFormatPattern)) &&
+
+ fCurrencySignCount == other->fCurrencySignCount &&
+
+ ((fCurrencyPluralInfo == other->fCurrencyPluralInfo &&
+ fCurrencyPluralInfo == NULL) ||
+ (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo != NULL &&
+ *fCurrencyPluralInfo == *(other->fCurrencyPluralInfo)))
+
+ // depending on other settings we may also need to compare
+ // fCurrencyChoice (mostly deprecated?),
+ // fAffixesForCurrency & fPluralAffixesForCurrency (only relevant in some cases)
+ );
}
//------------------------------------------------------------------------------
return new DecimalFormat(*this);
}
-//------------------------------------------------------------------------------
-
-UnicodeString&
-DecimalFormat::format(int32_t number,
- UnicodeString& appendTo,
- FieldPosition& fieldPosition) const
-{
- return format((int64_t)number, appendTo, fieldPosition);
-}
-//------------------------------------------------------------------------------
-
-UnicodeString&
-DecimalFormat::format(int64_t number,
- UnicodeString& appendTo,
- FieldPosition& fieldPosition) const
-{
- DigitList digits;
+FixedDecimal
+DecimalFormat::getFixedDecimal(double number, UErrorCode &status) const {
+ FixedDecimal result;
- // Clears field positions.
- fieldPosition.setBeginIndex(0);
- fieldPosition.setEndIndex(0);
-
- // If we are to do rounding, we need to move into the BigDecimal
- // domain in order to do divide/multiply correctly.
- // ||
- // In general, long values always represent real finite numbers, so
- // we don't have to check for +/- Infinity or NaN. However, there
- // is one case we have to be careful of: The multiplier can push
- // a number near MIN_VALUE or MAX_VALUE outside the legal range. We
- // check for this before multiplying, and if it happens we use doubles
- // instead, trading off accuracy for range.
- if (fRoundingIncrement != NULL
- || (fMultiplier > 0 && (number > U_INT64_MAX / fMultiplier || number < U_INT64_MIN / fMultiplier))
- || (fMultiplier < 0 && (number == U_INT64_MIN || -number > U_INT64_MAX / -fMultiplier || -number < U_INT64_MIN / -fMultiplier))
- )
- {
- digits.set(((double) number) * fMultiplier,
- precision(FALSE),
- !fUseExponentialNotation && !areSignificantDigitsUsed());
+ if (U_FAILURE(status)) {
+ return result;
}
- else
- {
- digits.set(number * fMultiplier, precision(TRUE));
+
+ if (uprv_isNaN(number) || uprv_isPositiveInfinity(fabs(number))) {
+ // For NaN and Infinity the state of the formatter is ignored.
+ result.init(number);
+ return result;
}
- return subformat(appendTo, fieldPosition, digits, TRUE);
+ if (fMultiplier == NULL && fScale == 0 && fRoundingIncrement == 0 && areSignificantDigitsUsed() == FALSE &&
+ result.quickInit(number) && result.visibleDecimalDigitCount <= getMaximumFractionDigits()) {
+ // Fast Path. Construction of an exact FixedDecimal directly from the double, without passing
+ // through a DigitList, was successful, and the formatter is doing nothing tricky with rounding.
+ // printf("getFixedDecimal(%g): taking fast path.\n", number);
+ result.adjustForMinFractionDigits(getMinimumFractionDigits());
+ } else {
+ // Slow path. Create a DigitList, and have this formatter round it according to the
+ // requirements of the format, and fill the fixedDecimal from that.
+ DigitList digits;
+ digits.set(number);
+ result = getFixedDecimal(digits, status);
+ }
+ return result;
}
-
-//------------------------------------------------------------------------------
-
-UnicodeString&
-DecimalFormat::format( double number,
- UnicodeString& appendTo,
- FieldPosition& fieldPosition) const
-{
- // Clears field positions.
- fieldPosition.setBeginIndex(0);
- fieldPosition.setEndIndex(0);
- // Special case for NaN, sets the begin and end index to be the
- // the string length of localized name of NaN.
- if (uprv_isNaN(number))
- {
- if (fieldPosition.getField() == NumberFormat::kIntegerField)
- fieldPosition.setBeginIndex(appendTo.length());
+// MSVC optimizer bug?
+// turn off optimization as it causes different behavior in the int64->double->int64 conversion
+#if defined (_MSC_VER)
+#pragma optimize ( "", off )
+#endif
+FixedDecimal
+DecimalFormat::getFixedDecimal(const Formattable &number, UErrorCode &status) const {
+ if (U_FAILURE(status)) {
+ return FixedDecimal();
+ }
+ if (!number.isNumeric()) {
+ status = U_ILLEGAL_ARGUMENT_ERROR;
+ return FixedDecimal();
+ }
- appendTo += getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
+ DigitList *dl = number.getDigitList();
+ if (dl != NULL) {
+ DigitList clonedDL(*dl);
+ return getFixedDecimal(clonedDL, status);
+ }
- if (fieldPosition.getField() == NumberFormat::kIntegerField)
- fieldPosition.setEndIndex(appendTo.length());
+ Formattable::Type type = number.getType();
+ if (type == Formattable::kDouble || type == Formattable::kLong) {
+ return getFixedDecimal(number.getDouble(status), status);
+ }
- addPadding(appendTo, fieldPosition, 0, 0);
- return appendTo;
+ if (type == Formattable::kInt64) {
+ // "volatile" here is a workaround to avoid optimization issues.
+ volatile double fdv = number.getDouble(status);
+ // Note: conversion of int64_t -> double rounds with some compilers to
+ // values beyond what can be represented as a 64 bit int. Subsequent
+ // testing or conversion with int64_t produces bad results.
+ // So filter the problematic values, route them to DigitList.
+ if (fdv != (double)U_INT64_MAX && fdv != (double)U_INT64_MIN &&
+ number.getInt64() == (int64_t)fdv) {
+ return getFixedDecimal(number.getDouble(status), status);
+ }
}
- // Do this BEFORE checking to see if value is infinite or negative! Sets the
- // begin and end index to be length of the string composed of
- // localized name of Infinite and the positive/negative localized
- // signs.
+ // The only case left is type==int64_t, with a value with more digits than a double can represent.
+ // Any formattable originating as a big decimal will have had a pre-existing digit list.
+ // Any originating as a double or int32 will have been handled as a double.
- number *= fMultiplier;
+ U_ASSERT(type == Formattable::kInt64);
+ DigitList digits;
+ digits.set(number.getInt64());
+ return getFixedDecimal(digits, status);
+}
+// end workaround MSVC optimizer bug
+#if defined (_MSC_VER)
+#pragma optimize ( "", on )
+#endif
- /* Detecting whether a double is negative is easy with the exception of
- * the value -0.0. This is a double which has a zero mantissa (and
- * exponent), but a negative sign bit. It is semantically distinct from
- * a zero with a positive sign bit, and this distinction is important
- * to certain kinds of computations. However, it's a little tricky to
- * detect, since (-0.0 == 0.0) and !(-0.0 < 0.0). How then, you may
- * ask, does it behave distinctly from +0.0? Well, 1/(-0.0) ==
- * -Infinity. Proper detection of -0.0 is needed to deal with the
- * issues raised by bugs 4106658, 4106667, and 4147706. Liu 7/6/98.
- */
- UBool isNegative = uprv_isNegative(number);
- // Apply rounding after multiplier
- if (fRoundingIncrement != NULL) {
- if (isNegative) // For rounding in the correct direction
- number = -number;
- number = fRoundingDouble
- * round(number / fRoundingDouble, fRoundingMode, isNegative);
- if (isNegative)
- number = -number;
+// Create a fixed decimal from a DigitList.
+// The digit list may be modified.
+// Internal function only.
+FixedDecimal
+DecimalFormat::getFixedDecimal(DigitList &number, UErrorCode &status) const {
+ // Round the number according to the requirements of this Format.
+ FixedDecimal result;
+ _round(number, number, result.isNegative, status);
+
+ // The int64_t fields in FixedDecimal can easily overflow.
+ // In deciding what to discard in this event, consider that fixedDecimal
+ // is being used only with PluralRules, and those rules mostly look at least significant
+ // few digits of the integer part, and whether the fraction part is zero or not.
+ //
+ // So, in case of overflow when filling in the fields of the FixedDecimal object,
+ // for the integer part, discard the most significant digits.
+ // for the fraction part, discard the least significant digits,
+ // don't truncate the fraction value to zero.
+ // For simplicity, the int64_t fields are limited to 18 decimal digits, even
+ // though they could hold most (but not all) 19 digit values.
+
+ // Integer Digits.
+ int32_t di = number.getDecimalAt()-18; // Take at most 18 digits.
+ if (di < 0) {
+ di = 0;
+ }
+ result.intValue = 0;
+ for (; di<number.getDecimalAt(); di++) {
+ result.intValue = result.intValue * 10 + (number.getDigit(di) & 0x0f);
+ }
+ if (result.intValue == 0 && number.getDecimalAt()-18 > 0) {
+ // The number is something like 100000000000000000000000.
+ // More than 18 digits integer digits, but the least significant 18 are all zero.
+ // We don't want to return zero as the int part, but want to keep zeros
+ // for several of the least significant digits.
+ result.intValue = 100000000000000000LL;
+ }
+
+ // Fraction digits.
+ result.decimalDigits = result.decimalDigitsWithoutTrailingZeros = result.visibleDecimalDigitCount = 0;
+ for (di = number.getDecimalAt(); di < number.getCount(); di++) {
+ result.visibleDecimalDigitCount++;
+ if (result.decimalDigits < 100000000000000000LL) {
+ // 9223372036854775807 Largest 64 bit signed integer
+ int32_t digitVal = number.getDigit(di) & 0x0f; // getDigit() returns a char, '0'-'9'.
+ result.decimalDigits = result.decimalDigits * 10 + digitVal;
+ if (digitVal > 0) {
+ result.decimalDigitsWithoutTrailingZeros = result.decimalDigits;
+ }
+ }
}
- // Special case for INFINITE,
- if (uprv_isInfinite(number))
- {
- int32_t prefixLen = appendAffix(appendTo, number, isNegative, TRUE);
+ result.hasIntegerValue = (result.decimalDigits == 0);
- if (fieldPosition.getField() == NumberFormat::kIntegerField)
- fieldPosition.setBeginIndex(appendTo.length());
+ // Trailing fraction zeros. The format specification may require more trailing
+ // zeros than the numeric value. Add any such on now.
- appendTo += getConstSymbol(DecimalFormatSymbols::kInfinitySymbol);
+ int32_t minFractionDigits;
+ if (areSignificantDigitsUsed()) {
+ minFractionDigits = getMinimumSignificantDigits() - number.getDecimalAt();
+ if (minFractionDigits < 0) {
+ minFractionDigits = 0;
+ }
+ } else {
+ minFractionDigits = getMinimumFractionDigits();
+ }
+ result.adjustForMinFractionDigits(minFractionDigits);
+
+ return result;
+}
+
+
+//------------------------------------------------------------------------------
+
+UnicodeString&
+DecimalFormat::format(int32_t number,
+ UnicodeString& appendTo,
+ FieldPosition& fieldPosition) const
+{
+ return format((int64_t)number, appendTo, fieldPosition);
+}
+
+UnicodeString&
+DecimalFormat::format(int32_t number,
+ UnicodeString& appendTo,
+ FieldPosition& fieldPosition,
+ UErrorCode& status) const
+{
+ return format((int64_t)number, appendTo, fieldPosition, status);
+}
+
+UnicodeString&
+DecimalFormat::format(int32_t number,
+ UnicodeString& appendTo,
+ FieldPositionIterator* posIter,
+ UErrorCode& status) const
+{
+ return format((int64_t)number, appendTo, posIter, status);
+}
+
+
+#if UCONFIG_FORMAT_FASTPATHS_49
+void DecimalFormat::handleChanged() {
+ DecimalFormatInternal &data = internalData(fReserved);
- if (fieldPosition.getField() == NumberFormat::kIntegerField)
- fieldPosition.setEndIndex(appendTo.length());
+ if(data.fFastFormatStatus == kFastpathUNKNOWN || data.fFastParseStatus == kFastpathUNKNOWN) {
+ return; // still constructing. Wait.
+ }
- int32_t suffixLen = appendAffix(appendTo, number, isNegative, FALSE);
+ data.fFastParseStatus = data.fFastFormatStatus = kFastpathNO;
- addPadding(appendTo, fieldPosition, prefixLen, suffixLen);
+#if UCONFIG_HAVE_PARSEALLINPUT
+ if(fParseAllInput == UNUM_NO) {
+ debug("No Parse fastpath: fParseAllInput==UNUM_NO");
+ } else
+#endif
+ if (fFormatWidth!=0) {
+ debug("No Parse fastpath: fFormatWidth");
+ } else if(fPositivePrefix.length()>0) {
+ debug("No Parse fastpath: positive prefix");
+ } else if(fPositiveSuffix.length()>0) {
+ debug("No Parse fastpath: positive suffix");
+ } else if(fNegativePrefix.length()>1
+ || ((fNegativePrefix.length()==1) && (fNegativePrefix.charAt(0)!=0x002D))) {
+ debug("No Parse fastpath: negative prefix that isn't '-'");
+ } else if(fNegativeSuffix.length()>0) {
+ debug("No Parse fastpath: negative suffix");
+ } else {
+ data.fFastParseStatus = kFastpathYES;
+ debug("parse fastpath: YES");
+ }
+
+ if (fGroupingSize!=0 && isGroupingUsed()) {
+ debug("No format fastpath: fGroupingSize!=0 and grouping is used");
+#ifdef FMT_DEBUG
+ printf("groupingsize=%d\n", fGroupingSize);
+#endif
+ } else if(fGroupingSize2!=0 && isGroupingUsed()) {
+ debug("No format fastpath: fGroupingSize2!=0");
+ } else if(fUseExponentialNotation) {
+ debug("No format fastpath: fUseExponentialNotation");
+ } else if(fFormatWidth!=0) {
+ debug("No format fastpath: fFormatWidth!=0");
+ } else if(fMinSignificantDigits!=1) {
+ debug("No format fastpath: fMinSignificantDigits!=1");
+ } else if(fMultiplier!=NULL) {
+ debug("No format fastpath: fMultiplier!=NULL");
+ } else if(fScale!=0) {
+ debug("No format fastpath: fScale!=0");
+ } else if(0x0030 != getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0)) {
+ debug("No format fastpath: 0x0030 != getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0)");
+ } else if(fDecimalSeparatorAlwaysShown) {
+ debug("No format fastpath: fDecimalSeparatorAlwaysShown");
+ } else if(getMinimumFractionDigits()>0) {
+ debug("No format fastpath: fMinFractionDigits>0");
+ } else if(fCurrencySignCount != fgCurrencySignCountZero) {
+ debug("No format fastpath: fCurrencySignCount != fgCurrencySignCountZero");
+ } else if(fRoundingIncrement!=0) {
+ debug("No format fastpath: fRoundingIncrement!=0");
+ } else {
+ data.fFastFormatStatus = kFastpathYES;
+ debug("format:kFastpathYES!");
+ }
+
+
+}
+#endif
+//------------------------------------------------------------------------------
+
+UnicodeString&
+DecimalFormat::format(int64_t number,
+ UnicodeString& appendTo,
+ FieldPosition& fieldPosition) const
+{
+ UErrorCode status = U_ZERO_ERROR; /* ignored */
+ FieldPositionOnlyHandler handler(fieldPosition);
+ return _format(number, appendTo, handler, status);
+}
+
+UnicodeString&
+DecimalFormat::format(int64_t number,
+ UnicodeString& appendTo,
+ FieldPosition& fieldPosition,
+ UErrorCode& status) const
+{
+ FieldPositionOnlyHandler handler(fieldPosition);
+ return _format(number, appendTo, handler, status);
+}
+
+UnicodeString&
+DecimalFormat::format(int64_t number,
+ UnicodeString& appendTo,
+ FieldPositionIterator* posIter,
+ UErrorCode& status) const
+{
+ FieldPositionIteratorHandler handler(posIter, status);
+ return _format(number, appendTo, handler, status);
+}
+
+UnicodeString&
+DecimalFormat::_format(int64_t number,
+ UnicodeString& appendTo,
+ FieldPositionHandler& handler,
+ UErrorCode &status) const
+{
+ // Bottleneck function for formatting int64_t
+ if (U_FAILURE(status)) {
return appendTo;
}
+#if UCONFIG_FORMAT_FASTPATHS_49
+ // const UnicodeString *posPrefix = fPosPrefixPattern;
+ // const UnicodeString *posSuffix = fPosSuffixPattern;
+ // const UnicodeString *negSuffix = fNegSuffixPattern;
+
+ const DecimalFormatInternal &data = internalData(fReserved);
+
+#ifdef FMT_DEBUG
+ data.dump();
+ printf("fastpath? [%d]\n", number);
+#endif
+
+ if( data.fFastFormatStatus==kFastpathYES) {
+
+#define kZero 0x0030
+ const int32_t MAX_IDX = MAX_DIGITS+2;
+ UChar outputStr[MAX_IDX];
+ int32_t destIdx = MAX_IDX;
+ outputStr[--destIdx] = 0; // term
+
+ int64_t n = number;
+ if (number < 1) {
+ // Negative numbers are slightly larger than positive
+ // output the first digit (or the leading zero)
+ outputStr[--destIdx] = (-(n % 10) + kZero);
+ n /= -10;
+ }
+ // get any remaining digits
+ while (n > 0) {
+ outputStr[--destIdx] = (n % 10) + kZero;
+ n /= 10;
+ }
+
+
+ // Slide the number to the start of the output str
+ U_ASSERT(destIdx >= 0);
+ int32_t length = MAX_IDX - destIdx -1;
+ /*int32_t prefixLen = */ appendAffix(appendTo, number, handler, number<0, TRUE);
+ int32_t maxIntDig = getMaximumIntegerDigits();
+ int32_t destlength = length<=maxIntDig?length:maxIntDig; // dest length pinned to max int digits
+
+ if(length>maxIntDig && fBoolFlags.contains(UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS)) {
+ status = U_ILLEGAL_ARGUMENT_ERROR;
+ }
+
+ int32_t prependZero = getMinimumIntegerDigits() - destlength;
+
+#ifdef FMT_DEBUG
+ printf("prependZero=%d, length=%d, minintdig=%d maxintdig=%d destlength=%d skip=%d\n", prependZero, length, getMinimumIntegerDigits(), maxIntDig, destlength, length-destlength);
+#endif
+ int32_t intBegin = appendTo.length();
+
+ while((prependZero--)>0) {
+ appendTo.append((UChar)0x0030); // '0'
+ }
+
+ appendTo.append(outputStr+destIdx+
+ (length-destlength), // skip any leading digits
+ destlength);
+ handler.addAttribute(kIntegerField, intBegin, appendTo.length());
+
+ /*int32_t suffixLen =*/ appendAffix(appendTo, number, handler, number<0, FALSE);
+
+ //outputStr[length]=0;
+
+#ifdef FMT_DEBUG
+ printf("Writing [%s] length [%d] max %d for [%d]\n", outputStr+destIdx, length, MAX_IDX, number);
+#endif
+
+#undef kZero
+
+ return appendTo;
+ } // end fastpath
+#endif
+
+ // Else the slow way - via DigitList
DigitList digits;
+ digits.set(number);
+ return _format(digits, appendTo, handler, status);
+}
- // This detects negativity too.
- if (fRoundingIncrement == NULL) {
- // If we did not round in binary space, round in decimal space
- digits.fRoundingMode = fRoundingMode;
+//------------------------------------------------------------------------------
+
+UnicodeString&
+DecimalFormat::format( double number,
+ UnicodeString& appendTo,
+ FieldPosition& fieldPosition) const
+{
+ UErrorCode status = U_ZERO_ERROR; /* ignored */
+ FieldPositionOnlyHandler handler(fieldPosition);
+ return _format(number, appendTo, handler, status);
+}
+
+UnicodeString&
+DecimalFormat::format( double number,
+ UnicodeString& appendTo,
+ FieldPosition& fieldPosition,
+ UErrorCode& status) const
+{
+ FieldPositionOnlyHandler handler(fieldPosition);
+ return _format(number, appendTo, handler, status);
+}
+
+UnicodeString&
+DecimalFormat::format( double number,
+ UnicodeString& appendTo,
+ FieldPositionIterator* posIter,
+ UErrorCode& status) const
+{
+ FieldPositionIteratorHandler handler(posIter, status);
+ return _format(number, appendTo, handler, status);
+}
+
+UnicodeString&
+DecimalFormat::_format( double number,
+ UnicodeString& appendTo,
+ FieldPositionHandler& handler,
+ UErrorCode &status) const
+{
+ if (U_FAILURE(status)) {
+ return appendTo;
+ }
+ // Special case for NaN, sets the begin and end index to be the
+ // the string length of localized name of NaN.
+ // TODO: let NaNs go through DigitList.
+ if (uprv_isNaN(number))
+ {
+ int begin = appendTo.length();
+ appendTo += getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
+
+ handler.addAttribute(kIntegerField, begin, appendTo.length());
+
+ addPadding(appendTo, handler, 0, 0);
+ return appendTo;
}
- digits.set(number, precision(FALSE),
- !fUseExponentialNotation && !areSignificantDigitsUsed());
- return subformat(appendTo, fieldPosition, digits, FALSE);
+ DigitList digits;
+ digits.set(number);
+ _format(digits, appendTo, handler, status);
+ // No way to return status from here.
+ return appendTo;
}
-
-/**
- * Round a double value to the nearest integer according to the
- * given mode.
- * @param a the absolute value of the number to be rounded
- * @param mode a BigDecimal rounding mode
- * @param isNegative true if the number to be rounded is negative
- * @return the absolute value of the rounded result
- */
-double DecimalFormat::round(double a, ERoundingMode mode, UBool isNegative) {
- switch (mode) {
- case kRoundCeiling:
- return isNegative ? uprv_floor(a) : uprv_ceil(a);
- case kRoundFloor:
- return isNegative ? uprv_ceil(a) : uprv_floor(a);
- case kRoundDown:
- return uprv_floor(a);
- case kRoundUp:
- return uprv_ceil(a);
- case kRoundHalfEven:
- {
- double f = uprv_floor(a);
- if ((a - f) != 0.5) {
- return uprv_floor(a + 0.5);
+
+//------------------------------------------------------------------------------
+
+
+UnicodeString&
+DecimalFormat::format(const StringPiece &number,
+ UnicodeString &toAppendTo,
+ FieldPositionIterator *posIter,
+ UErrorCode &status) const
+{
+#if UCONFIG_FORMAT_FASTPATHS_49
+ // don't bother if the int64 path is not optimized
+ int32_t len = number.length();
+
+ if(len>0&&len<10) { /* 10 or more digits may not be an int64 */
+ const char *data = number.data();
+ int64_t num = 0;
+ UBool neg = FALSE;
+ UBool ok = TRUE;
+
+ int32_t start = 0;
+
+ if(data[start]=='+') {
+ start++;
+ } else if(data[start]=='-') {
+ neg=TRUE;
+ start++;
+ }
+
+ int32_t place = 1; /* 1, 10, ... */
+ for(int32_t i=len-1;i>=start;i--) {
+ if(data[i]>='0'&&data[i]<='9') {
+ num+=place*(int64_t)(data[i]-'0');
+ } else {
+ ok=FALSE;
+ break;
+ }
+ place *= 10;
+ }
+
+ if(ok) {
+ if(neg) {
+ num = -num;// add minus bit
+ }
+ // format as int64_t
+ return format(num, toAppendTo, posIter, status);
+ }
+ // else fall through
+ }
+#endif
+
+ DigitList dnum;
+ dnum.set(number, status);
+ if (U_FAILURE(status)) {
+ return toAppendTo;
+ }
+ FieldPositionIteratorHandler handler(posIter, status);
+ _format(dnum, toAppendTo, handler, status);
+ return toAppendTo;
+}
+
+
+UnicodeString&
+DecimalFormat::format(const DigitList &number,
+ UnicodeString &appendTo,
+ FieldPositionIterator *posIter,
+ UErrorCode &status) const {
+ FieldPositionIteratorHandler handler(posIter, status);
+ _format(number, appendTo, handler, status);
+ return appendTo;
+}
+
+
+
+UnicodeString&
+DecimalFormat::format(const DigitList &number,
+ UnicodeString& appendTo,
+ FieldPosition& pos,
+ UErrorCode &status) const {
+ FieldPositionOnlyHandler handler(pos);
+ _format(number, appendTo, handler, status);
+ return appendTo;
+}
+
+DigitList&
+DecimalFormat::_round(const DigitList &number, DigitList &adjustedNum, UBool& isNegative, UErrorCode &status) const {
+ if (U_FAILURE(status)) {
+ return adjustedNum;
+ }
+
+ // note: number and adjustedNum may refer to the same DigitList, in cases where a copy
+ // is not needed by the caller.
+
+ adjustedNum = number;
+ isNegative = false;
+ if (number.isNaN()) {
+ return adjustedNum;
+ }
+
+ // Do this BEFORE checking to see if value is infinite or negative! Sets the
+ // begin and end index to be length of the string composed of
+ // localized name of Infinite and the positive/negative localized
+ // signs.
+
+ adjustedNum.setRoundingMode(fRoundingMode);
+ if (fMultiplier != NULL) {
+ adjustedNum.mult(*fMultiplier, status);
+ if (U_FAILURE(status)) {
+ return adjustedNum;
+ }
+ }
+
+ if (fScale != 0) {
+ DigitList ten;
+ ten.set((int32_t)10);
+ if (fScale > 0) {
+ for (int32_t i = fScale ; i > 0 ; i--) {
+ adjustedNum.mult(ten, status);
+ if (U_FAILURE(status)) {
+ return adjustedNum;
+ }
+ }
+ } else {
+ for (int32_t i = fScale ; i < 0 ; i++) {
+ adjustedNum.div(ten, status);
+ if (U_FAILURE(status)) {
+ return adjustedNum;
+ }
}
- double g = f / 2.0;
- return (g == uprv_floor(g)) ? f : (f + 1.0);
}
- case kRoundHalfDown:
- return ((a - uprv_floor(a)) <= 0.5) ? uprv_floor(a) : uprv_ceil(a);
- case kRoundHalfUp:
- return ((a - uprv_floor(a)) < 0.5) ? uprv_floor(a) : uprv_ceil(a);
}
- return 1.0;
+
+ /*
+ * Note: sign is important for zero as well as non-zero numbers.
+ * Proper detection of -0.0 is needed to deal with the
+ * issues raised by bugs 4106658, 4106667, and 4147706. Liu 7/6/98.
+ */
+ isNegative = !adjustedNum.isPositive();
+
+ // Apply rounding after multiplier
+
+ adjustedNum.fContext.status &= ~DEC_Inexact;
+ if (fRoundingIncrement != NULL) {
+ adjustedNum.div(*fRoundingIncrement, status);
+ adjustedNum.toIntegralValue();
+ adjustedNum.mult(*fRoundingIncrement, status);
+ adjustedNum.trim();
+ if (U_FAILURE(status)) {
+ return adjustedNum;
+ }
+ }
+ if (fRoundingMode == kRoundUnnecessary && (adjustedNum.fContext.status & DEC_Inexact)) {
+ status = U_FORMAT_INEXACT_ERROR;
+ return adjustedNum;
+ }
+
+ if (adjustedNum.isInfinite()) {
+ return adjustedNum;
+ }
+
+ if (fUseExponentialNotation || areSignificantDigitsUsed()) {
+ int32_t sigDigits = precision();
+ if (sigDigits > 0) {
+ adjustedNum.round(sigDigits);
+ // Travis Keep (21/2/2014): Calling round on a digitList does not necessarily
+ // preserve the sign of that digit list. Preserving the sign is especially
+ // important when formatting -0.0 for instance. Not preserving the sign seems
+ // like a bug because I cannot think of any case where the sign would actually
+ // have to change when rounding. For now, we preserve the sign by setting the
+ // positive attribute directly.
+ adjustedNum.setPositive(!isNegative);
+ }
+ } else {
+ // Fixed point format. Round to a set number of fraction digits.
+ int32_t numFractionDigits = precision();
+ adjustedNum.roundFixedPoint(numFractionDigits);
+ }
+ if (fRoundingMode == kRoundUnnecessary && (adjustedNum.fContext.status & DEC_Inexact)) {
+ status = U_FORMAT_INEXACT_ERROR;
+ return adjustedNum;
+ }
+ return adjustedNum;
}
UnicodeString&
-DecimalFormat::format( const Formattable& obj,
+DecimalFormat::_format(const DigitList &number,
UnicodeString& appendTo,
- FieldPosition& fieldPosition,
- UErrorCode& status) const
+ FieldPositionHandler& handler,
+ UErrorCode &status) const
{
- return NumberFormat::format(obj, appendTo, fieldPosition, status);
+ if (U_FAILURE(status)) {
+ return appendTo;
+ }
+
+ // Special case for NaN, sets the begin and end index to be the
+ // the string length of localized name of NaN.
+ if (number.isNaN())
+ {
+ int begin = appendTo.length();
+ appendTo += getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
+
+ handler.addAttribute(kIntegerField, begin, appendTo.length());
+
+ addPadding(appendTo, handler, 0, 0);
+ return appendTo;
+ }
+
+ DigitList adjustedNum;
+ UBool isNegative;
+ _round(number, adjustedNum, isNegative, status);
+ if (U_FAILURE(status)) {
+ return appendTo;
+ }
+
+ // Special case for INFINITE,
+ if (adjustedNum.isInfinite()) {
+ int32_t prefixLen = appendAffix(appendTo, adjustedNum.getDouble(), handler, isNegative, TRUE);
+
+ int begin = appendTo.length();
+ appendTo += getConstSymbol(DecimalFormatSymbols::kInfinitySymbol);
+
+ handler.addAttribute(kIntegerField, begin, appendTo.length());
+
+ int32_t suffixLen = appendAffix(appendTo, adjustedNum.getDouble(), handler, isNegative, FALSE);
+
+ addPadding(appendTo, handler, prefixLen, suffixLen);
+ return appendTo;
+ }
+ return subformat(appendTo, handler, adjustedNum, FALSE, status);
}
/**
//------------------------------------------------------------------------------
/**
- * Complete the formatting of a finite number. On entry, the fDigitList must
+ * Complete the formatting of a finite number. On entry, the DigitList must
* be filled in with the correct digits.
*/
UnicodeString&
DecimalFormat::subformat(UnicodeString& appendTo,
- FieldPosition& fieldPosition,
+ FieldPositionHandler& handler,
DigitList& digits,
- UBool isInteger) const
+ UBool isInteger,
+ UErrorCode& status) const
{
- // Gets the localized zero Unicode character.
- UChar32 zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
- int32_t zeroDelta = zero - '0'; // '0' is the DigitList representation of zero
+ // char zero = '0';
+ // DigitList returns digits as '0' thru '9', so we will need to
+ // always need to subtract the character 0 to get the numeric value to use for indexing.
+
+ UChar32 localizedDigits[10];
+ localizedDigits[0] = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
+ localizedDigits[1] = getConstSymbol(DecimalFormatSymbols::kOneDigitSymbol).char32At(0);
+ localizedDigits[2] = getConstSymbol(DecimalFormatSymbols::kTwoDigitSymbol).char32At(0);
+ localizedDigits[3] = getConstSymbol(DecimalFormatSymbols::kThreeDigitSymbol).char32At(0);
+ localizedDigits[4] = getConstSymbol(DecimalFormatSymbols::kFourDigitSymbol).char32At(0);
+ localizedDigits[5] = getConstSymbol(DecimalFormatSymbols::kFiveDigitSymbol).char32At(0);
+ localizedDigits[6] = getConstSymbol(DecimalFormatSymbols::kSixDigitSymbol).char32At(0);
+ localizedDigits[7] = getConstSymbol(DecimalFormatSymbols::kSevenDigitSymbol).char32At(0);
+ localizedDigits[8] = getConstSymbol(DecimalFormatSymbols::kEightDigitSymbol).char32At(0);
+ localizedDigits[9] = getConstSymbol(DecimalFormatSymbols::kNineDigitSymbol).char32At(0);
+
const UnicodeString *grouping ;
- if(fIsCurrencyFormat) {
- grouping = &getConstSymbol(DecimalFormatSymbols::kMonetaryGroupingSeparatorSymbol);
- }else{
+ if(fCurrencySignCount == fgCurrencySignCountZero) {
grouping = &getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol);
+ }else{
+ grouping = &getConstSymbol(DecimalFormatSymbols::kMonetaryGroupingSeparatorSymbol);
}
const UnicodeString *decimal;
- if(fIsCurrencyFormat) {
- decimal = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
- } else {
+ if(fCurrencySignCount == fgCurrencySignCountZero) {
decimal = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
+ } else {
+ decimal = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
}
UBool useSigDig = areSignificantDigitsUsed();
int32_t maxIntDig = getMaximumIntegerDigits();
int32_t minIntDig = getMinimumIntegerDigits();
- /* Per bug 4147706, DecimalFormat must respect the sign of numbers which
- * format as zero. This allows sensible computations and preserves
- * relations such as signum(1/x) = signum(x), where x is +Infinity or
- * -Infinity. Prior to this fix, we always formatted zero values as if
- * they were positive. Liu 7/6/98.
- */
- if (digits.isZero())
- {
- digits.fDecimalAt = digits.fCount = 0; // Normalize
- }
-
// Appends the prefix.
double doubleValue = digits.getDouble();
- int32_t prefixLen = appendAffix(appendTo, doubleValue, !digits.fIsPositive, TRUE);
+ int32_t prefixLen = appendAffix(appendTo, doubleValue, handler, !digits.isPositive(), TRUE);
if (fUseExponentialNotation)
{
- // Record field information for caller.
- if (fieldPosition.getField() == NumberFormat::kIntegerField)
- {
- fieldPosition.setBeginIndex(appendTo.length());
- fieldPosition.setEndIndex(-1);
- }
- else if (fieldPosition.getField() == NumberFormat::kFractionField)
- {
- fieldPosition.setBeginIndex(-1);
- }
+ int currentLength = appendTo.length();
+ int intBegin = currentLength;
+ int intEnd = -1;
+ int fracBegin = -1;
int32_t minFracDig = 0;
if (useSigDig) {
// If maximum integer digits are defined and are larger than
// minimum integer digits, then minimum integer digits are
// ignored.
- int32_t exponent = digits.fDecimalAt;
+ digits.reduce(); // Removes trailing zero digits.
+ int32_t exponent = digits.getDecimalAt();
if (maxIntDig > 1 && maxIntDig != minIntDig) {
// A exponent increment is defined; adjust to it.
exponent = (exponent > 0) ? (exponent - 1) / maxIntDig
// The number of integer digits is handled specially if the number
// is zero, since then there may be no digits.
int32_t integerDigits = digits.isZero() ? minIntDig :
- digits.fDecimalAt - exponent;
- int32_t totalDigits = digits.fCount;
+ digits.getDecimalAt() - exponent;
+ int32_t totalDigits = digits.getCount();
if (minimumDigits > totalDigits)
totalDigits = minimumDigits;
if (integerDigits > totalDigits)
{
if (i == integerDigits)
{
- // Record field information for caller.
- if (fieldPosition.getField() == NumberFormat::kIntegerField)
- fieldPosition.setEndIndex(appendTo.length());
+ intEnd = appendTo.length();
+ handler.addAttribute(kIntegerField, intBegin, intEnd);
appendTo += *decimal;
- // Record field information for caller.
- if (fieldPosition.getField() == NumberFormat::kFractionField)
- fieldPosition.setBeginIndex(appendTo.length());
+ fracBegin = appendTo.length();
+ handler.addAttribute(kDecimalSeparatorField, fracBegin - 1, fracBegin);
}
// Restores the digit character or pads the buffer with zeros.
- UChar32 c = (UChar32)((i < digits.fCount) ?
- (digits.fDigits[i] + zeroDelta) :
- zero);
+ UChar32 c = (UChar32)((i < digits.getCount()) ?
+ localizedDigits[digits.getDigitValue(i)] :
+ localizedDigits[0]);
appendTo += c;
}
- // Record field information
- if (fieldPosition.getField() == NumberFormat::kIntegerField)
- {
- if (fieldPosition.getEndIndex() < 0)
- fieldPosition.setEndIndex(appendTo.length());
+ currentLength = appendTo.length();
+
+ if (intEnd < 0) {
+ handler.addAttribute(kIntegerField, intBegin, currentLength);
}
- else if (fieldPosition.getField() == NumberFormat::kFractionField)
- {
- if (fieldPosition.getBeginIndex() < 0)
- fieldPosition.setBeginIndex(appendTo.length());
- fieldPosition.setEndIndex(appendTo.length());
+ if (fracBegin > 0) {
+ handler.addAttribute(kFractionField, fracBegin, currentLength);
}
// The exponent is output using the pattern-specified minimum
// unacceptable inaccuracy.
appendTo += getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
+ handler.addAttribute(kExponentSymbolField, currentLength, appendTo.length());
+ currentLength = appendTo.length();
+
// For zero values, we force the exponent to zero. We
// must do this here, and not earlier, because the value
// is used to determine integer digit count above.
if (exponent < 0) {
appendTo += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
+ handler.addAttribute(kExponentSignField, currentLength, appendTo.length());
} else if (fExponentSignAlwaysShown) {
appendTo += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
+ handler.addAttribute(kExponentSignField, currentLength, appendTo.length());
}
+ currentLength = appendTo.length();
+
DigitList expDigits;
expDigits.set(exponent);
{
if (fUseExponentialNotation && expDig < 1) {
expDig = 1;
}
- for (i=expDigits.fDecimalAt; i<expDig; ++i)
- appendTo += (zero);
+ for (i=expDigits.getDecimalAt(); i<expDig; ++i)
+ appendTo += (localizedDigits[0]);
}
- for (i=0; i<expDigits.fDecimalAt; ++i)
+ for (i=0; i<expDigits.getDecimalAt(); ++i)
{
- UChar32 c = (UChar32)((i < expDigits.fCount) ?
- (expDigits.fDigits[i] + zeroDelta) : zero);
+ UChar32 c = (UChar32)((i < expDigits.getCount()) ?
+ localizedDigits[expDigits.getDigitValue(i)] :
+ localizedDigits[0]);
appendTo += c;
}
+
+ handler.addAttribute(kExponentField, currentLength, appendTo.length());
}
else // Not using exponential notation
{
- // Record field information for caller.
- if (fieldPosition.getField() == NumberFormat::kIntegerField)
- fieldPosition.setBeginIndex(appendTo.length());
+ int currentLength = appendTo.length();
+ int intBegin = currentLength;
int32_t sigCount = 0;
int32_t minSigDig = getMinimumSignificantDigits();
// leading zeros required to satisfy getMinimumIntegerDigits,
// and actual digits present in the number.
int32_t count = useSigDig ?
- _max(1, digits.fDecimalAt) : minIntDig;
- if (digits.fDecimalAt > 0 && count < digits.fDecimalAt) {
- count = digits.fDecimalAt;
+ _max(1, digits.getDecimalAt()) : minIntDig;
+ if (digits.getDecimalAt() > 0 && count < digits.getDecimalAt()) {
+ count = digits.getDecimalAt();
}
// Handle the case where getMaximumIntegerDigits() is smaller
int32_t digitIndex = 0; // Index into digitList.fDigits[]
if (count > maxIntDig && maxIntDig >= 0) {
count = maxIntDig;
- digitIndex = digits.fDecimalAt - count;
+ digitIndex = digits.getDecimalAt() - count;
+ if(fBoolFlags.contains(UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS)) {
+ status = U_ILLEGAL_ARGUMENT_ERROR;
+ }
}
int32_t sizeBeforeIntegerPart = appendTo.length();
int32_t i;
for (i=count-1; i>=0; --i)
{
- if (i < digits.fDecimalAt && digitIndex < digits.fCount &&
+ if (i < digits.getDecimalAt() && digitIndex < digits.getCount() &&
sigCount < maxSigDig) {
// Output a real digit
- appendTo += ((UChar32)(digits.fDigits[digitIndex++] + zeroDelta));
+ appendTo += (UChar32)localizedDigits[digits.getDigitValue(digitIndex++)];
++sigCount;
}
else
{
// Output a zero (leading or trailing)
- appendTo += (zero);
+ appendTo += localizedDigits[0];
if (sigCount > 0) {
++sigCount;
}
// Output grouping separator if necessary.
if (isGroupingPosition(i)) {
+ currentLength = appendTo.length();
appendTo.append(*grouping);
+ handler.addAttribute(kGroupingSeparatorField, currentLength, appendTo.length());
}
}
+ // This handles the special case of formatting 0. For zero only, we count the
+ // zero to the left of the decimal point as one signficant digit. Ordinarily we
+ // do not count any leading 0's as significant. If the number we are formatting
+ // is not zero, then either sigCount or digits.getCount() will be non-zero.
+ if (sigCount == 0 && digits.getCount() == 0) {
+ sigCount = 1;
+ }
+
+ // TODO(dlf): this looks like it was a bug, we marked the int field as ending
+ // before the zero was generated.
// Record field information for caller.
- if (fieldPosition.getField() == NumberFormat::kIntegerField)
- fieldPosition.setEndIndex(appendTo.length());
+ // if (fieldPosition.getField() == NumberFormat::kIntegerField)
+ // fieldPosition.setEndIndex(appendTo.length());
// Determine whether or not there are any printable fractional
// digits. If we've used up the digits we know there aren't.
- UBool fractionPresent = (!isInteger && digitIndex < digits.fCount) ||
+ UBool fractionPresent = (!isInteger && digitIndex < digits.getCount()) ||
(useSigDig ? (sigCount < minSigDig) : (getMinimumFractionDigits() > 0));
// If there is no fraction present, and we haven't printed any
// integer digits, then print a zero. Otherwise we won't print
// _any_ digits, and we won't be able to parse this string.
if (!fractionPresent && appendTo.length() == sizeBeforeIntegerPart)
- appendTo += (zero);
+ appendTo += localizedDigits[0];
+
+ currentLength = appendTo.length();
+ handler.addAttribute(kIntegerField, intBegin, currentLength);
// Output the decimal separator if we always do so.
- if (fDecimalSeparatorAlwaysShown || fractionPresent)
+ if (fDecimalSeparatorAlwaysShown || fractionPresent) {
appendTo += *decimal;
+ handler.addAttribute(kDecimalSeparatorField, currentLength, appendTo.length());
+ currentLength = appendTo.length();
+ }
- // Record field information for caller.
- if (fieldPosition.getField() == NumberFormat::kFractionField)
- fieldPosition.setBeginIndex(appendTo.length());
+ int fracBegin = currentLength;
count = useSigDig ? INT32_MAX : getMaximumFractionDigits();
if (useSigDig && (sigCount == maxSigDig ||
- (sigCount >= minSigDig && digitIndex == digits.fCount))) {
+ (sigCount >= minSigDig && digitIndex == digits.getCount()))) {
count = 0;
}
// fractional stuff to display, or we're out of
// significant digits.
if (!useSigDig && i >= getMinimumFractionDigits() &&
- (isInteger || digitIndex >= digits.fCount)) {
+ (isInteger || digitIndex >= digits.getCount())) {
break;
}
// that come after the decimal but before any
// significant digits. These are only output if
// abs(number being formatted) < 1.0.
- if (-1-i > (digits.fDecimalAt-1)) {
- appendTo += zero;
+ if (-1-i > (digits.getDecimalAt()-1)) {
+ appendTo += localizedDigits[0];
continue;
}
// Output a digit, if we have any precision left, or a
// zero if we don't. We don't want to output noise digits.
- if (!isInteger && digitIndex < digits.fCount) {
- appendTo += ((UChar32)(digits.fDigits[digitIndex++] + zeroDelta));
+ if (!isInteger && digitIndex < digits.getCount()) {
+ appendTo += (UChar32)localizedDigits[digits.getDigitValue(digitIndex++)];
} else {
- appendTo += zero;
+ appendTo += localizedDigits[0];
}
// If we reach the maximum number of significant
++sigCount;
if (useSigDig &&
(sigCount == maxSigDig ||
- (digitIndex == digits.fCount && sigCount >= minSigDig))) {
+ (digitIndex == digits.getCount() && sigCount >= minSigDig))) {
break;
}
}
- // Record field information for caller.
- if (fieldPosition.getField() == NumberFormat::kFractionField)
- fieldPosition.setEndIndex(appendTo.length());
+ handler.addAttribute(kFractionField, fracBegin, appendTo.length());
}
- int32_t suffixLen = appendAffix(appendTo, doubleValue, !digits.fIsPositive, FALSE);
+ int32_t suffixLen = appendAffix(appendTo, doubleValue, handler, !digits.isPositive(), FALSE);
- addPadding(appendTo, fieldPosition, prefixLen, suffixLen);
+ addPadding(appendTo, handler, prefixLen, suffixLen);
return appendTo;
}
* @param result the string to be padded
*/
void DecimalFormat::addPadding(UnicodeString& appendTo,
- FieldPosition& fieldPosition,
+ FieldPositionHandler& handler,
int32_t prefixLen,
int32_t suffixLen) const
{
appendTo += padding;
break;
}
- if (fPadPosition == kPadBeforePrefix ||
- fPadPosition == kPadAfterPrefix) {
- fieldPosition.setBeginIndex(len + fieldPosition.getBeginIndex());
- fieldPosition.setEndIndex(len + fieldPosition.getEndIndex());
+ if (fPadPosition == kPadBeforePrefix || fPadPosition == kPadAfterPrefix) {
+ handler.shiftLast(len);
}
}
}
}
//------------------------------------------------------------------------------
-
-void
-DecimalFormat::parse(const UnicodeString& text,
- Formattable& result,
- UErrorCode& status) const
-{
- NumberFormat::parse(text, result, status);
-}
void
DecimalFormat::parse(const UnicodeString& text,
Formattable& result,
ParsePosition& parsePosition) const {
- parse(text, result, parsePosition, FALSE);
+ parse(text, result, parsePosition, NULL);
}
-Formattable& DecimalFormat::parseCurrency(const UnicodeString& text,
- Formattable& result,
- ParsePosition& pos) const {
- parse(text, result, pos, TRUE);
- return result;
+CurrencyAmount* DecimalFormat::parseCurrency(const UnicodeString& text,
+ ParsePosition& pos) const {
+ Formattable parseResult;
+ int32_t start = pos.getIndex();
+ UChar curbuf[4] = {};
+ parse(text, parseResult, pos, curbuf);
+ if (pos.getIndex() != start) {
+ UErrorCode ec = U_ZERO_ERROR;
+ LocalPointer<CurrencyAmount> currAmt(new CurrencyAmount(parseResult, curbuf, ec));
+ if (U_FAILURE(ec)) {
+ pos.setIndex(start); // indicate failure
+ } else {
+ return currAmt.orphan();
+ }
+ }
+ return NULL;
}
/**
- * Parses the given text as either a number or a currency amount.
+ * Parses the given text as a number, optionally providing a currency amount.
* @param text the string to parse
- * @param result output parameter for the result
+ * @param result output parameter for the numeric result.
* @param parsePosition input-output position; on input, the
* position within text to match; must have 0 <= pos.getIndex() <
* text.length(); on output, the position after the last matched
* character. If the parse fails, the position in unchanged upon
* output.
- * @param parseCurrency if true, a currency amount is parsed;
- * otherwise a Number is parsed
+ * @param currency if non-NULL, it should point to a 4-UChar buffer.
+ * In this case the text is parsed as a currency format, and the
+ * ISO 4217 code for the parsed currency is put into the buffer.
+ * Otherwise the text is parsed as a non-currency format.
*/
void DecimalFormat::parse(const UnicodeString& text,
Formattable& result,
ParsePosition& parsePosition,
- UBool parseCurrency) const {
- int32_t backup;
- int32_t i = backup = parsePosition.getIndex();
+ UChar* currency) const {
+ int32_t startIdx, backup;
+ int32_t i = startIdx = backup = parsePosition.getIndex();
+
+ // clear any old contents in the result. In particular, clears any DigitList
+ // that it may be holding.
+ result.setLong(0);
+ if (currency != NULL) {
+ for (int32_t ci=0; ci<4; ci++) {
+ currency[ci] = 0;
+ }
+ }
// Handle NaN as a special case:
-
+
// Skip padding characters, if around prefix
if (fFormatWidth > 0 && (fPadPosition == kPadBeforePrefix ||
fPadPosition == kPadAfterPrefix)) {
i = skipPadding(text, i);
}
-
- if (! isParseStrict()) {
- // skip any leading whitespace
- i = backup = skipUWhiteSpace(text, i);
+
+ if (isLenient()) {
+ // skip any leading whitespace
+ i = backup = skipUWhiteSpace(text, i);
}
-
+
// If the text is composed of the representation of NaN, returns NaN.length
const UnicodeString *nan = &getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
int32_t nanLen = (text.compare(i, nan->length(), *nan)
result.setDouble(uprv_getNaN());
return;
}
-
+
// NaN parse failed; start over
i = backup;
parsePosition.setIndex(i);
// status is used to record whether a number is infinite.
UBool status[fgStatusLength];
- UChar curbuf[4];
- UChar* currency = parseCurrency ? curbuf : NULL;
- DigitList digits;
- if (!subparse(text, parsePosition, digits, status, currency)) {
- parsePosition.setIndex(backup);
- return;
+ DigitList *digits = result.getInternalDigitList(); // get one from the stack buffer
+ if (digits == NULL) {
+ return; // no way to report error from here.
+ }
+
+ if (fCurrencySignCount != fgCurrencySignCountZero) {
+ if (!parseForCurrency(text, parsePosition, *digits,
+ status, currency)) {
+ return;
+ }
+ } else {
+ if (!subparse(text,
+ fNegPrefixPattern, fNegSuffixPattern,
+ fPosPrefixPattern, fPosSuffixPattern,
+ FALSE, UCURR_SYMBOL_NAME,
+ parsePosition, *digits, status, currency)) {
+ debug("!subparse(...) - rewind");
+ parsePosition.setIndex(startIdx);
+ return;
+ }
+ }
+
+ // Handle infinity
+ if (status[fgStatusInfinite]) {
+ double inf = uprv_getInfinity();
+ result.setDouble(digits->isPositive() ? inf : -inf);
+ // TODO: set the dl to infinity, and let it fall into the code below.
+ }
+
+ else {
+
+ if (fMultiplier != NULL) {
+ UErrorCode ec = U_ZERO_ERROR;
+ digits->div(*fMultiplier, ec);
+ }
+
+ if (fScale != 0) {
+ DigitList ten;
+ ten.set((int32_t)10);
+ if (fScale > 0) {
+ for (int32_t i = fScale; i > 0; i--) {
+ UErrorCode ec = U_ZERO_ERROR;
+ digits->div(ten,ec);
+ }
+ } else {
+ for (int32_t i = fScale; i < 0; i++) {
+ UErrorCode ec = U_ZERO_ERROR;
+ digits->mult(ten,ec);
+ }
+ }
+ }
+
+ // Negative zero special case:
+ // if parsing integerOnly, change to +0, which goes into an int32 in a Formattable.
+ // if not parsing integerOnly, leave as -0, which a double can represent.
+ if (digits->isZero() && !digits->isPositive() && isParseIntegerOnly()) {
+ digits->setPositive(TRUE);
+ }
+ result.adoptDigitList(digits);
+ }
+}
+
+
+
+UBool
+DecimalFormat::parseForCurrency(const UnicodeString& text,
+ ParsePosition& parsePosition,
+ DigitList& digits,
+ UBool* status,
+ UChar* currency) const {
+ int origPos = parsePosition.getIndex();
+ int maxPosIndex = origPos;
+ int maxErrorPos = -1;
+ // First, parse against current pattern.
+ // Since current pattern could be set by applyPattern(),
+ // it could be an arbitrary pattern, and it may not be the one
+ // defined in current locale.
+ UBool tmpStatus[fgStatusLength];
+ ParsePosition tmpPos(origPos);
+ DigitList tmpDigitList;
+ UBool found;
+ if (fStyle == UNUM_CURRENCY_PLURAL) {
+ found = subparse(text,
+ fNegPrefixPattern, fNegSuffixPattern,
+ fPosPrefixPattern, fPosSuffixPattern,
+ TRUE, UCURR_LONG_NAME,
+ tmpPos, tmpDigitList, tmpStatus, currency);
+ } else {
+ found = subparse(text,
+ fNegPrefixPattern, fNegSuffixPattern,
+ fPosPrefixPattern, fPosSuffixPattern,
+ TRUE, UCURR_SYMBOL_NAME,
+ tmpPos, tmpDigitList, tmpStatus, currency);
}
-
- // Handle infinity
- if (status[fgStatusInfinite]) {
- double inf = uprv_getInfinity();
- result.setDouble(digits.fIsPositive ? inf : -inf);
+ if (found) {
+ if (tmpPos.getIndex() > maxPosIndex) {
+ maxPosIndex = tmpPos.getIndex();
+ for (int32_t i = 0; i < fgStatusLength; ++i) {
+ status[i] = tmpStatus[i];
+ }
+ digits = tmpDigitList;
+ }
+ } else {
+ maxErrorPos = tmpPos.getErrorIndex();
}
+ // Then, parse against affix patterns.
+ // Those are currency patterns and currency plural patterns.
+ int32_t pos = -1;
+ const UHashElement* element = NULL;
+ while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) {
+ const UHashTok valueTok = element->value;
+ const AffixPatternsForCurrency* affixPtn = (AffixPatternsForCurrency*)valueTok.pointer;
+ UBool tmpStatus[fgStatusLength];
+ ParsePosition tmpPos(origPos);
+ DigitList tmpDigitList;
- else {
- // Do as much of the multiplier conversion as possible without
- // losing accuracy.
- int32_t mult = fMultiplier; // Don't modify this.multiplier
- while (mult % 10 == 0) {
- mult /= 10;
- --digits.fDecimalAt;
- }
+#ifdef FMT_DEBUG
+ debug("trying affix for currency..");
+ affixPtn->dump();
+#endif
- // Handle integral values. We want to return the most
- // parsimonious type that will accommodate all of the result's
- // precision. We therefore only return a long if the result fits
- // entirely within a long (taking into account the multiplier) --
- // otherwise we fall through and return a double. When more
- // numeric types are supported by Formattable (e.g., 64-bit
- // integers, bignums) we will extend this logic to include them.
- if (digits.fitsIntoLong(isParseIntegerOnly())) {
- int32_t n = digits.getLong();
- if (n % mult == 0) {
- result.setLong(n / mult);
- }
- else { // else handle the remainder
- result.setDouble(((double)n) / mult);
+ UBool result = subparse(text,
+ &affixPtn->negPrefixPatternForCurrency,
+ &affixPtn->negSuffixPatternForCurrency,
+ &affixPtn->posPrefixPatternForCurrency,
+ &affixPtn->posSuffixPatternForCurrency,
+ TRUE, affixPtn->patternType,
+ tmpPos, tmpDigitList, tmpStatus, currency);
+ if (result) {
+ found = true;
+ if (tmpPos.getIndex() > maxPosIndex) {
+ maxPosIndex = tmpPos.getIndex();
+ for (int32_t i = 0; i < fgStatusLength; ++i) {
+ status[i] = tmpStatus[i];
+ }
+ digits = tmpDigitList;
}
+ } else {
+ maxErrorPos = (tmpPos.getErrorIndex() > maxErrorPos) ?
+ tmpPos.getErrorIndex() : maxErrorPos;
}
- else if (digits.fitsIntoInt64(isParseIntegerOnly())) {
- int64_t n = digits.getInt64();
- if (n % mult == 0) {
- result.setInt64(n / mult);
- }
- else { // else handle the remainder
- result.setDouble(((double)n) / mult);
+ }
+ // Finally, parse against simple affix to find the match.
+ // For example, in TestMonster suite,
+ // if the to-be-parsed text is "-\u00A40,00".
+ // complexAffixCompare will not find match,
+ // since there is no ISO code matches "\u00A4",
+ // and the parse stops at "\u00A4".
+ // We will just use simple affix comparison (look for exact match)
+ // to pass it.
+ //
+ // TODO: We should parse against simple affix first when
+ // output currency is not requested. After the complex currency
+ // parsing implementation was introduced, the default currency
+ // instance parsing slowed down because of the new code flow.
+ // I filed #10312 - Yoshito
+ UBool tmpStatus_2[fgStatusLength];
+ ParsePosition tmpPos_2(origPos);
+ DigitList tmpDigitList_2;
+
+ // Disable complex currency parsing and try it again.
+ UBool result = subparse(text,
+ &fNegativePrefix, &fNegativeSuffix,
+ &fPositivePrefix, &fPositiveSuffix,
+ FALSE /* disable complex currency parsing */, UCURR_SYMBOL_NAME,
+ tmpPos_2, tmpDigitList_2, tmpStatus_2,
+ currency);
+ if (result) {
+ if (tmpPos_2.getIndex() > maxPosIndex) {
+ maxPosIndex = tmpPos_2.getIndex();
+ for (int32_t i = 0; i < fgStatusLength; ++i) {
+ status[i] = tmpStatus_2[i];
}
+ digits = tmpDigitList_2;
}
- else {
- // Handle non-integral or very large values
- // Dividing by one is okay and not that costly.
- result.setDouble(digits.getDouble() / mult);
- }
+ found = true;
+ } else {
+ maxErrorPos = (tmpPos_2.getErrorIndex() > maxErrorPos) ?
+ tmpPos_2.getErrorIndex() : maxErrorPos;
}
- if (parseCurrency) {
- UErrorCode ec = U_ZERO_ERROR;
- Formattable n(result);
- result.adoptObject(new CurrencyAmount(n, curbuf, ec));
- U_ASSERT(U_SUCCESS(ec)); // should always succeed
+ if (!found) {
+ //parsePosition.setIndex(origPos);
+ parsePosition.setErrorIndex(maxErrorPos);
+ } else {
+ parsePosition.setIndex(maxPosIndex);
+ parsePosition.setErrorIndex(-1);
}
+ return found;
}
-/*
-This is an old implimentation that was preparing for 64-bit numbers in ICU.
-It is very slow, and 64-bit numbers are not ANSI-C compatible. This code
-is here if we change our minds.
-
-^^^ what is this referring to? remove? ^^^ [alan]
-*/
-
/**
* Parse the given text into a number. The text is parsed beginning at
* parsePosition, until an unparseable character is seen.
* @param text the string to parse.
+ * @param negPrefix negative prefix.
+ * @param negSuffix negative suffix.
+ * @param posPrefix positive prefix.
+ * @param posSuffix positive suffix.
+ * @param complexCurrencyParsing whether it is complex currency parsing or not.
+ * @param type the currency type to parse against, LONG_NAME only or not.
* @param parsePosition The position at which to being parsing. Upon
* return, the first unparsed character.
* @param digits the DigitList to set to the parsed value.
* currency parsing mode, any currency is parsed, not just the
* currency that this formatter is set to.
*/
-UBool DecimalFormat::subparse(const UnicodeString& text, ParsePosition& parsePosition,
+UBool DecimalFormat::subparse(const UnicodeString& text,
+ const UnicodeString* negPrefix,
+ const UnicodeString* negSuffix,
+ const UnicodeString* posPrefix,
+ const UnicodeString* posSuffix,
+ UBool complexCurrencyParsing,
+ int8_t type,
+ ParsePosition& parsePosition,
DigitList& digits, UBool* status,
UChar* currency) const
{
+ // The parsing process builds up the number as char string, in the neutral format that
+ // will be acceptable to the decNumber library, then at the end passes that string
+ // off for conversion to a decNumber.
+ UErrorCode err = U_ZERO_ERROR;
+ CharString parsedNum;
+ digits.setToZero();
+
int32_t position = parsePosition.getIndex();
int32_t oldStart = position;
- UBool strictParse = isParseStrict();
+ int32_t textLength = text.length(); // One less pointer to follow
+ UBool strictParse = !isLenient();
+ UChar32 zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
+ const UnicodeString *groupingString = &getConstSymbol(fCurrencySignCount == fgCurrencySignCountZero ?
+ DecimalFormatSymbols::kGroupingSeparatorSymbol : DecimalFormatSymbols::kMonetaryGroupingSeparatorSymbol);
+ UChar32 groupingChar = groupingString->char32At(0);
+ int32_t groupingStringLength = groupingString->length();
+ int32_t groupingCharLength = U16_LENGTH(groupingChar);
+ UBool groupingUsed = isGroupingUsed();
+#ifdef FMT_DEBUG
+ UChar dbgbuf[300];
+ UnicodeString s(dbgbuf,0,300);;
+ s.append((UnicodeString)"PARSE \"").append(text.tempSubString(position)).append((UnicodeString)"\" " );
+#define DBGAPPD(x) if(x) { s.append(UnicodeString(#x "=")); if(x->isEmpty()) { s.append(UnicodeString("<empty>")); } else { s.append(*x); } s.append(UnicodeString(" ")); } else { s.append(UnicodeString(#x "=NULL ")); }
+ DBGAPPD(negPrefix);
+ DBGAPPD(negSuffix);
+ DBGAPPD(posPrefix);
+ DBGAPPD(posSuffix);
+ debugout(s);
+ printf("currencyParsing=%d, fFormatWidth=%d, isParseIntegerOnly=%c text.length=%d negPrefLen=%d\n", currencyParsing, fFormatWidth, (isParseIntegerOnly())?'Y':'N', text.length(), negPrefix!=NULL?negPrefix->length():-1);
+#endif
+
+ UBool fastParseOk = false; /* TRUE iff fast parse is OK */
+ // UBool fastParseHadDecimal = FALSE; /* true if fast parse saw a decimal point. */
+ const DecimalFormatInternal &data = internalData(fReserved);
+ if((data.fFastParseStatus==kFastpathYES) &&
+ fCurrencySignCount == fgCurrencySignCountZero &&
+ // (negPrefix!=NULL&&negPrefix->isEmpty()) ||
+ text.length()>0 &&
+ text.length()<32 &&
+ (posPrefix==NULL||posPrefix->isEmpty()) &&
+ (posSuffix==NULL||posSuffix->isEmpty()) &&
+ // (negPrefix==NULL||negPrefix->isEmpty()) &&
+ // (negSuffix==NULL||(negSuffix->isEmpty()) ) &&
+ TRUE) { // optimized path
+ int j=position;
+ int l=text.length();
+ int digitCount=0;
+ UChar32 ch = text.char32At(j);
+ const UnicodeString *decimalString = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
+ UChar32 decimalChar = 0;
+ UBool intOnly = FALSE;
+ UChar32 lookForGroup = (groupingUsed&&intOnly&&strictParse)?groupingChar:0;
+
+ int32_t decimalCount = decimalString->countChar32(0,3);
+ if(isParseIntegerOnly()) {
+ decimalChar = 0; // not allowed
+ intOnly = TRUE; // Don't look for decimals.
+ } else if(decimalCount==1) {
+ decimalChar = decimalString->char32At(0); // Look for this decimal
+ } else if(decimalCount==0) {
+ decimalChar=0; // NO decimal set
+ } else {
+ j=l+1;//Set counter to end of line, so that we break. Unknown decimal situation.
+ }
+
+#ifdef FMT_DEBUG
+ printf("Preparing to do fastpath parse: decimalChar=U+%04X, groupingChar=U+%04X, first ch=U+%04X intOnly=%c strictParse=%c\n",
+ decimalChar, groupingChar, ch,
+ (intOnly)?'y':'n',
+ (strictParse)?'y':'n');
+#endif
+ if(ch==0x002D) { // '-'
+ j=l+1;//=break - negative number.
+
+ /*
+ parsedNum.append('-',err);
+ j+=U16_LENGTH(ch);
+ if(j<l) ch = text.char32At(j);
+ */
+ } else {
+ parsedNum.append('+',err);
+ }
+ while(j<l) {
+ int32_t digit = ch - zero;
+ if(digit >=0 && digit <= 9) {
+ parsedNum.append((char)(digit + '0'), err);
+ if((digitCount>0) || digit!=0 || j==(l-1)) {
+ digitCount++;
+ }
+ } else if(ch == 0) { // break out
+ digitCount=-1;
+ break;
+ } else if(ch == decimalChar) {
+ parsedNum.append((char)('.'), err);
+ decimalChar=0; // no more decimals.
+ // fastParseHadDecimal=TRUE;
+ } else if(ch == lookForGroup) {
+ // ignore grouping char. No decimals, so it has to be an ignorable grouping sep
+ } else if(intOnly && (lookForGroup!=0) && !u_isdigit(ch)) {
+ // parsing integer only and can fall through
+ } else {
+ digitCount=-1; // fail - fall through to slow parse
+ break;
+ }
+ j+=U16_LENGTH(ch);
+ ch = text.char32At(j); // for next
+ }
+ if(
+ ((j==l)||intOnly) // end OR only parsing integer
+ && (digitCount>0)) { // and have at least one digit
+#ifdef FMT_DEBUG
+ printf("PP -> %d, good = [%s] digitcount=%d, fGroupingSize=%d fGroupingSize2=%d!\n", j, parsedNum.data(), digitCount, fGroupingSize, fGroupingSize2);
+#endif
+ fastParseOk=true; // Fast parse OK!
+
+#ifdef SKIP_OPT
+ debug("SKIP_OPT");
+ /* for testing, try it the slow way. also */
+ fastParseOk=false;
+ parsedNum.clear();
+#else
+ parsePosition.setIndex(position=j);
+ status[fgStatusInfinite]=false;
+#endif
+ } else {
+ // was not OK. reset, retry
+#ifdef FMT_DEBUG
+ printf("Fall through: j=%d, l=%d, digitCount=%d\n", j, l, digitCount);
+#endif
+ parsedNum.clear();
+ }
+ } else {
+#ifdef FMT_DEBUG
+ printf("Could not fastpath parse. ");
+ printf("fFormatWidth=%d ", fFormatWidth);
+ printf("text.length()=%d ", text.length());
+ printf("posPrefix=%p posSuffix=%p ", posPrefix, posSuffix);
+
+ printf("\n");
+#endif
+ }
+ if(!fastParseOk
+#if UCONFIG_HAVE_PARSEALLINPUT
+ && fParseAllInput!=UNUM_YES
+#endif
+ )
+ {
// Match padding before prefix
if (fFormatWidth > 0 && fPadPosition == kPadBeforePrefix) {
position = skipPadding(text, position);
}
// Match positive and negative prefixes; prefer longest match.
- int32_t posMatch = compareAffix(text, position, FALSE, TRUE, currency);
- int32_t negMatch = compareAffix(text, position, TRUE, TRUE, currency);
+ int32_t posMatch = compareAffix(text, position, FALSE, TRUE, posPrefix, complexCurrencyParsing, type, currency);
+ int32_t negMatch = compareAffix(text, position, TRUE, TRUE, negPrefix, complexCurrencyParsing, type, currency);
if (posMatch >= 0 && negMatch >= 0) {
if (posMatch > negMatch) {
negMatch = -1;
} else if (negMatch > posMatch) {
posMatch = -1;
- }
+ }
}
if (posMatch >= 0) {
position += posMatch;
+ parsedNum.append('+', err);
} else if (negMatch >= 0) {
position += negMatch;
- } else if (strictParse) {
+ parsedNum.append('-', err);
+ } else if (strictParse){
parsePosition.setErrorIndex(position);
return FALSE;
+ } else {
+ // Temporary set positive. This might be changed after checking suffix
+ parsedNum.append('+', err);
}
// Match padding before prefix
if (fFormatWidth > 0 && fPadPosition == kPadAfterPrefix) {
position = skipPadding(text, position);
}
-
+
if (! strictParse) {
- position = skipUWhiteSpace(text, position);
+ position = skipUWhiteSpace(text, position);
}
-
+
// process digits or Inf, find decimal position
const UnicodeString *inf = &getConstSymbol(DecimalFormatSymbols::kInfinitySymbol);
int32_t infLen = (text.compare(position, inf->length(), *inf)
? 0 : inf->length());
position += infLen; // infLen is non-zero when it does equal to infinity
status[fgStatusInfinite] = infLen != 0;
- if (infLen == 0)
- {
+
+ if (infLen != 0) {
+ parsedNum.append("Infinity", err);
+ } else {
// We now have a string of digits, possibly with grouping symbols,
// and decimal points. We want to process these into a DigitList.
// We don't want to put a bunch of leading zeros into the DigitList
// put only significant digits into the DigitList, and adjust the
// exponent as needed.
- digits.fDecimalAt = digits.fCount = 0;
- UChar32 zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
-#if CHECK_FOR_LEADING_ZERO | CHECK_FOR_MISPLACED_GROUPING
UBool strictFail = FALSE; // did we exit with a strict parse failure?
-#endif
-
-#if CHECK_FOR_MISPLACED_GROUPING
int32_t lastGroup = -1; // where did we last see a grouping separator?
int32_t digitStart = position;
int32_t gs2 = fGroupingSize2 == 0 ? fGroupingSize : fGroupingSize2;
-#endif
-
-#if CHECK_FOR_LEADING_ZERO
- // Strict parsing leading zeroes. If a leading zero would
- // be forced by the pattern, then don't fail strict parsing.
- UBool strictLeadingZero = FALSE;
- int32_t leadingZeroPos = 0;
- int32_t leadingZeroCount = 0;
-#endif
-
+
const UnicodeString *decimalString;
- if (fIsCurrencyFormat) {
- decimalString = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
+ if (fCurrencySignCount != fgCurrencySignCountZero) {
+ decimalString = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
} else {
- decimalString = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
+ decimalString = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
}
UChar32 decimalChar = decimalString->char32At(0);
-
- const UnicodeString *groupingString = &getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol);
- UChar32 groupingChar = groupingString->char32At(0);
+ int32_t decimalStringLength = decimalString->length();
+ int32_t decimalCharLength = U16_LENGTH(decimalChar);
+
UBool sawDecimal = FALSE;
+ UChar32 sawDecimalChar = 0xFFFF;
+ UBool sawGrouping = FALSE;
+ UChar32 sawGroupingChar = 0xFFFF;
UBool sawDigit = FALSE;
int32_t backup = -1;
int32_t digit;
- int32_t textLength = text.length(); // One less pointer to follow
- int32_t decimalStringLength = decimalString->length();
- int32_t decimalCharLength = U16_LENGTH(decimalChar);
- int32_t groupingStringLength = groupingString->length();
- int32_t groupingCharLength = U16_LENGTH(groupingChar);
-
+
// equivalent grouping and decimal support
- // TODO markdavis Cache these if it makes a difference in performance.
- UnicodeSet decimalFallback;
- UnicodeSet *decimalSet = NULL;
- UnicodeSet *groupingSet = NULL;
-
- if (! strictParse) {
- if (decimalCharLength == decimalStringLength) {
- decimalSet = (UnicodeSet *) DecimalFormatStaticSets::getSimilarDecimals(decimalChar, strictParse, &decimalFallback)->cloneAsThawed();
- }
-
- if (groupingCharLength == groupingStringLength) {
- if (strictParse) {
- groupingSet = (UnicodeSet *) DecimalFormatStaticSets::gStaticSets->fStrictDefaultGroupingSeparators->cloneAsThawed();
- } else {
- groupingSet = (UnicodeSet *) DecimalFormatStaticSets::gStaticSets->fDefaultGroupingSeparators->cloneAsThawed();
- }
-
- groupingSet->add(groupingChar);
-
- if (decimalSet != NULL) {
- groupingSet->removeAll(*decimalSet);
- }
+ const UnicodeSet *decimalSet = NULL;
+ const UnicodeSet *groupingSet = NULL;
+
+ if (decimalCharLength == decimalStringLength) {
+ decimalSet = DecimalFormatStaticSets::getSimilarDecimals(decimalChar, strictParse);
+ }
+
+ if (groupingCharLength == groupingStringLength) {
+ if (strictParse) {
+ groupingSet = fStaticSets->fStrictDefaultGroupingSeparators;
+ } else {
+ groupingSet = fStaticSets->fDefaultGroupingSeparators;
}
-
- // we are guaranteed that
- // decimalSet contains the decimal, and
- // groupingSet contains the groupingSeparator
- // (unless decimal and grouping are the same, which should never happen. But in that case, groupingSet will just be empty.)
}
-
+
+ // We need to test groupingChar and decimalChar separately from groupingSet and decimalSet, if the sets are even initialized.
+ // If sawDecimal is TRUE, only consider sawDecimalChar and NOT decimalSet
+ // If a character matches decimalSet, don't consider it to be a member of the groupingSet.
+
// We have to track digitCount ourselves, because digits.fCount will
// pin when the maximum allowable digits is reached.
int32_t digitCount = 0;
+ int32_t integerDigitCount = 0;
for (; position < textLength; )
{
* from 0 to 9 in 'digit'. First try using the locale digit,
* which may or MAY NOT be a standard Unicode digit range. If
* this fails, try using the standard Unicode digit ranges by
- * calling Character.digit(). If this also fails, digit will
+ * calling Character.digit(). If this also fails, digit will
* have a value outside the range 0..9.
*/
digit = ch - zero;
{
digit = u_charDigitValue(ch);
}
-
- if (digit > 0 && digit <= 9) // digit == 0 handled below
- {
-#if CHECK_FOR_MISPLACED_GROUPING
- if (strictParse) {
- if (backup != -1) {
- if ((lastGroup != -1 && backup - lastGroup - 1 != gs2) ||
- (lastGroup == -1 && position - digitStart - 1 > gs2)) {
- strictFail = TRUE;
+
+ // As a last resort, look through the localized digits if the zero digit
+ // is not a "standard" Unicode digit.
+ if ( (digit < 0 || digit > 9) && u_charDigitValue(zero) != 0) {
+ digit = 0;
+ // Already check above (digit = ch - zero) for ch==zero; the only check we need to do here is:
+ // if \u3007 is treated as 0 for parsing, \u96F6 should be too. Otherwise check for nonzero digits.
+ if ( zero!=0x3007 || ch!=0x96F6 ) {
+ for (digit = 1 ; digit < 10 ; digit++ ) {
+ if ( getConstSymbol((DecimalFormatSymbols::ENumberFormatSymbol)(DecimalFormatSymbols::kOneDigitSymbol+digit-1)).char32At(0) == ch ) {
break;
}
-
- lastGroup = backup;
}
}
-#endif
-
-
- // Cancel out backup setting (see grouping handler below)
- backup = -1;
-
- sawDigit = TRUE;
- // output a regular non-zero digit.
- ++digitCount;
- digits.append((char)(digit + '0'));
- position += U16_LENGTH(ch);
}
- else if (digit == 0)
- {
- // Cancel out backup setting (see grouping handler below)
-#if CHECK_FOR_MISPLACED_GROUPING
+ if (digit >= 0 && digit <= 9)
+ {
if (strictParse && backup != -1) {
// comma followed by digit, so group before comma is a
// secondary group. If there was a group separator
strictFail = TRUE;
break;
}
-
+
lastGroup = backup;
}
-#endif
-
+
+ // Cancel out backup setting (see grouping handler below)
backup = -1;
sawDigit = TRUE;
-
- // handle leading zeros
- if (digits.fCount != 0) {
- digitCount += 1;
- digits.append((char) (digit + '0'));
- } else if (sawDecimal) {
- // If we have seen the decimal, but no significant digits yet,
- // then we account for leading zeros by decrementing
- // digits.decimalAt into negative values.
- digits.fDecimalAt -= 1;
-
-#if CHECK_FOR_LEADING_ZERO
- } else {
- // TODO: Not sure we need to check fUseExponentialNotation
- if (strictParse && !fUseExponentialNotation) {
- if (!strictLeadingZero) {
- leadingZeroPos = position + U16_LENGTH(ch);
- strictLeadingZero = TRUE;
- }
-
- leadingZeroCount += 1;
- }
-#endif
+
+ // Note: this will append leading zeros
+ parsedNum.append((char)(digit + '0'), err);
+
+ // count any digit that's not a leading zero
+ if (digit > 0 || digitCount > 0 || sawDecimal) {
+ digitCount += 1;
+
+ // count any integer digit that's not a leading zero
+ if (! sawDecimal) {
+ integerDigitCount += 1;
+ }
}
-
+
position += U16_LENGTH(ch);
}
- else if (matchSymbol(text, position, groupingStringLength, *groupingString, groupingSet, ch) && isGroupingUsed())
+ else if (groupingStringLength > 0 &&
+ matchGrouping(groupingChar, sawGrouping, sawGroupingChar, groupingSet,
+ decimalChar, decimalSet,
+ ch) && groupingUsed)
{
-#if CHECK_FOR_MISPLACED_GROUPING
if (sawDecimal) {
break;
}
-
+
if (strictParse) {
- if ((!sawDigit || backup != -1)) {
- // leading group, or two group separators in a row
+ if ( (!sawDigit && groupingSet!=NULL && u_isWhitespace(ch)) || backup != -1 ) {
+ // We differ from the ICU4J code by allowing a leading group sep in strict mode (for
+ // backward compatibility) as long as it is not one of the breaking whitespace characters
+ // that is only treated as a group separator because of the equivalence set. If we get
+ // here it is because the leading sep was such a breaking space, or there were multiple
+ // group separators in a row. Note that the DecimalFormat documentation says
+ // "During parsing, grouping separators are ignored" and that was for strict parsing,
+ // so we may need to further revisit this strictParse restriction to ensure compatibility.
+ // Also note: u_isWhitespace is true for all Zs/Zl/Zp except the no-break ones: 00A0,2007,202F.
+ // In CLDR, all locales that have space as a group separator use 00A0 (NBSP).
strictFail = TRUE;
break;
}
}
-#endif
-
+
// Ignore grouping characters, if we are using them, but require
// that they be followed by a digit. Otherwise we backup and
// reprocess them.
backup = position;
position += groupingStringLength;
-
- if (groupingSet != NULL) {
- // Once we see a grouping character, we only accept that grouping character from then on.
- groupingSet->set(ch, ch);
- }
+ sawGrouping=TRUE;
+ // Once we see a grouping character, we only accept that grouping character from then on.
+ sawGroupingChar=ch;
}
- else if (matchSymbol(text, position, decimalStringLength, *decimalString, decimalSet, ch) && !isParseIntegerOnly() && !sawDecimal)
+ else if (matchDecimal(decimalChar,sawDecimal,sawDecimalChar, decimalSet, ch))
{
-#if CHECK_FOR_MISPLACED_GROUPING
if (strictParse) {
if (backup != -1 ||
(lastGroup != -1 && position - lastGroup != fGroupingSize + 1)) {
break;
}
}
-#endif
-
- // If we're only parsing integers, or if we ALREADY saw the
+
+ // If we're only parsing integers, or if we ALREADY saw the
// decimal, then don't parse this one.
if (isParseIntegerOnly() || sawDecimal) {
- break;
+ break;
}
-
- digits.fDecimalAt = digitCount; // Not digits.fCount!
+
+ parsedNum.append('.', err);
position += decimalStringLength;
sawDecimal = TRUE;
-
- if (decimalSet != NULL) {
- // Once we see a decimal character, we only accept that decimal character from then on.
- decimalSet->set(ch, ch);
- }
+ // Once we see a decimal character, we only accept that decimal character from then on.
+ sawDecimalChar=ch;
+ // decimalSet is considered to consist of (ch,ch)
}
else {
- const UnicodeString *tmp;
- tmp = &getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
- if (!text.caseCompare(position, tmp->length(), *tmp, U_FOLD_CASE_DEFAULT)) // error code is set below if !sawDigit
- {
- // Parse sign, if present
- int32_t pos = position + tmp->length();
- DigitList exponentDigits;
- if (pos < textLength)
+ if(!fBoolFlags.contains(UNUM_PARSE_NO_EXPONENT) || // don't parse if this is set unless..
+ isScientificNotation()) { // .. it's an exponent format - ignore setting and parse anyways
+ const UnicodeString *tmp;
+ tmp = &getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
+ // TODO: CASE
+ if (!text.caseCompare(position, tmp->length(), *tmp, U_FOLD_CASE_DEFAULT)) // error code is set below if !sawDigit
{
- tmp = &getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
- if (!text.compare(pos, tmp->length(), *tmp))
+ // Parse sign, if present
+ int32_t pos = position + tmp->length();
+ char exponentSign = '+';
+
+ if (pos < textLength)
{
- pos += tmp->length();
- }
- else {
- tmp = &getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
+ tmp = &getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
if (!text.compare(pos, tmp->length(), *tmp))
{
pos += tmp->length();
- exponentDigits.fIsPositive = FALSE;
+ }
+ else {
+ tmp = &getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
+ if (!text.compare(pos, tmp->length(), *tmp))
+ {
+ exponentSign = '-';
+ pos += tmp->length();
+ }
}
}
- }
- while (pos < textLength) {
- ch = text[(int32_t)pos];
- digit = ch - zero;
+ UBool sawExponentDigit = FALSE;
+ while (pos < textLength) {
+ ch = text[(int32_t)pos];
+ digit = ch - zero;
- if (digit < 0 || digit > 9) {
- digit = u_charDigitValue(ch);
+ if (digit < 0 || digit > 9) {
+ digit = u_charDigitValue(ch);
+ }
+ if (0 <= digit && digit <= 9) {
+ if (!sawExponentDigit) {
+ parsedNum.append('E', err);
+ parsedNum.append(exponentSign, err);
+ sawExponentDigit = TRUE;
+ }
+ ++pos;
+ parsedNum.append((char)(digit + '0'), err);
+ } else {
+ break;
+ }
}
- if (0 <= digit && digit <= 9) {
- ++pos;
- exponentDigits.append((char)(digit + '0'));
- } else {
- break;
+
+ if (sawExponentDigit) {
+ position = pos; // Advance past the exponent
}
- }
- if (exponentDigits.fCount > 0) {
- exponentDigits.fDecimalAt = exponentDigits.fCount;
- digits.fDecimalAt += exponentDigits.getLong();
- position = pos; // Advance past the exponent
+ break; // Whether we fail or succeed, we exit this loop
+ } else {
+ break;
}
-
- break; // Whether we fail or succeed, we exit this loop
- }
- else {
+ } else { // not parsing exponent
break;
- }
+ }
}
}
-
- if (! strictParse) {
- delete groupingSet;
- delete decimalSet;
- }
if (backup != -1)
{
position = backup;
}
-#if CHECK_FOR_LEADING_ZERO
- // check for strict parse errors
- if (strictParse && strictLeadingZero) {
- if ((leadingZeroCount + digits.fDecimalAt) > getMinimumIntegerDigits()) {
- parsePosition.setIndex(oldStart);
- parsePosition.setErrorIndex(leadingZeroPos);
- return FALSE;
- }
- }
-#endif
-
-#if CHECK_FOR_MISPLACED_GROUPING
if (strictParse && !sawDecimal) {
if (lastGroup != -1 && position - lastGroup != fGroupingSize + 1) {
strictFail = TRUE;
}
}
-#endif
-
-#if CHECK_FOR_LEADING_ZERO | CHECK_FOR_MISPLACED_GROUPING
if (strictFail) {
- // only set with strictParse and a leading zero error
- // leading zeros are an error with strict parsing except
- // immediately before nondigit (except group separator
- // followed by digit), or end of text.
-
+ // only set with strictParse and a grouping separator error
+
parsePosition.setIndex(oldStart);
parsePosition.setErrorIndex(position);
+ debug("strictFail!");
return FALSE;
}
-#endif
-
+
// If there was no decimal point we have an integer
- if (!sawDecimal)
- {
- digits.fDecimalAt += digitCount; // Not digits.fCount!
- }
// If none of the text string was recognized. For example, parse
// "x" with pattern "#0.00" (return index and error index both 0)
// parse "$" with pattern "$#0.00". (return index 0 and error index
// 1).
if (!sawDigit && digitCount == 0) {
+#ifdef FMT_DEBUG
+ debug("none of text rec");
+ printf("position=%d\n",position);
+#endif
parsePosition.setIndex(oldStart);
parsePosition.setErrorIndex(oldStart);
return FALSE;
}
int32_t posSuffixMatch = -1, negSuffixMatch = -1;
-
+
// Match positive and negative suffixes; prefer longest match.
if (posMatch >= 0 || (!strictParse && negMatch < 0)) {
- posSuffixMatch = compareAffix(text, position, FALSE, FALSE, currency);
+ posSuffixMatch = compareAffix(text, position, FALSE, FALSE, posSuffix, complexCurrencyParsing, type, currency);
}
if (negMatch >= 0) {
- negSuffixMatch = compareAffix(text, position, TRUE, FALSE, currency);
+ negSuffixMatch = compareAffix(text, position, TRUE, FALSE, negSuffix, complexCurrencyParsing, type, currency);
}
if (posSuffixMatch >= 0 && negSuffixMatch >= 0) {
if (posSuffixMatch > negSuffixMatch) {
negSuffixMatch = -1;
} else if (negSuffixMatch > posSuffixMatch) {
posSuffixMatch = -1;
- }
+ }
}
// Fail if neither or both
if (strictParse && ((posSuffixMatch >= 0) == (negSuffixMatch >= 0))) {
parsePosition.setErrorIndex(position);
+ debug("neither or both");
return FALSE;
}
- position += (posSuffixMatch >= 0 ? posSuffixMatch : (negSuffixMatch >= 0? negSuffixMatch : 0));
+ position += (posSuffixMatch >= 0 ? posSuffixMatch : (negSuffixMatch >= 0 ? negSuffixMatch : 0));
// Match padding before suffix
if (fFormatWidth > 0 && fPadPosition == kPadAfterSuffix) {
parsePosition.setIndex(position);
- digits.fIsPositive = (posSuffixMatch >= 0 || (!strictParse && negMatch < 0 && negSuffixMatch < 0));
-
- if(parsePosition.getIndex() == oldStart)
+ parsedNum.data()[0] = (posSuffixMatch >= 0 || (!strictParse && negMatch < 0 && negSuffixMatch < 0)) ? '+' : '-';
+#ifdef FMT_DEBUG
+printf("PP -> %d, SLOW = [%s]! pp=%d, os=%d, err=%s\n", position, parsedNum.data(), parsePosition.getIndex(),oldStart,u_errorName(err));
+#endif
+ } /* end SLOW parse */
+ if(parsePosition.getIndex() == oldStart)
+ {
+#ifdef FMT_DEBUG
+ printf(" PP didnt move, err\n");
+#endif
+ parsePosition.setErrorIndex(position);
+ return FALSE;
+ }
+#if UCONFIG_HAVE_PARSEALLINPUT
+ else if (fParseAllInput==UNUM_YES&&parsePosition.getIndex()!=textLength)
{
+#ifdef FMT_DEBUG
+ printf(" PP didnt consume all (UNUM_YES), err\n");
+#endif
+ parsePosition.setErrorIndex(position);
+ return FALSE;
+ }
+#endif
+ // uint32_t bits = (fastParseOk?kFastpathOk:0) |
+ // (fastParseHadDecimal?0:kNoDecimal);
+ //printf("FPOK=%d, FPHD=%d, bits=%08X\n", fastParseOk, fastParseHadDecimal, bits);
+ digits.set(parsedNum.toStringPiece(),
+ err,
+ 0//bits
+ );
+
+ if (U_FAILURE(err)) {
+#ifdef FMT_DEBUG
+ printf(" err setting %s\n", u_errorName(err));
+#endif
parsePosition.setErrorIndex(position);
return FALSE;
}
* @param pos offset into input at which to begin matching
* @param isNegative
* @param isPrefix
+ * @param affixPat affix pattern used for currency affix comparison.
+ * @param complexCurrencyParsing whether it is currency parsing or not
+ * @param type the currency type to parse against, LONG_NAME only or not.
* @param currency return value for parsed currency, for generic
* currency parsing mode, or null for normal parsing. In generic
* currency parsing mode, any currency is parsed, not just the
int32_t pos,
UBool isNegative,
UBool isPrefix,
+ const UnicodeString* affixPat,
+ UBool complexCurrencyParsing,
+ int8_t type,
UChar* currency) const
{
const UnicodeString *patternToCompare;
- if (fCurrencyChoice != NULL || currency != NULL) {
- if (isNegative) {
- if (isPrefix) {
- patternToCompare = fNegPrefixPattern;
- }
- else {
- patternToCompare = fNegSuffixPattern;
- }
- }
- else {
- if (isPrefix) {
- patternToCompare = fPosPrefixPattern;
- }
- else {
- patternToCompare = fPosSuffixPattern;
- }
- }
- if (patternToCompare != NULL) {
- return compareComplexAffix(*patternToCompare, text, pos, currency);
+ if (fCurrencyChoice != NULL || currency != NULL ||
+ (fCurrencySignCount != fgCurrencySignCountZero && complexCurrencyParsing)) {
+
+ if (affixPat != NULL) {
+ return compareComplexAffix(*affixPat, text, pos, type, currency);
}
- /* else the caller modified the pattern. Fallback to normal behavior. */
}
-
+
if (isNegative) {
if (isPrefix) {
patternToCompare = &fNegativePrefix;
patternToCompare = &fPositiveSuffix;
}
}
- return compareSimpleAffix(*patternToCompare, text, pos, isParseStrict());
+ return compareSimpleAffix(*patternToCompare, text, pos, isLenient());
+}
+
+UBool DecimalFormat::equalWithSignCompatibility(UChar32 lhs, UChar32 rhs) const {
+ if (lhs == rhs) {
+ return TRUE;
+ }
+ U_ASSERT(fStaticSets != NULL); // should already be loaded
+ const UnicodeSet *minusSigns = fStaticSets->fMinusSigns;
+ const UnicodeSet *plusSigns = fStaticSets->fPlusSigns;
+ return (minusSigns->contains(lhs) && minusSigns->contains(rhs)) ||
+ (plusSigns->contains(lhs) && plusSigns->contains(rhs));
+}
+
+// check for LRM 0x200E, RLM 0x200F, ALM 0x061C
+#define IS_BIDI_MARK(c) (c==0x200E || c==0x200F || c==0x061C)
+
+#define TRIM_BUFLEN 32
+UnicodeString& DecimalFormat::trimMarksFromAffix(const UnicodeString& affix, UnicodeString& trimmedAffix) {
+ UChar trimBuf[TRIM_BUFLEN];
+ int32_t affixLen = affix.length();
+ int32_t affixPos, trimLen = 0;
+
+ for (affixPos = 0; affixPos < affixLen; affixPos++) {
+ UChar c = affix.charAt(affixPos);
+ if (!IS_BIDI_MARK(c)) {
+ if (trimLen < TRIM_BUFLEN) {
+ trimBuf[trimLen++] = c;
+ } else {
+ trimLen = 0;
+ break;
+ }
+ }
+ }
+ return (trimLen > 0)? trimmedAffix.setTo(trimBuf, trimLen): trimmedAffix.setTo(affix);
}
/**
int32_t DecimalFormat::compareSimpleAffix(const UnicodeString& affix,
const UnicodeString& input,
int32_t pos,
- UBool strict) {
+ UBool lenient) const {
int32_t start = pos;
-
- if (strict) {
- for (int32_t i=0; i<affix.length(); ) {
- UChar32 c = affix.char32At(i);
- int32_t len = U16_LENGTH(c);
- if (uprv_isRuleWhiteSpace(c)) {
- // We may have a pattern like: \u200F \u0020
- // and input text like: \u200F \u0020
- // Note that U+200F and U+0020 are RuleWhiteSpace but only
- // U+0020 is UWhiteSpace. So we have to first do a direct
- // match of the run of RULE whitespace in the pattern,
- // then match any extra characters.
- UBool literalMatch = FALSE;
- while (pos < input.length() &&
- input.char32At(pos) == c) {
- literalMatch = TRUE;
- i += len;
- pos += len;
- if (i == affix.length()) {
- break;
- }
- c = affix.char32At(i);
- len = U16_LENGTH(c);
- if (!uprv_isRuleWhiteSpace(c)) {
- break;
- }
- }
-
- // Advance over run in pattern
- i = skipRuleWhiteSpace(affix, i);
-
- // Advance over run in input text
- // Must see at least one white space char in input,
- // unless we've already matched some characters literally.
- int32_t s = pos;
- pos = skipUWhiteSpace(input, pos);
- if (pos == s && !literalMatch) {
- return -1;
- }
-
- // If we skip UWhiteSpace in the input text, we need to skip it in the pattern.
- // Otherwise, the previous lines may have skipped over text (such as U+00A0) that
- // is also in the affix.
- i = skipUWhiteSpace(affix, i);
- } else {
- if (pos < input.length() &&
- input.char32At(pos) == c) {
- i += len;
- pos += len;
- } else {
- return -1;
- }
- }
- }
- } else {
- int32_t affixLength = affix.length();
- int32_t inputLength = input.length();
- UBool match = FALSE;
-
- for (int32_t i = 0; i < affixLength; )
- {
- //i = skipRuleWhiteSpace(affix, i);
- i = skipUWhiteSpace(affix, i);
- pos = skipUWhiteSpace(input, pos);
-
- if (i >= affixLength || pos >= inputLength) {
- break;
- }
-
- UChar32 c = affix.char32At(i);
- int32_t len = U16_LENGTH(c);
-
- if (input.char32At(pos) != c) {
- //return -1;
- break;
- }
-
- match = TRUE;
- i += len;
- pos += len;
- }
-
- if (affixLength > 0 && ! match) {
- return -1;
- }
- }
-
+ UnicodeString trimmedAffix;
+ // For more efficiency we should keep lazily-created trimmed affixes around in
+ // instance variables instead of trimming each time they are used (the next step)
+ trimMarksFromAffix(affix, trimmedAffix);
+ UChar32 affixChar = trimmedAffix.char32At(0);
+ int32_t affixLength = trimmedAffix.length();
+ int32_t inputLength = input.length();
+ int32_t affixCharLength = U16_LENGTH(affixChar);
+ UnicodeSet *affixSet;
+ UErrorCode status = U_ZERO_ERROR;
+
+ U_ASSERT(fStaticSets != NULL); // should already be loaded
+
+ if (U_FAILURE(status)) {
+ return -1;
+ }
+ if (!lenient) {
+ affixSet = fStaticSets->fStrictDashEquivalents;
+
+ // If the trimmedAffix is exactly one character long and that character
+ // is in the dash set and the very next input character is also
+ // in the dash set, return a match.
+ if (affixCharLength == affixLength && affixSet->contains(affixChar)) {
+ UChar32 ic = input.char32At(pos);
+ if (affixSet->contains(ic)) {
+ pos += U16_LENGTH(ic);
+ pos = skipBidiMarks(input, pos); // skip any trailing bidi marks
+ return pos - start;
+ }
+ }
+
+ for (int32_t i = 0; i < affixLength; ) {
+ UChar32 c = trimmedAffix.char32At(i);
+ int32_t len = U16_LENGTH(c);
+ if (PatternProps::isWhiteSpace(c)) {
+ // We may have a pattern like: \u200F \u0020
+ // and input text like: \u200F \u0020
+ // Note that U+200F and U+0020 are Pattern_White_Space but only
+ // U+0020 is UWhiteSpace. So we have to first do a direct
+ // match of the run of Pattern_White_Space in the pattern,
+ // then match any extra characters.
+ UBool literalMatch = FALSE;
+ while (pos < inputLength) {
+ UChar32 ic = input.char32At(pos);
+ if (ic == c) {
+ literalMatch = TRUE;
+ i += len;
+ pos += len;
+ if (i == affixLength) {
+ break;
+ }
+ c = trimmedAffix.char32At(i);
+ len = U16_LENGTH(c);
+ if (!PatternProps::isWhiteSpace(c)) {
+ break;
+ }
+ } else if (IS_BIDI_MARK(ic)) {
+ pos ++; // just skip over this input text
+ } else {
+ break;
+ }
+ }
+
+ // Advance over run in pattern
+ i = skipPatternWhiteSpace(trimmedAffix, i);
+
+ // Advance over run in input text
+ // Must see at least one white space char in input,
+ // unless we've already matched some characters literally.
+ int32_t s = pos;
+ pos = skipUWhiteSpace(input, pos);
+ if (pos == s && !literalMatch) {
+ return -1;
+ }
+
+ // If we skip UWhiteSpace in the input text, we need to skip it in the pattern.
+ // Otherwise, the previous lines may have skipped over text (such as U+00A0) that
+ // is also in the trimmedAffix.
+ i = skipUWhiteSpace(trimmedAffix, i);
+ } else {
+ UBool match = FALSE;
+ while (pos < inputLength) {
+ UChar32 ic = input.char32At(pos);
+ if (!match && ic == c) {
+ i += len;
+ pos += len;
+ match = TRUE;
+ } else if (IS_BIDI_MARK(ic)) {
+ pos++; // just skip over this input text
+ } else {
+ break;
+ }
+ }
+ if (!match) {
+ return -1;
+ }
+ }
+ }
+ } else {
+ UBool match = FALSE;
+
+ affixSet = fStaticSets->fDashEquivalents;
+
+ if (affixCharLength == affixLength && affixSet->contains(affixChar)) {
+ pos = skipUWhiteSpaceAndMarks(input, pos);
+ UChar32 ic = input.char32At(pos);
+
+ if (affixSet->contains(ic)) {
+ pos += U16_LENGTH(ic);
+ pos = skipBidiMarks(input, pos);
+ return pos - start;
+ }
+ }
+
+ for (int32_t i = 0; i < affixLength; )
+ {
+ //i = skipRuleWhiteSpace(trimmedAffix, i);
+ i = skipUWhiteSpace(trimmedAffix, i);
+ pos = skipUWhiteSpaceAndMarks(input, pos);
+
+ if (i >= affixLength || pos >= inputLength) {
+ break;
+ }
+
+ UChar32 c = trimmedAffix.char32At(i);
+ UChar32 ic = input.char32At(pos);
+
+ if (!equalWithSignCompatibility(ic, c)) {
+ return -1;
+ }
+
+ match = TRUE;
+ i += U16_LENGTH(c);
+ pos += U16_LENGTH(ic);
+ pos = skipBidiMarks(input, pos);
+ }
+
+ if (affixLength > 0 && ! match) {
+ return -1;
+ }
+ }
return pos - start;
}
/**
- * Skip over a run of zero or more isRuleWhiteSpace() characters at
- * pos in text.
+ * Skip over a run of zero or more Pattern_White_Space characters at
+ * pos in text.
+ */
+int32_t DecimalFormat::skipPatternWhiteSpace(const UnicodeString& text, int32_t pos) {
+ const UChar* s = text.getBuffer();
+ return (int32_t)(PatternProps::skipWhiteSpace(s + pos, text.length() - pos) - s);
+}
+
+/**
+ * Skip over a run of zero or more isUWhiteSpace() characters at pos
+ * in text.
+ */
+int32_t DecimalFormat::skipUWhiteSpace(const UnicodeString& text, int32_t pos) {
+ while (pos < text.length()) {
+ UChar32 c = text.char32At(pos);
+ if (!u_isUWhiteSpace(c)) {
+ break;
+ }
+ pos += U16_LENGTH(c);
+ }
+ return pos;
+}
+
+/**
+ * Skip over a run of zero or more isUWhiteSpace() characters or bidi marks at pos
+ * in text.
*/
-int32_t DecimalFormat::skipRuleWhiteSpace(const UnicodeString& text, int32_t pos) {
+int32_t DecimalFormat::skipUWhiteSpaceAndMarks(const UnicodeString& text, int32_t pos) {
while (pos < text.length()) {
UChar32 c = text.char32At(pos);
- if (!uprv_isRuleWhiteSpace(c)) {
+ if (!u_isUWhiteSpace(c) && !IS_BIDI_MARK(c)) { // u_isUWhiteSpace doesn't include LRM,RLM,ALM
break;
}
pos += U16_LENGTH(c);
}
/**
- * Skip over a run of zero or more isUWhiteSpace() characters at pos
- * in text.
+ * Skip over a run of zero or more bidi marks at pos in text.
*/
-int32_t DecimalFormat::skipUWhiteSpace(const UnicodeString& text, int32_t pos) {
+int32_t DecimalFormat::skipBidiMarks(const UnicodeString& text, int32_t pos) {
while (pos < text.length()) {
- UChar32 c = text.char32At(pos);
- if (!u_isUWhiteSpace(c)) {
+ UChar c = text.charAt(pos);
+ if (!IS_BIDI_MARK(c)) {
break;
}
- pos += U16_LENGTH(c);
+ pos++;
}
return pos;
}
* @param affixPat pattern string
* @param input input text
* @param pos offset into input at which to begin matching
+ * @param type the currency type to parse against, LONG_NAME only or not.
* @param currency return value for parsed currency, for generic
* currency parsing mode, or null for normal parsing. In generic
* currency parsing mode, any currency is parsed, not just the
int32_t DecimalFormat::compareComplexAffix(const UnicodeString& affixPat,
const UnicodeString& text,
int32_t pos,
+ int8_t type,
UChar* currency) const
{
int32_t start = pos;
U_ASSERT(currency != NULL ||
- (fCurrencyChoice != NULL && *getCurrency() != 0));
+ (fCurrencyChoice != NULL && *getCurrency() != 0) ||
+ fCurrencySignCount != fgCurrencySignCountZero);
- for (int32_t i=0; i<affixPat.length() && pos >= 0; ) {
+ for (int32_t i=0;
+ i<affixPat.length() && pos >= 0; ) {
UChar32 c = affixPat.char32At(i);
i += U16_LENGTH(c);
switch (c) {
case kCurrencySign: {
- // If currency != null, then perform generic currency matching.
- // Otherwise, do currency choice parsing.
+ // since the currency names in choice format is saved
+ // the same way as other currency names,
+ // do not need to do currency choice parsing here.
+ // the general currency parsing parse against all names,
+ // including names in choice format.
UBool intl = i<affixPat.length() &&
affixPat.char32At(i) == kCurrencySign;
+ if (intl) {
+ ++i;
+ }
+ UBool plural = i<affixPat.length() &&
+ affixPat.char32At(i) == kCurrencySign;
+ if (plural) {
+ ++i;
+ intl = FALSE;
+ }
// Parse generic currency -- anything for which we
// have a display name, or any 3-letter ISO code.
- if (currency != NULL) {
- // Try to parse display name for our locale; first
- // determine our locale.
- UErrorCode ec = U_ZERO_ERROR;
- const char* loc = getLocaleID(ULOC_VALID_LOCALE, ec);
- if (U_FAILURE(ec) || loc == NULL || *loc == 0) {
- // applyPattern has been called; use the symbols
- if (fSymbols == NULL) {
- ec = U_MEMORY_ALLOCATION_ERROR;
- return 0;
- }
- loc = fSymbols->getLocale().getName();
- ec = U_ZERO_ERROR;
- }
- // Delegate parse of display name => ISO code to Currency
- ParsePosition ppos(pos);
- UChar curr[4];
- uprv_parseCurrency(loc, text, ppos, curr, ec);
-
- // If parse succeeds, populate currency[0]
- if (U_SUCCESS(ec) && ppos.getIndex() != pos) {
+ // Try to parse display name for our locale; first
+ // determine our locale.
+ const char* loc = fCurrencyPluralInfo->getLocale().getName();
+ ParsePosition ppos(pos);
+ UChar curr[4];
+ UErrorCode ec = U_ZERO_ERROR;
+ // Delegate parse of display name => ISO code to Currency
+ uprv_parseCurrency(loc, text, ppos, type, curr, ec);
+
+ // If parse succeeds, populate currency[0]
+ if (U_SUCCESS(ec) && ppos.getIndex() != pos) {
+ if (currency) {
u_strcpy(currency, curr);
- pos = ppos.getIndex();
- } else if (isParseStrict()) {
- pos = -1;
- }
- } else {
- if (intl) {
- ++i;
- pos = match(text, pos, getCurrency());
} else {
- ParsePosition ppos(pos);
- Formattable result;
- fCurrencyChoice->parse(text, result, ppos);
- pos = (ppos.getIndex() == pos) ? -1 : ppos.getIndex();
+ // The formatter is currency-style but the client has not requested
+ // the value of the parsed currency. In this case, if that value does
+ // not match the formatter's current value, then the parse fails.
+ UChar effectiveCurr[4];
+ getEffectiveCurrency(effectiveCurr, ec);
+ if ( U_FAILURE(ec) || u_strncmp(curr,effectiveCurr,4) != 0 ) {
+ pos = -1;
+ continue;
+ }
}
+ pos = ppos.getIndex();
+ } else if (!isLenient()){
+ pos = -1;
}
continue;
}
}
pos = match(text, pos, c);
- if (uprv_isRuleWhiteSpace(c)) {
- i = skipRuleWhiteSpace(affixPat, i);
+ if (PatternProps::isWhiteSpace(c)) {
+ i = skipPatternWhiteSpace(affixPat, i);
}
}
return pos - start;
/**
* Match a single character at text[pos] and return the index of the
* next character upon success. Return -1 on failure. If
- * isRuleWhiteSpace(ch) then match a run of white space in text.
+ * ch is a Pattern_White_Space then match a run of white space in text.
*/
int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, UChar32 ch) {
- if (uprv_isRuleWhiteSpace(ch)) {
+ if (PatternProps::isWhiteSpace(ch)) {
// Advance over run of white space in input text
// Must see at least one white space char in input
int32_t s = pos;
- pos = skipUWhiteSpace(text, pos);
+ pos = skipPatternWhiteSpace(text, pos);
if (pos == s) {
return -1;
}
for (int32_t i=0; i<str.length() && pos >= 0; ) {
UChar32 ch = str.char32At(i);
i += U16_LENGTH(ch);
- if (uprv_isRuleWhiteSpace(ch)) {
- i = skipRuleWhiteSpace(str, i);
+ if (PatternProps::isWhiteSpace(ch)) {
+ i = skipPatternWhiteSpace(str, i);
}
pos = match(text, pos, ch);
}
}
UBool DecimalFormat::matchSymbol(const UnicodeString &text, int32_t position, int32_t length, const UnicodeString &symbol,
- UnicodeSet *sset, UChar32 schar)
+ UnicodeSet *sset, UChar32 schar)
{
- if (sset != NULL) {
- return sset->contains(schar);
- }
-
- return text.compare(position, length, symbol) == 0;
+ if (sset != NULL) {
+ return sset->contains(schar);
+ }
+
+ return text.compare(position, length, symbol) == 0;
+}
+
+UBool DecimalFormat::matchDecimal(UChar32 symbolChar,
+ UBool sawDecimal, UChar32 sawDecimalChar,
+ const UnicodeSet *sset, UChar32 schar) {
+ if(sawDecimal) {
+ return schar==sawDecimalChar;
+ } else if(schar==symbolChar) {
+ return TRUE;
+ } else if(sset!=NULL) {
+ return sset->contains(schar);
+ } else {
+ return FALSE;
+ }
+}
+
+UBool DecimalFormat::matchGrouping(UChar32 groupingChar,
+ UBool sawGrouping, UChar32 sawGroupingChar,
+ const UnicodeSet *sset,
+ UChar32 /*decimalChar*/, const UnicodeSet *decimalSet,
+ UChar32 schar) {
+ if(sawGrouping) {
+ return schar==sawGroupingChar; // previously found
+ } else if(schar==groupingChar) {
+ return TRUE; // char from symbols
+ } else if(sset!=NULL) {
+ return sset->contains(schar) && // in groupingSet but...
+ ((decimalSet==NULL) || !decimalSet->contains(schar)); // Exclude decimalSet from groupingSet
+ } else {
+ return FALSE;
+ }
}
+
+
//------------------------------------------------------------------------------
// Gets the pointer to the localized decimal format symbols
// If the currency symbols are the same, there is no need to recalculate.
setCurrencyForSymbols();
}
- expandAffixes();
+ expandAffixes(NULL);
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
}
//------------------------------------------------------------------------------
// Setting the symbols is equlivalent to adopting a newly created localized
DecimalFormat::setDecimalFormatSymbols(const DecimalFormatSymbols& symbols)
{
adoptDecimalFormatSymbols(new DecimalFormatSymbols(symbols));
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
+}
+
+
+const CurrencyPluralInfo*
+DecimalFormat::getCurrencyPluralInfo(void) const
+{
+ return fCurrencyPluralInfo;
+}
+
+
+void
+DecimalFormat::adoptCurrencyPluralInfo(CurrencyPluralInfo* toAdopt)
+{
+ if (toAdopt != NULL) {
+ delete fCurrencyPluralInfo;
+ fCurrencyPluralInfo = toAdopt;
+ // re-set currency affix patterns and currency affixes.
+ if (fCurrencySignCount != fgCurrencySignCountZero) {
+ UErrorCode status = U_ZERO_ERROR;
+ if (fAffixPatternsForCurrency) {
+ deleteHashForAffixPattern();
+ }
+ setupCurrencyAffixPatterns(status);
+ if (fCurrencySignCount == fgCurrencySignCountInPluralFormat) {
+ // only setup the affixes of the plural pattern.
+ setupCurrencyAffixes(fFormatPattern, FALSE, TRUE, status);
+ }
+ }
+ }
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
+}
+
+void
+DecimalFormat::setCurrencyPluralInfo(const CurrencyPluralInfo& info)
+{
+ adoptCurrencyPluralInfo(info.clone());
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
}
-
+
+
/**
* Update the currency object to match the symbols. This method
* is used only when the caller has passed in a symbols object
UErrorCode ec = U_ZERO_ERROR;
const UChar* c = NULL;
const char* loc = fSymbols->getLocale().getName();
- UChar intlCurrencySymbol[4];
+ UChar intlCurrencySymbol[4];
ucurr_forLocale(loc, intlCurrencySymbol, 4, &ec);
UnicodeString currencySymbol;
uprv_getStaticCurrencyName(intlCurrencySymbol, loc, currencySymbol, ec);
if (U_SUCCESS(ec)
&& getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) == currencySymbol
- && getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol) == intlCurrencySymbol)
+ && getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol) == UnicodeString(intlCurrencySymbol))
{
// Trap an error in mapping locale to currency. If we can't
// map, then don't fail and set the currency to "".
c = intlCurrencySymbol;
}
ec = U_ZERO_ERROR; // reset local error code!
- setCurrency(c, ec);
+ setCurrencyInternally(c, ec);
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
}
//------------------------------------------------------------------------------
// Gets the positive prefix of the number pattern.
-
+
UnicodeString&
DecimalFormat::getPositivePrefix(UnicodeString& result) const
{
result = fPositivePrefix;
return result;
}
-
+
//------------------------------------------------------------------------------
// Sets the positive prefix of the number pattern.
-
+
void
DecimalFormat::setPositivePrefix(const UnicodeString& newValue)
{
fPositivePrefix = newValue;
delete fPosPrefixPattern;
fPosPrefixPattern = 0;
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
}
//------------------------------------------------------------------------------
fNegativePrefix = newValue;
delete fNegPrefixPattern;
fNegPrefixPattern = 0;
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
}
//------------------------------------------------------------------------------
fPositiveSuffix = newValue;
delete fPosSuffixPattern;
fPosSuffixPattern = 0;
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
}
//------------------------------------------------------------------------------
fNegativeSuffix = newValue;
delete fNegSuffixPattern;
fNegSuffixPattern = 0;
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
}
//------------------------------------------------------------------------------
// Gets the multiplier of the number pattern.
+// Multipliers are stored as decimal numbers (DigitLists) because that
+// is the most convenient for muliplying or dividing the numbers to be formatted.
+// A NULL multiplier implies one, and the scaling operations are skipped.
-int32_t DecimalFormat::getMultiplier() const
+int32_t
+DecimalFormat::getMultiplier() const
{
- return fMultiplier;
+ if (fMultiplier == NULL) {
+ return 1;
+ } else {
+ return fMultiplier->getLong();
+ }
}
//------------------------------------------------------------------------------
// if (newValue == 0) {
// throw new IllegalArgumentException("Bad multiplier: " + newValue);
// }
- if (newValue != 0) {
- fMultiplier = newValue;
+ if (newValue == 0) {
+ newValue = 1; // one being the benign default value for a multiplier.
+ }
+ if (newValue == 1) {
+ delete fMultiplier;
+ fMultiplier = NULL;
+ } else {
+ if (fMultiplier == NULL) {
+ fMultiplier = new DigitList;
+ }
+ if (fMultiplier != NULL) {
+ fMultiplier->set(newValue);
+ }
}
- // else No way to return an error.
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
}
/**
* @see #setRoundingMode
*/
double DecimalFormat::getRoundingIncrement() const {
- return fRoundingDouble;
+ if (fRoundingIncrement == NULL) {
+ return 0.0;
+ } else {
+ return fRoundingIncrement->getDouble();
+ }
}
/**
fRoundingIncrement = new DigitList();
}
if (fRoundingIncrement != NULL) {
- fRoundingIncrement->set((int32_t)newValue);
- fRoundingDouble = newValue;
+ fRoundingIncrement->set(newValue);
return;
}
- }
+ }
// These statements are executed if newValue is less than 0.0
// or fRoundingIncrement could not be created.
delete fRoundingIncrement;
fRoundingIncrement = NULL;
- fRoundingDouble = 0.0;
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
}
/**
*/
void DecimalFormat::setRoundingMode(ERoundingMode roundingMode) {
fRoundingMode = roundingMode;
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
}
/**
*/
void DecimalFormat::setFormatWidth(int32_t width) {
fFormatWidth = (width > 0) ? width : 0;
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
}
UnicodeString DecimalFormat::getPadCharacterString() const {
- return fPad;
+ return UnicodeString(fPad);
}
void DecimalFormat::setPadCharacter(const UnicodeString &padChar) {
else {
fPad = kDefaultPad;
}
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
}
/**
*/
void DecimalFormat::setPadPosition(EPadPosition padPos) {
fPadPosition = padPos;
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
}
/**
* @see #isExponentSignAlwaysShown
* @see #setExponentSignAlwaysShown
*/
-UBool DecimalFormat::isScientificNotation() {
+UBool DecimalFormat::isScientificNotation() const {
return fUseExponentialNotation;
}
*/
void DecimalFormat::setScientificNotation(UBool useScientific) {
fUseExponentialNotation = useScientific;
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
}
/**
*/
void DecimalFormat::setMinimumExponentDigits(int8_t minExpDig) {
fMinExponentDigits = (int8_t)((minExpDig > 0) ? minExpDig : 1);
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
}
/**
* @see #getMinimumExponentDigits
* @see #setExponentSignAlwaysShown
*/
-UBool DecimalFormat::isExponentSignAlwaysShown() {
+UBool DecimalFormat::isExponentSignAlwaysShown() const {
return fExponentSignAlwaysShown;
}
*/
void DecimalFormat::setExponentSignAlwaysShown(UBool expSignAlways) {
fExponentSignAlwaysShown = expSignAlways;
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
}
//------------------------------------------------------------------------------
// Gets the grouping size of the number pattern. For example, thousand or 10
// thousand groupings.
-
+
int32_t
DecimalFormat::getGroupingSize() const
{
return fGroupingSize;
}
-
+
//------------------------------------------------------------------------------
// Gets the grouping size of the number pattern.
-
+
void
DecimalFormat::setGroupingSize(int32_t newValue)
{
fGroupingSize = newValue;
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
}
//------------------------------------------------------------------------------
DecimalFormat::setSecondaryGroupingSize(int32_t newValue)
{
fGroupingSize2 = newValue;
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
}
//------------------------------------------------------------------------------
DecimalFormat::setDecimalSeparatorAlwaysShown(UBool newValue)
{
fDecimalSeparatorAlwaysShown = newValue;
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
}
//------------------------------------------------------------------------------
* affix pattern string is null, do not expand it. This method should be
* called any time the symbols or the affix patterns change in order to keep
* the expanded affix strings up to date.
+ * This method also will be called before formatting if format currency
+ * plural names, since the plural name is not a static one, it is
+ * based on the currency plural count, the affix will be known only
+ * after the currency plural count is know.
+ * In which case, the parameter
+ * 'pluralCount' will be a non-null currency plural count.
+ * In all other cases, the 'pluralCount' is null, which means it is not needed.
*/
-void DecimalFormat::expandAffixes() {
+void DecimalFormat::expandAffixes(const UnicodeString* pluralCount) {
+ FieldPositionHandler none;
if (fPosPrefixPattern != 0) {
- expandAffix(*fPosPrefixPattern, fPositivePrefix, 0, FALSE);
+ expandAffix(*fPosPrefixPattern, fPositivePrefix, 0, none, FALSE, pluralCount);
}
if (fPosSuffixPattern != 0) {
- expandAffix(*fPosSuffixPattern, fPositiveSuffix, 0, FALSE);
+ expandAffix(*fPosSuffixPattern, fPositiveSuffix, 0, none, FALSE, pluralCount);
}
if (fNegPrefixPattern != 0) {
- expandAffix(*fNegPrefixPattern, fNegativePrefix, 0, FALSE);
+ expandAffix(*fNegPrefixPattern, fNegativePrefix, 0, none, FALSE, pluralCount);
}
if (fNegSuffixPattern != 0) {
- expandAffix(*fNegSuffixPattern, fNegativeSuffix, 0, FALSE);
+ expandAffix(*fNegSuffixPattern, fNegativeSuffix, 0, none, FALSE, pluralCount);
}
#ifdef FMT_DEBUG
UnicodeString s;
- s.append("[")
- .append(*fPosPrefixPattern).append("|").append(*fPosSuffixPattern)
- .append(";") .append(*fNegPrefixPattern).append("|").append(*fNegSuffixPattern)
- .append("]->[")
- .append(fPositivePrefix).append("|").append(fPositiveSuffix)
- .append(";") .append(fNegativePrefix).append("|").append(fNegativeSuffix)
- .append("]\n");
+ s.append(UnicodeString("["))
+ .append(DEREFSTR(fPosPrefixPattern)).append((UnicodeString)"|").append(DEREFSTR(fPosSuffixPattern))
+ .append((UnicodeString)";") .append(DEREFSTR(fNegPrefixPattern)).append((UnicodeString)"|").append(DEREFSTR(fNegSuffixPattern))
+ .append((UnicodeString)"]->[")
+ .append(fPositivePrefix).append((UnicodeString)"|").append(fPositiveSuffix)
+ .append((UnicodeString)";") .append(fNegativePrefix).append((UnicodeString)"|").append(fNegativeSuffix)
+ .append((UnicodeString)"]\n");
debugout(s);
#endif
}
* after kQuote are recognized: PATTERN_PERCENT, PATTERN_PER_MILLE,
* PATTERN_MINUS, and kCurrencySign. If kCurrencySign is doubled (kQuote +
* kCurrencySign + kCurrencySign), it is interpreted as an international
- * currency sign. Any other character after a kQuote represents itself.
+ * currency sign. If CURRENCY_SIGN is tripled, it is interpreted as
+ * currency plural long names, such as "US Dollars".
+ * Any other character after a kQuote represents itself.
* kQuote must be followed by another character; kQuote may not occur by
* itself at the end of the pattern.
*
* currencyChoice member variable will be initialized if it is null. If
* doFormat is true, then it is assumed that the currencyChoice has been
* created, and it will be used to format the value in digitList.
+ * @param pluralCount the plural count. It is only used for currency
+ * plural format. In which case, it is the plural
+ * count of the currency amount. For example,
+ * in en_US, it is the singular "one", or the plural
+ * "other". For all other cases, it is null, and
+ * is not being used.
*/
void DecimalFormat::expandAffix(const UnicodeString& pattern,
UnicodeString& affix,
double number,
- UBool doFormat) const {
+ FieldPositionHandler& handler,
+ UBool doFormat,
+ const UnicodeString* pluralCount) const {
affix.remove();
for (int i=0; i<pattern.length(); ) {
UChar32 c = pattern.char32At(i);
if (c == kQuote) {
c = pattern.char32At(i);
i += U16_LENGTH(c);
+ int beginIdx = affix.length();
switch (c) {
case kCurrencySign: {
// As of ICU 2.2 we use the currency object, and
// sets a custom DFS.
UBool intl = i<pattern.length() &&
pattern.char32At(i) == kCurrencySign;
+ UBool plural = FALSE;
if (intl) {
++i;
+ plural = i<pattern.length() &&
+ pattern.char32At(i) == kCurrencySign;
+ if (plural) {
+ intl = FALSE;
+ ++i;
+ }
}
const UChar* currencyUChars = getCurrency();
if (currencyUChars[0] != 0) {
UErrorCode ec = U_ZERO_ERROR;
- if(intl) {
- affix += currencyUChars;
+ if (plural && pluralCount != NULL) {
+ // plural name is only needed when pluralCount != null,
+ // which means when formatting currency plural names.
+ // For other cases, pluralCount == null,
+ // and plural names are not needed.
+ int32_t len;
+ CharString pluralCountChar;
+ pluralCountChar.appendInvariantChars(*pluralCount, ec);
+ UBool isChoiceFormat;
+ const UChar* s = ucurr_getPluralName(currencyUChars,
+ fSymbols != NULL ? fSymbols->getLocale().getName() :
+ Locale::getDefault().getName(), &isChoiceFormat,
+ pluralCountChar.data(), &len, &ec);
+ affix += UnicodeString(s, len);
+ handler.addAttribute(kCurrencyField, beginIdx, affix.length());
+ } else if(intl) {
+ affix.append(currencyUChars, -1);
+ handler.addAttribute(kCurrencyField, beginIdx, affix.length());
} else {
int32_t len;
UBool isChoiceFormat;
// If fSymbols is NULL, use default locale
- const UChar* s = ucurr_getName(currencyUChars, fSymbols != NULL ? fSymbols->getLocale().getName() : Locale::getDefault().getName(),
- UCURR_SYMBOL_NAME, &isChoiceFormat, &len, &ec);
+ const UChar* s = ucurr_getName(currencyUChars,
+ fSymbols != NULL ? fSymbols->getLocale().getName() : Locale::getDefault().getName(),
+ UCURR_SYMBOL_NAME, &isChoiceFormat, &len, &ec);
if (isChoiceFormat) {
// Two modes here: If doFormat is false, we set up
// currencyChoice. If doFormat is true, we use the
// return.
if (fCurrencyChoice == NULL) {
// TODO Replace double-check with proper thread-safe code
- ChoiceFormat* fmt = new ChoiceFormat(s, ec);
+ ChoiceFormat* fmt = new ChoiceFormat(UnicodeString(s), ec);
if (U_SUCCESS(ec)) {
umtx_lock(NULL);
if (fCurrencyChoice == NULL) {
} else {
// We only arrive here if the currency choice
// format in the locale data is INVALID.
- affix += currencyUChars;
+ affix.append(currencyUChars, -1);
+ handler.addAttribute(kCurrencyField, beginIdx, affix.length());
}
}
continue;
}
affix += UnicodeString(s, len);
+ handler.addAttribute(kCurrencyField, beginIdx, affix.length());
}
} else {
if(intl) {
} else {
affix += getConstSymbol(DecimalFormatSymbols::kCurrencySymbol);
}
+ handler.addAttribute(kCurrencyField, beginIdx, affix.length());
}
break;
}
case kPatternPercent:
affix += getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
+ handler.addAttribute(kPercentField, beginIdx, affix.length());
break;
case kPatternPerMill:
affix += getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
+ handler.addAttribute(kPermillField, beginIdx, affix.length());
break;
case kPatternPlus:
affix += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
+ handler.addAttribute(kSignField, beginIdx, affix.length());
break;
case kPatternMinus:
affix += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
+ handler.addAttribute(kSignField, beginIdx, affix.length());
break;
default:
affix.append(c);
* @param isPrefix
*/
int32_t DecimalFormat::appendAffix(UnicodeString& buf, double number,
+ FieldPositionHandler& handler,
UBool isNegative, UBool isPrefix) const {
- if (fCurrencyChoice != 0) {
+ // plural format precedes choice format
+ if (fCurrencyChoice != 0 &&
+ fCurrencySignCount != fgCurrencySignCountInPluralFormat) {
const UnicodeString* affixPat;
if (isPrefix) {
affixPat = isNegative ? fNegPrefixPattern : fPosPrefixPattern;
}
if (affixPat) {
UnicodeString affixBuf;
- expandAffix(*affixPat, affixBuf, number, TRUE);
+ expandAffix(*affixPat, affixBuf, number, handler, TRUE, NULL);
buf.append(affixBuf);
return affixBuf.length();
}
// else someone called a function that reset the pattern.
}
-
+
const UnicodeString* affix;
- if (isPrefix) {
- affix = isNegative ? &fNegativePrefix : &fPositivePrefix;
+ if (fCurrencySignCount == fgCurrencySignCountInPluralFormat) {
+ // TODO: get an accurate count of visible fraction digits.
+ UnicodeString pluralCount;
+ int32_t minFractionDigits = this->getMinimumFractionDigits();
+ if (minFractionDigits > 0) {
+ FixedDecimal ni(number, this->getMinimumFractionDigits());
+ pluralCount = fCurrencyPluralInfo->getPluralRules()->select(ni);
+ } else {
+ pluralCount = fCurrencyPluralInfo->getPluralRules()->select(number);
+ }
+ AffixesForCurrency* oneSet;
+ if (fStyle == UNUM_CURRENCY_PLURAL) {
+ oneSet = (AffixesForCurrency*)fPluralAffixesForCurrency->get(pluralCount);
+ } else {
+ oneSet = (AffixesForCurrency*)fAffixesForCurrency->get(pluralCount);
+ }
+ if (isPrefix) {
+ affix = isNegative ? &oneSet->negPrefixForCurrency :
+ &oneSet->posPrefixForCurrency;
+ } else {
+ affix = isNegative ? &oneSet->negSuffixForCurrency :
+ &oneSet->posSuffixForCurrency;
+ }
} else {
- affix = isNegative ? &fNegativeSuffix : &fPositiveSuffix;
+ if (isPrefix) {
+ affix = isNegative ? &fNegativePrefix : &fPositivePrefix;
+ } else {
+ affix = isNegative ? &fNegativeSuffix : &fPositiveSuffix;
+ }
}
+
+ int32_t begin = (int) buf.length();
+
buf.append(*affix);
+
+ if (handler.isRecording()) {
+ int32_t offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kCurrencySymbol));
+ if (offset > -1) {
+ UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kCurrencySymbol);
+ handler.addAttribute(kCurrencyField, begin + offset, begin + offset + aff.length());
+ }
+
+ offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol));
+ if (offset > -1) {
+ UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
+ handler.addAttribute(kCurrencyField, begin + offset, begin + offset + aff.length());
+ }
+
+ offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol));
+ if (offset > -1) {
+ UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
+ handler.addAttribute(kSignField, begin + offset, begin + offset + aff.length());
+ }
+
+ offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kPercentSymbol));
+ if (offset > -1) {
+ UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
+ handler.addAttribute(kPercentField, begin + offset, begin + offset + aff.length());
+ }
+
+ offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol));
+ if (offset > -1) {
+ UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
+ handler.addAttribute(kPermillField, begin + offset, begin + offset + aff.length());
+ }
+ }
return affix->length();
}
UnicodeString&
DecimalFormat::toPattern(UnicodeString& result, UBool localized) const
{
+ if (fStyle == UNUM_CURRENCY_PLURAL) {
+ // the prefix or suffix pattern might not be defined yet,
+ // so they can not be synthesized,
+ // instead, get them directly.
+ // but it might not be the actual pattern used in formatting.
+ // the actual pattern used in formatting depends on the
+ // formatted number's plural count.
+ result = fFormatPattern;
+ return result;
+ }
result.remove();
UChar32 zero, sigDigit = kPatternSignificantDigit;
UnicodeString digit, group;
padSpec.append(fPad);
}
if (fRoundingIncrement != NULL) {
- for(i=0; i<fRoundingIncrement->fCount; ++i) {
- roundingDigits.append((UChar)fRoundingIncrement->fDigits[i]);
+ for(i=0; i<fRoundingIncrement->getCount(); ++i) {
+ roundingDigits.append(zero+(fRoundingIncrement->getDigitValue(i))); // Convert to Unicode digit
}
- roundingDecimalPos = fRoundingIncrement->fDecimalAt;
+ roundingDecimalPos = fRoundingIncrement->getDecimalAt();
}
for (int32_t part=0; part<2; ++part) {
if (padPos == kPadBeforePrefix) {
// end up with ",###".
if (add>1 && isGroupingPosition(maxDig)) {
result.insert(sub0Start, group);
- --add;
+ --add;
}
}
}
int32_t length = fPositivePrefix.length();
isDefault = fNegativePrefix.length() == (length+1) &&
fNegativePrefix.compare(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol)) == 0 &&
- fNegativePrefix.compare(1, length, fPositivePrefix, 0, length) == 0;
- }
- }
- if (isDefault) {
- break; // Don't output default negative subpattern
- } else {
- if (localized) {
- result += getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol);
- }
- else {
- result.append((UChar)kPatternSeparator);
- }
- }
- } else {
- appendAffixPattern(result, fNegSuffixPattern, fNegativeSuffix, localized);
- if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) {
- result.append(padSpec);
- }
- }
- }
-
- return result;
-}
-
-//------------------------------------------------------------------------------
-
-void
-DecimalFormat::applyPattern(const UnicodeString& pattern, UErrorCode& status)
-{
- UParseError parseError;
- applyPattern(pattern, FALSE, parseError, status);
-}
-
-//------------------------------------------------------------------------------
-
-void
-DecimalFormat::applyPattern(const UnicodeString& pattern,
- UParseError& parseError,
- UErrorCode& status)
-{
- applyPattern(pattern, FALSE, parseError, status);
-}
-//------------------------------------------------------------------------------
-
-void
-DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern, UErrorCode& status)
-{
- UParseError parseError;
- applyPattern(pattern, TRUE,parseError,status);
-}
-
-//------------------------------------------------------------------------------
-
-void
-DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern,
- UParseError& parseError,
- UErrorCode& status)
-{
- applyPattern(pattern, TRUE,parseError,status);
-}
-
-//------------------------------------------------------------------------------
-
-void
-DecimalFormat::applyPattern(const UnicodeString& pattern,
- UBool localized,
- UParseError& parseError,
- UErrorCode& status)
-{
- if (U_FAILURE(status))
- {
- return;
- }
- // Clear error struct
- parseError.offset = -1;
- parseError.preContext[0] = parseError.postContext[0] = (UChar)0;
-
- // Set the significant pattern symbols
- UChar32 zeroDigit = kPatternZeroDigit; // '0'
- UChar32 sigDigit = kPatternSignificantDigit; // '@'
- UnicodeString groupingSeparator ((UChar)kPatternGroupingSeparator);
- UnicodeString decimalSeparator ((UChar)kPatternDecimalSeparator);
- UnicodeString percent ((UChar)kPatternPercent);
- UnicodeString perMill ((UChar)kPatternPerMill);
- UnicodeString digit ((UChar)kPatternDigit); // '#'
- UnicodeString separator ((UChar)kPatternSeparator);
- UnicodeString exponent ((UChar)kPatternExponent);
- UnicodeString plus ((UChar)kPatternPlus);
- UnicodeString minus ((UChar)kPatternMinus);
- UnicodeString padEscape ((UChar)kPatternPadEscape);
- // Substitute with the localized symbols if necessary
- if (localized) {
- zeroDigit = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
- sigDigit = getConstSymbol(DecimalFormatSymbols::kSignificantDigitSymbol).char32At(0);
- groupingSeparator. remove().append(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol));
- decimalSeparator. remove().append(getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol));
- percent. remove().append(getConstSymbol(DecimalFormatSymbols::kPercentSymbol));
- perMill. remove().append(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol));
- digit. remove().append(getConstSymbol(DecimalFormatSymbols::kDigitSymbol));
- separator. remove().append(getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol));
- exponent. remove().append(getConstSymbol(DecimalFormatSymbols::kExponentialSymbol));
- plus. remove().append(getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol));
- minus. remove().append(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol));
- padEscape. remove().append(getConstSymbol(DecimalFormatSymbols::kPadEscapeSymbol));
- }
- UChar nineDigit = (UChar)(zeroDigit + 9);
- int32_t digitLen = digit.length();
- int32_t groupSepLen = groupingSeparator.length();
- int32_t decimalSepLen = decimalSeparator.length();
-
- int32_t pos = 0;
- int32_t patLen = pattern.length();
- // Part 0 is the positive pattern. Part 1, if present, is the negative
- // pattern.
- for (int32_t part=0; part<2 && pos<patLen; ++part) {
- // The subpart ranges from 0 to 4: 0=pattern proper, 1=prefix,
- // 2=suffix, 3=prefix in quote, 4=suffix in quote. Subpart 0 is
- // between the prefix and suffix, and consists of pattern
- // characters. In the prefix and suffix, percent, perMill, and
- // currency symbols are recognized and translated.
- int32_t subpart = 1, sub0Start = 0, sub0Limit = 0, sub2Limit = 0;
-
- // It's important that we don't change any fields of this object
- // prematurely. We set the following variables for the multiplier,
- // grouping, etc., and then only change the actual object fields if
- // everything parses correctly. This also lets us register
- // the data from part 0 and ignore the part 1, except for the
- // prefix and suffix.
- UnicodeString prefix;
- UnicodeString suffix;
- int32_t decimalPos = -1;
- int32_t multiplier = 1;
- int32_t digitLeftCount = 0, zeroDigitCount = 0, digitRightCount = 0, sigDigitCount = 0;
- int8_t groupingCount = -1;
- int8_t groupingCount2 = -1;
- int32_t padPos = -1;
- UChar32 padChar = 0;
- int32_t roundingPos = -1;
- DigitList roundingInc;
- int8_t expDigits = -1;
- UBool expSignAlways = FALSE;
- UBool isCurrency = FALSE;
-
- // The affix is either the prefix or the suffix.
- UnicodeString* affix = &prefix;
-
- int32_t start = pos;
- UBool isPartDone = FALSE;
- UChar32 ch;
-
- for (; !isPartDone && pos < patLen; ) {
- // Todo: account for surrogate pairs
- ch = pattern.char32At(pos);
- switch (subpart) {
- case 0: // Pattern proper subpart (between prefix & suffix)
- // Process the digits, decimal, and grouping characters. We
- // record five pieces of information. We expect the digits
- // to occur in the pattern ####00.00####, and we record the
- // number of left digits, zero (central) digits, and right
- // digits. The position of the last grouping character is
- // recorded (should be somewhere within the first two blocks
- // of characters), as is the position of the decimal point,
- // if any (should be in the zero digits). If there is no
- // decimal point, then there should be no right digits.
- if (pattern.compare(pos, digitLen, digit) == 0) {
- if (zeroDigitCount > 0 || sigDigitCount > 0) {
- ++digitRightCount;
- } else {
- ++digitLeftCount;
- }
- if (groupingCount >= 0 && decimalPos < 0) {
- ++groupingCount;
- }
- pos += digitLen;
- } else if ((ch >= zeroDigit && ch <= nineDigit) ||
- ch == sigDigit) {
- if (digitRightCount > 0) {
- // Unexpected '0'
- debug("Unexpected '0'")
- status = U_UNEXPECTED_TOKEN;
- syntaxError(pattern,pos,parseError);
- return;
- }
- if (ch == sigDigit) {
- ++sigDigitCount;
- } else {
- ++zeroDigitCount;
- if (ch != zeroDigit && roundingPos < 0) {
- roundingPos = digitLeftCount + zeroDigitCount;
- }
- if (roundingPos >= 0) {
- roundingInc.append((char)(ch - zeroDigit + '0'));
- }
- }
- if (groupingCount >= 0 && decimalPos < 0) {
- ++groupingCount;
- }
- pos += U16_LENGTH(ch);
- } else if (pattern.compare(pos, groupSepLen, groupingSeparator) == 0) {
- if (decimalPos >= 0) {
- // Grouping separator after decimal
- debug("Grouping separator after decimal")
- status = U_UNEXPECTED_TOKEN;
- syntaxError(pattern,pos,parseError);
- return;
- }
- groupingCount2 = groupingCount;
- groupingCount = 0;
- pos += groupSepLen;
- } else if (pattern.compare(pos, decimalSepLen, decimalSeparator) == 0) {
- if (decimalPos >= 0) {
- // Multiple decimal separators
- debug("Multiple decimal separators")
- status = U_MULTIPLE_DECIMAL_SEPARATORS;
- syntaxError(pattern,pos,parseError);
- return;
- }
- // Intentionally incorporate the digitRightCount,
- // even though it is illegal for this to be > 0
- // at this point. We check pattern syntax below.
- decimalPos = digitLeftCount + zeroDigitCount + digitRightCount;
- pos += decimalSepLen;
- } else {
- if (pattern.compare(pos, exponent.length(), exponent) == 0) {
- if (expDigits >= 0) {
- // Multiple exponential symbols
- debug("Multiple exponential symbols")
- status = U_MULTIPLE_EXPONENTIAL_SYMBOLS;
- syntaxError(pattern,pos,parseError);
- return;
- }
- if (groupingCount >= 0) {
- // Grouping separator in exponential pattern
- debug("Grouping separator in exponential pattern")
- status = U_MALFORMED_EXPONENTIAL_PATTERN;
- syntaxError(pattern,pos,parseError);
- return;
- }
- pos += exponent.length();
- // Check for positive prefix
- if (pos < patLen
- && pattern.compare(pos, plus.length(), plus) == 0) {
- expSignAlways = TRUE;
- pos += plus.length();
- }
- // Use lookahead to parse out the exponential part of the
- // pattern, then jump into suffix subpart.
- expDigits = 0;
- while (pos < patLen &&
- pattern.char32At(pos) == zeroDigit) {
- ++expDigits;
- pos += U16_LENGTH(zeroDigit);
- }
-
- // 1. Require at least one mantissa pattern digit
- // 2. Disallow "#+ @" in mantissa
- // 3. Require at least one exponent pattern digit
- if (((digitLeftCount + zeroDigitCount) < 1 &&
- (sigDigitCount + digitRightCount) < 1) ||
- (sigDigitCount > 0 && digitLeftCount > 0) ||
- expDigits < 1) {
- // Malformed exponential pattern
- debug("Malformed exponential pattern")
- status = U_MALFORMED_EXPONENTIAL_PATTERN;
- syntaxError(pattern,pos,parseError);
- return;
- }
- }
- // Transition to suffix subpart
- subpart = 2; // suffix subpart
- affix = &suffix;
- sub0Limit = pos;
- continue;
- }
- break;
- case 1: // Prefix subpart
- case 2: // Suffix subpart
- // Process the prefix / suffix characters
- // Process unquoted characters seen in prefix or suffix
- // subpart.
-
- // Several syntax characters implicitly begins the
- // next subpart if we are in the prefix; otherwise
- // they are illegal if unquoted.
- if (!pattern.compare(pos, digitLen, digit) ||
- !pattern.compare(pos, groupSepLen, groupingSeparator) ||
- !pattern.compare(pos, decimalSepLen, decimalSeparator) ||
- (ch >= zeroDigit && ch <= nineDigit) ||
- ch == sigDigit) {
- if (subpart == 1) { // prefix subpart
- subpart = 0; // pattern proper subpart
- sub0Start = pos; // Reprocess this character
- continue;
- } else {
- status = U_UNQUOTED_SPECIAL;
- syntaxError(pattern,pos,parseError);
- return;
- }
- } else if (ch == kCurrencySign) {
- affix->append(kQuote); // Encode currency
- // Use lookahead to determine if the currency sign is
- // doubled or not.
- U_ASSERT(U16_LENGTH(kCurrencySign) == 1);
- if ((pos+1) < pattern.length() && pattern[pos+1] == kCurrencySign) {
- affix->append(kCurrencySign);
- ++pos; // Skip over the doubled character
- }
- isCurrency = TRUE;
- // Fall through to append(ch)
- } else if (ch == kQuote) {
- // A quote outside quotes indicates either the opening
- // quote or two quotes, which is a quote literal. That is,
- // we have the first quote in 'do' or o''clock.
- U_ASSERT(U16_LENGTH(kQuote) == 1);
- ++pos;
- if (pos < pattern.length() && pattern[pos] == kQuote) {
- affix->append(kQuote); // Encode quote
- // Fall through to append(ch)
- } else {
- subpart += 2; // open quote
- continue;
- }
- } else if (pattern.compare(pos, separator.length(), separator) == 0) {
- // Don't allow separators in the prefix, and don't allow
- // separators in the second pattern (part == 1).
- if (subpart == 1 || part == 1) {
- // Unexpected separator
- debug("Unexpected separator")
- status = U_UNEXPECTED_TOKEN;
- syntaxError(pattern,pos,parseError);
- return;
- }
- sub2Limit = pos;
- isPartDone = TRUE; // Go to next part
- pos += separator.length();
- break;
- } else if (pattern.compare(pos, percent.length(), percent) == 0) {
- // Next handle characters which are appended directly.
- if (multiplier != 1) {
- // Too many percent/perMill characters
- debug("Too many percent characters")
- status = U_MULTIPLE_PERCENT_SYMBOLS;
- syntaxError(pattern,pos,parseError);
- return;
- }
- affix->append(kQuote); // Encode percent/perMill
- affix->append(kPatternPercent); // Use unlocalized pattern char
- multiplier = 100;
- pos += percent.length();
- break;
- } else if (pattern.compare(pos, perMill.length(), perMill) == 0) {
- // Next handle characters which are appended directly.
- if (multiplier != 1) {
- // Too many percent/perMill characters
- debug("Too many perMill characters")
- status = U_MULTIPLE_PERMILL_SYMBOLS;
- syntaxError(pattern,pos,parseError);
- return;
- }
- affix->append(kQuote); // Encode percent/perMill
- affix->append(kPatternPerMill); // Use unlocalized pattern char
- multiplier = 1000;
- pos += perMill.length();
- break;
- } else if (pattern.compare(pos, padEscape.length(), padEscape) == 0) {
- if (padPos >= 0 || // Multiple pad specifiers
- (pos+1) == pattern.length()) { // Nothing after padEscape
- debug("Multiple pad specifiers")
- status = U_MULTIPLE_PAD_SPECIFIERS;
- syntaxError(pattern,pos,parseError);
- return;
- }
- padPos = pos;
- pos += padEscape.length();
- padChar = pattern.char32At(pos);
- pos += U16_LENGTH(padChar);
- break;
- } else if (pattern.compare(pos, minus.length(), minus) == 0) {
- affix->append(kQuote); // Encode minus
- affix->append(kPatternMinus);
- pos += minus.length();
- break;
- } else if (pattern.compare(pos, plus.length(), plus) == 0) {
- affix->append(kQuote); // Encode plus
- affix->append(kPatternPlus);
- pos += plus.length();
- break;
- }
- // Unquoted, non-special characters fall through to here, as
- // well as other code which needs to append something to the
- // affix.
- affix->append(ch);
- pos += U16_LENGTH(ch);
- break;
- case 3: // Prefix subpart, in quote
- case 4: // Suffix subpart, in quote
- // A quote within quotes indicates either the closing
- // quote or two quotes, which is a quote literal. That is,
- // we have the second quote in 'do' or 'don''t'.
- if (ch == kQuote) {
- ++pos;
- if (pos < pattern.length() && pattern[pos] == kQuote) {
- affix->append(kQuote); // Encode quote
- // Fall through to append(ch)
- } else {
- subpart -= 2; // close quote
- continue;
- }
- }
- affix->append(ch);
- pos += U16_LENGTH(ch);
- break;
- }
- }
-
- if (sub0Limit == 0) {
- sub0Limit = pattern.length();
- }
-
- if (sub2Limit == 0) {
- sub2Limit = pattern.length();
- }
-
- /* Handle patterns with no '0' pattern character. These patterns
- * are legal, but must be recodified to make sense. "##.###" ->
- * "#0.###". ".###" -> ".0##".
- *
- * We allow patterns of the form "####" to produce a zeroDigitCount
- * of zero (got that?); although this seems like it might make it
- * possible for format() to produce empty strings, format() checks
- * for this condition and outputs a zero digit in this situation.
- * Having a zeroDigitCount of zero yields a minimum integer digits
- * of zero, which allows proper round-trip patterns. We don't want
- * "#" to become "#0" when toPattern() is called (even though that's
- * what it really is, semantically).
- */
- if (zeroDigitCount == 0 && sigDigitCount == 0 &&
- digitLeftCount > 0 && decimalPos >= 0) {
- // Handle "###.###" and "###." and ".###"
- int n = decimalPos;
- if (n == 0)
- ++n; // Handle ".###"
- digitRightCount = digitLeftCount - n;
- digitLeftCount = n - 1;
- zeroDigitCount = 1;
- }
-
- // Do syntax checking on the digits, decimal points, and quotes.
- if ((decimalPos < 0 && digitRightCount > 0 && sigDigitCount == 0) ||
- (decimalPos >= 0 &&
- (sigDigitCount > 0 ||
- decimalPos < digitLeftCount ||
- decimalPos > (digitLeftCount + zeroDigitCount))) ||
- groupingCount == 0 || groupingCount2 == 0 ||
- (sigDigitCount > 0 && zeroDigitCount > 0) ||
- subpart > 2)
- { // subpart > 2 == unmatched quote
- debug("Syntax error")
- status = U_PATTERN_SYNTAX_ERROR;
- syntaxError(pattern,pos,parseError);
- return;
- }
-
- // Make sure pad is at legal position before or after affix.
- if (padPos >= 0) {
- if (padPos == start) {
- padPos = kPadBeforePrefix;
- } else if (padPos+2 == sub0Start) {
- padPos = kPadAfterPrefix;
- } else if (padPos == sub0Limit) {
- padPos = kPadBeforeSuffix;
- } else if (padPos+2 == sub2Limit) {
- padPos = kPadAfterSuffix;
- } else {
- // Illegal pad position
- debug("Illegal pad position")
- status = U_ILLEGAL_PAD_POSITION;
- syntaxError(pattern,pos,parseError);
- return;
- }
- }
-
- if (part == 0) {
- delete fPosPrefixPattern;
- delete fPosSuffixPattern;
- delete fNegPrefixPattern;
- delete fNegSuffixPattern;
- fPosPrefixPattern = new UnicodeString(prefix);
- /* test for NULL */
- if (fPosPrefixPattern == 0) {
- status = U_MEMORY_ALLOCATION_ERROR;
- return;
- }
- fPosSuffixPattern = new UnicodeString(suffix);
- /* test for NULL */
- if (fPosSuffixPattern == 0) {
- status = U_MEMORY_ALLOCATION_ERROR;
- delete fPosPrefixPattern;
- return;
+ fNegativePrefix.compare(1, length, fPositivePrefix, 0, length) == 0;
+ }
}
- fNegPrefixPattern = 0;
- fNegSuffixPattern = 0;
-
- fUseExponentialNotation = (expDigits >= 0);
- if (fUseExponentialNotation) {
- fMinExponentDigits = expDigits;
- }
- fExponentSignAlwaysShown = expSignAlways;
- fIsCurrencyFormat = isCurrency;
- int32_t digitTotalCount = digitLeftCount + zeroDigitCount + digitRightCount;
- // The effectiveDecimalPos is the position the decimal is at or
- // would be at if there is no decimal. Note that if
- // decimalPos<0, then digitTotalCount == digitLeftCount +
- // zeroDigitCount.
- int32_t effectiveDecimalPos = decimalPos >= 0 ? decimalPos : digitTotalCount;
- UBool isSigDig = (sigDigitCount > 0);
- setSignificantDigitsUsed(isSigDig);
- if (isSigDig) {
- setMinimumSignificantDigits(sigDigitCount);
- setMaximumSignificantDigits(sigDigitCount + digitRightCount);
- } else {
- int32_t minInt = effectiveDecimalPos - digitLeftCount;
- setMinimumIntegerDigits(minInt);
- setMaximumIntegerDigits(fUseExponentialNotation
- ? digitLeftCount + getMinimumIntegerDigits()
- : kDoubleIntegerDigits);
- setMaximumFractionDigits(decimalPos >= 0
- ? (digitTotalCount - decimalPos) : 0);
- setMinimumFractionDigits(decimalPos >= 0
- ? (digitLeftCount + zeroDigitCount - decimalPos) : 0);
- }
- setGroupingUsed(groupingCount > 0);
- fGroupingSize = (groupingCount > 0) ? groupingCount : 0;
- fGroupingSize2 = (groupingCount2 > 0 && groupingCount2 != groupingCount)
- ? groupingCount2 : 0;
- fMultiplier = multiplier;
- setDecimalSeparatorAlwaysShown(decimalPos == 0
- || decimalPos == digitTotalCount);
- if (padPos >= 0) {
- fPadPosition = (EPadPosition) padPos;
- // To compute the format width, first set up sub0Limit -
- // sub0Start. Add in prefix/suffix length later.
-
- // fFormatWidth = prefix.length() + suffix.length() +
- // sub0Limit - sub0Start;
- fFormatWidth = sub0Limit - sub0Start;
- fPad = padChar;
+ if (isDefault) {
+ break; // Don't output default negative subpattern
} else {
- fFormatWidth = 0;
- }
- if (roundingPos >= 0) {
- roundingInc.fDecimalAt = effectiveDecimalPos - roundingPos;
- if (fRoundingIncrement != NULL) {
- *fRoundingIncrement = roundingInc;
- } else {
- fRoundingIncrement = new DigitList(roundingInc);
- /* test for NULL */
- if (fRoundingIncrement == 0) {
- status = U_MEMORY_ALLOCATION_ERROR;
- delete fPosPrefixPattern;
- delete fPosSuffixPattern;
- return;
- }
+ if (localized) {
+ result += getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol);
+ }
+ else {
+ result.append((UChar)kPatternSeparator);
}
- fRoundingDouble = fRoundingIncrement->getDouble();
- fRoundingMode = kRoundHalfEven;
- } else {
- setRoundingIncrement(0.0);
}
} else {
- fNegPrefixPattern = new UnicodeString(prefix);
- /* test for NULL */
- if (fNegPrefixPattern == 0) {
- status = U_MEMORY_ALLOCATION_ERROR;
- return;
- }
- fNegSuffixPattern = new UnicodeString(suffix);
- /* test for NULL */
- if (fNegSuffixPattern == 0) {
- delete fNegPrefixPattern;
- status = U_MEMORY_ALLOCATION_ERROR;
- return;
+ appendAffixPattern(result, fNegSuffixPattern, fNegativeSuffix, localized);
+ if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) {
+ result.append(padSpec);
}
}
}
- if (pattern.length() == 0) {
- delete fNegPrefixPattern;
- delete fNegSuffixPattern;
- fNegPrefixPattern = NULL;
- fNegSuffixPattern = NULL;
- if (fPosPrefixPattern != NULL) {
- fPosPrefixPattern->remove();
- } else {
- fPosPrefixPattern = new UnicodeString();
- /* test for NULL */
- if (fPosPrefixPattern == 0) {
- status = U_MEMORY_ALLOCATION_ERROR;
- return;
- }
- }
- if (fPosSuffixPattern != NULL) {
- fPosSuffixPattern->remove();
- } else {
- fPosSuffixPattern = new UnicodeString();
- /* test for NULL */
- if (fPosSuffixPattern == 0) {
- delete fPosPrefixPattern;
- status = U_MEMORY_ALLOCATION_ERROR;
- return;
- }
- }
+ return result;
+}
- setMinimumIntegerDigits(0);
- setMaximumIntegerDigits(kDoubleIntegerDigits);
- setMinimumFractionDigits(0);
- setMaximumFractionDigits(kDoubleFractionDigits);
+//------------------------------------------------------------------------------
- fUseExponentialNotation = FALSE;
- fIsCurrencyFormat = FALSE;
- setGroupingUsed(FALSE);
- fGroupingSize = 0;
- fGroupingSize2 = 0;
- fMultiplier = 1;
- setDecimalSeparatorAlwaysShown(FALSE);
- fFormatWidth = 0;
- setRoundingIncrement(0.0);
+void
+DecimalFormat::applyPattern(const UnicodeString& pattern, UErrorCode& status)
+{
+ UParseError parseError;
+ applyPattern(pattern, FALSE, parseError, status);
+}
+
+//------------------------------------------------------------------------------
+
+void
+DecimalFormat::applyPattern(const UnicodeString& pattern,
+ UParseError& parseError,
+ UErrorCode& status)
+{
+ applyPattern(pattern, FALSE, parseError, status);
+}
+//------------------------------------------------------------------------------
+
+void
+DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern, UErrorCode& status)
+{
+ UParseError parseError;
+ applyPattern(pattern, TRUE,parseError,status);
+}
+
+//------------------------------------------------------------------------------
+
+void
+DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern,
+ UParseError& parseError,
+ UErrorCode& status)
+{
+ applyPattern(pattern, TRUE,parseError,status);
+}
+
+//------------------------------------------------------------------------------
+
+void
+DecimalFormat::applyPatternWithoutExpandAffix(const UnicodeString& pattern,
+ UBool localized,
+ UParseError& parseError,
+ UErrorCode& status)
+{
+ if (U_FAILURE(status))
+ {
+ return;
+ }
+ DecimalFormatPatternParser patternParser;
+ if (localized) {
+ patternParser.useSymbols(*fSymbols);
+ }
+ fFormatPattern = pattern;
+ DecimalFormatPattern out;
+ patternParser.applyPatternWithoutExpandAffix(
+ pattern,
+ out,
+ parseError,
+ status);
+ if (U_FAILURE(status)) {
+ return;
}
- // If there was no negative pattern, or if the negative pattern is
- // identical to the positive pattern, then prepend the minus sign to the
- // positive pattern to form the negative pattern.
- if (fNegPrefixPattern == NULL ||
- (*fNegPrefixPattern == *fPosPrefixPattern
- && *fNegSuffixPattern == *fPosSuffixPattern)) {
- _copy_us_ptr(&fNegSuffixPattern, fPosSuffixPattern);
- if (fNegPrefixPattern == NULL) {
- fNegPrefixPattern = new UnicodeString();
+ setMinimumIntegerDigits(out.fMinimumIntegerDigits);
+ setMaximumIntegerDigits(out.fMaximumIntegerDigits);
+ setMinimumFractionDigits(out.fMinimumFractionDigits);
+ setMaximumFractionDigits(out.fMaximumFractionDigits);
+ setSignificantDigitsUsed(out.fUseSignificantDigits);
+ if (out.fUseSignificantDigits) {
+ setMinimumSignificantDigits(out.fMinimumSignificantDigits);
+ setMaximumSignificantDigits(out.fMaximumSignificantDigits);
+ }
+ fUseExponentialNotation = out.fUseExponentialNotation;
+ if (out.fUseExponentialNotation) {
+ fMinExponentDigits = out.fMinExponentDigits;
+ }
+ fExponentSignAlwaysShown = out.fExponentSignAlwaysShown;
+ fCurrencySignCount = out.fCurrencySignCount;
+ setGroupingUsed(out.fGroupingUsed);
+ if (out.fGroupingUsed) {
+ fGroupingSize = out.fGroupingSize;
+ fGroupingSize2 = out.fGroupingSize2;
+ }
+ setMultiplier(out.fMultiplier);
+ fDecimalSeparatorAlwaysShown = out.fDecimalSeparatorAlwaysShown;
+ fFormatWidth = out.fFormatWidth;
+ if (out.fRoundingIncrementUsed) {
+ if (fRoundingIncrement != NULL) {
+ *fRoundingIncrement = out.fRoundingIncrement;
+ } else {
+ fRoundingIncrement = new DigitList(out.fRoundingIncrement);
/* test for NULL */
- if (fNegPrefixPattern == 0) {
- status = U_MEMORY_ALLOCATION_ERROR;
- return;
+ if (fRoundingIncrement == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ return;
}
- } else {
- fNegPrefixPattern->remove();
}
- fNegPrefixPattern->append(kQuote).append(kPatternMinus)
- .append(*fPosPrefixPattern);
+ } else {
+ setRoundingIncrement(0.0);
}
-#ifdef FMT_DEBUG
- UnicodeString s;
- s.append("\"").append(pattern).append("\"->");
- debugout(s);
-#endif
- expandAffixes();
+ fPad = out.fPad;
+ switch (out.fPadPosition) {
+ case DecimalFormatPattern::kPadBeforePrefix:
+ fPadPosition = kPadBeforePrefix;
+ break;
+ case DecimalFormatPattern::kPadAfterPrefix:
+ fPadPosition = kPadAfterPrefix;
+ break;
+ case DecimalFormatPattern::kPadBeforeSuffix:
+ fPadPosition = kPadBeforeSuffix;
+ break;
+ case DecimalFormatPattern::kPadAfterSuffix:
+ fPadPosition = kPadAfterSuffix;
+ break;
+ }
+ copyString(out.fNegPrefixPattern, out.fNegPatternsBogus, fNegPrefixPattern, status);
+ copyString(out.fNegSuffixPattern, out.fNegPatternsBogus, fNegSuffixPattern, status);
+ copyString(out.fPosPrefixPattern, out.fPosPatternsBogus, fPosPrefixPattern, status);
+ copyString(out.fPosSuffixPattern, out.fPosPatternsBogus, fPosSuffixPattern, status);
+}
+
+
+void
+DecimalFormat::expandAffixAdjustWidth(const UnicodeString* pluralCount) {
+ expandAffixes(pluralCount);
if (fFormatWidth > 0) {
// Finish computing format width (see above)
- fFormatWidth += fPositivePrefix.length() + fPositiveSuffix.length();
+ // TODO: how to handle fFormatWidth,
+ // need to save in f(Plural)AffixesForCurrecy?
+ fFormatWidth += fPositivePrefix.length() + fPositiveSuffix.length();
+ }
+}
+
+
+void
+DecimalFormat::applyPattern(const UnicodeString& pattern,
+ UBool localized,
+ UParseError& parseError,
+ UErrorCode& status)
+{
+ // do the following re-set first. since they change private data by
+ // apply pattern again.
+ if (pattern.indexOf(kCurrencySign) != -1) {
+ if (fCurrencyPluralInfo == NULL) {
+ // initialize currencyPluralInfo if needed
+ fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
+ }
+ if (fAffixPatternsForCurrency == NULL) {
+ setupCurrencyAffixPatterns(status);
+ }
+ if (pattern.indexOf(fgTripleCurrencySign, 3, 0) != -1) {
+ // only setup the affixes of the current pattern.
+ setupCurrencyAffixes(pattern, TRUE, FALSE, status);
+ }
}
+ applyPatternWithoutExpandAffix(pattern, localized, parseError, status);
+ expandAffixAdjustWidth(NULL);
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
+}
+
+
+void
+DecimalFormat::applyPatternInternally(const UnicodeString& pluralCount,
+ const UnicodeString& pattern,
+ UBool localized,
+ UParseError& parseError,
+ UErrorCode& status) {
+ applyPatternWithoutExpandAffix(pattern, localized, parseError, status);
+ expandAffixAdjustWidth(&pluralCount);
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
}
+
/**
* Sets the maximum number of digits allowed in the integer portion of a
- * number. This override limits the integer digit count to 309.
+ * number.
* @see NumberFormat#setMaximumIntegerDigits
*/
void DecimalFormat::setMaximumIntegerDigits(int32_t newValue) {
- NumberFormat::setMaximumIntegerDigits(_min(newValue, kDoubleIntegerDigits));
+ NumberFormat::setMaximumIntegerDigits(_min(newValue, gDefaultMaxIntegerDigits));
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
}
/**
*/
void DecimalFormat::setMinimumIntegerDigits(int32_t newValue) {
NumberFormat::setMinimumIntegerDigits(_min(newValue, kDoubleIntegerDigits));
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
}
/**
*/
void DecimalFormat::setMaximumFractionDigits(int32_t newValue) {
NumberFormat::setMaximumFractionDigits(_min(newValue, kDoubleFractionDigits));
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
}
/**
*/
void DecimalFormat::setMinimumFractionDigits(int32_t newValue) {
NumberFormat::setMinimumFractionDigits(_min(newValue, kDoubleFractionDigits));
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
}
int32_t DecimalFormat::getMinimumSignificantDigits() const {
void DecimalFormat::setMinimumSignificantDigits(int32_t min) {
if (min < 1) {
- min = 1;
+ min = 1;
}
// pin max sig dig to >= min
int32_t max = _max(fMaxSignificantDigits, min);
fMinSignificantDigits = min;
fMaxSignificantDigits = max;
+ fUseSignificantDigits = TRUE;
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
}
void DecimalFormat::setMaximumSignificantDigits(int32_t max) {
int32_t min = _min(fMinSignificantDigits, max);
fMinSignificantDigits = min;
fMaxSignificantDigits = max;
+ fUseSignificantDigits = TRUE;
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
}
UBool DecimalFormat::areSignificantDigitsUsed() const {
void DecimalFormat::setSignificantDigitsUsed(UBool useSignificantDigits) {
fUseSignificantDigits = useSignificantDigits;
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
}
-void DecimalFormat::setCurrency(const UChar* theCurrency, UErrorCode& ec) {
+void DecimalFormat::setCurrencyInternally(const UChar* theCurrency,
+ UErrorCode& ec) {
// If we are a currency format, then modify our affixes to
// encode the currency symbol for the given currency in our
// locale, and adjust the decimal digits and rounding for the
// Note: The code is ordered so that this object is *not changed*
// until we are sure we are going to succeed.
-
+
// NULL or empty currency is *legal* and indicates no currency.
UBool isCurr = (theCurrency && *theCurrency);
double rounding = 0.0;
int32_t frac = 0;
- if (fIsCurrencyFormat && isCurr) {
+ if (fCurrencySignCount != fgCurrencySignCountZero && isCurr) {
rounding = ucurr_getRoundingIncrement(theCurrency, &ec);
frac = ucurr_getDefaultFractionDigits(theCurrency, &ec);
}
-
+
NumberFormat::setCurrency(theCurrency, ec);
if (U_FAILURE(ec)) return;
- if (fIsCurrencyFormat) {
+ if (fCurrencySignCount != fgCurrencySignCountZero) {
// NULL or empty currency is *legal* and indicates no currency.
if (isCurr) {
setRoundingIncrement(rounding);
setMinimumFractionDigits(frac);
setMaximumFractionDigits(frac);
}
- expandAffixes();
+ expandAffixes(NULL);
+ }
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
+}
+
+void DecimalFormat::setCurrency(const UChar* theCurrency, UErrorCode& ec) {
+ // set the currency before compute affixes to get the right currency names
+ NumberFormat::setCurrency(theCurrency, ec);
+ if (fFormatPattern.indexOf(fgTripleCurrencySign, 3, 0) != -1) {
+ UnicodeString savedPtn = fFormatPattern;
+ setupCurrencyAffixes(fFormatPattern, TRUE, TRUE, ec);
+ UParseError parseErr;
+ applyPattern(savedPtn, FALSE, parseErr, ec);
}
+ // set the currency after apply pattern to get the correct rounding/fraction
+ setCurrencyInternally(theCurrency, ec);
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
}
// Deprecated variant with no UErrorCode parameter
void DecimalFormat::setCurrency(const UChar* theCurrency) {
UErrorCode ec = U_ZERO_ERROR;
setCurrency(theCurrency, ec);
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
}
void DecimalFormat::getEffectiveCurrency(UChar* result, UErrorCode& ec) const {
* formats.
*/
int32_t
-DecimalFormat::precision(UBool isIntegral) const {
+DecimalFormat::precision() const {
if (areSignificantDigitsUsed()) {
return getMaximumSignificantDigits();
} else if (fUseExponentialNotation) {
return getMinimumIntegerDigits() + getMaximumFractionDigits();
} else {
- return isIntegral ? 0 : getMaximumFractionDigits();
+ return getMaximumFractionDigits();
+ }
+}
+
+
+// TODO: template algorithm
+Hashtable*
+DecimalFormat::initHashForAffix(UErrorCode& status) {
+ if ( U_FAILURE(status) ) {
+ return NULL;
+ }
+ Hashtable* hTable;
+ if ( (hTable = new Hashtable(TRUE, status)) == NULL ) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ return NULL;
+ }
+ if ( U_FAILURE(status) ) {
+ delete hTable;
+ return NULL;
+ }
+ hTable->setValueComparator(decimfmtAffixValueComparator);
+ return hTable;
+}
+
+Hashtable*
+DecimalFormat::initHashForAffixPattern(UErrorCode& status) {
+ if ( U_FAILURE(status) ) {
+ return NULL;
+ }
+ Hashtable* hTable;
+ if ( (hTable = new Hashtable(TRUE, status)) == NULL ) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ return NULL;
+ }
+ if ( U_FAILURE(status) ) {
+ delete hTable;
+ return NULL;
+ }
+ hTable->setValueComparator(decimfmtAffixPatternValueComparator);
+ return hTable;
+}
+
+void
+DecimalFormat::deleteHashForAffix(Hashtable*& table)
+{
+ if ( table == NULL ) {
+ return;
+ }
+ int32_t pos = -1;
+ const UHashElement* element = NULL;
+ while ( (element = table->nextElement(pos)) != NULL ) {
+ const UHashTok valueTok = element->value;
+ const AffixesForCurrency* value = (AffixesForCurrency*)valueTok.pointer;
+ delete value;
+ }
+ delete table;
+ table = NULL;
+}
+
+
+
+void
+DecimalFormat::deleteHashForAffixPattern()
+{
+ if ( fAffixPatternsForCurrency == NULL ) {
+ return;
+ }
+ int32_t pos = -1;
+ const UHashElement* element = NULL;
+ while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) {
+ const UHashTok valueTok = element->value;
+ const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer;
+ delete value;
+ }
+ delete fAffixPatternsForCurrency;
+ fAffixPatternsForCurrency = NULL;
+}
+
+
+void
+DecimalFormat::copyHashForAffixPattern(const Hashtable* source,
+ Hashtable* target,
+ UErrorCode& status) {
+ if ( U_FAILURE(status) ) {
+ return;
+ }
+ int32_t pos = -1;
+ const UHashElement* element = NULL;
+ if ( source ) {
+ while ( (element = source->nextElement(pos)) != NULL ) {
+ const UHashTok keyTok = element->key;
+ const UnicodeString* key = (UnicodeString*)keyTok.pointer;
+ const UHashTok valueTok = element->value;
+ const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer;
+ AffixPatternsForCurrency* copy = new AffixPatternsForCurrency(
+ value->negPrefixPatternForCurrency,
+ value->negSuffixPatternForCurrency,
+ value->posPrefixPatternForCurrency,
+ value->posSuffixPatternForCurrency,
+ value->patternType);
+ target->put(UnicodeString(*key), copy, status);
+ if ( U_FAILURE(status) ) {
+ return;
+ }
+ }
+ }
+}
+
+// this is only overridden to call handleChanged() for fastpath purposes.
+void
+DecimalFormat::setGroupingUsed(UBool newValue) {
+ NumberFormat::setGroupingUsed(newValue);
+ handleChanged();
+}
+
+// this is only overridden to call handleChanged() for fastpath purposes.
+void
+DecimalFormat::setParseIntegerOnly(UBool newValue) {
+ NumberFormat::setParseIntegerOnly(newValue);
+ handleChanged();
+}
+
+// this is only overridden to call handleChanged() for fastpath purposes.
+// setContext doesn't affect the fastPath right now, but this is called for completeness
+void
+DecimalFormat::setContext(UDisplayContext value, UErrorCode& status) {
+ NumberFormat::setContext(value, status);
+ handleChanged();
+}
+
+
+DecimalFormat& DecimalFormat::setAttribute( UNumberFormatAttribute attr,
+ int32_t newValue,
+ UErrorCode &status) {
+ if(U_FAILURE(status)) return *this;
+
+ switch(attr) {
+ case UNUM_LENIENT_PARSE:
+ setLenient(newValue!=0);
+ break;
+
+ case UNUM_PARSE_INT_ONLY:
+ setParseIntegerOnly(newValue!=0);
+ break;
+
+ case UNUM_GROUPING_USED:
+ setGroupingUsed(newValue!=0);
+ break;
+
+ case UNUM_DECIMAL_ALWAYS_SHOWN:
+ setDecimalSeparatorAlwaysShown(newValue!=0);
+ break;
+
+ case UNUM_MAX_INTEGER_DIGITS:
+ setMaximumIntegerDigits(newValue);
+ break;
+
+ case UNUM_MIN_INTEGER_DIGITS:
+ setMinimumIntegerDigits(newValue);
+ break;
+
+ case UNUM_INTEGER_DIGITS:
+ setMinimumIntegerDigits(newValue);
+ setMaximumIntegerDigits(newValue);
+ break;
+
+ case UNUM_MAX_FRACTION_DIGITS:
+ setMaximumFractionDigits(newValue);
+ break;
+
+ case UNUM_MIN_FRACTION_DIGITS:
+ setMinimumFractionDigits(newValue);
+ break;
+
+ case UNUM_FRACTION_DIGITS:
+ setMinimumFractionDigits(newValue);
+ setMaximumFractionDigits(newValue);
+ break;
+
+ case UNUM_SIGNIFICANT_DIGITS_USED:
+ setSignificantDigitsUsed(newValue!=0);
+ break;
+
+ case UNUM_MAX_SIGNIFICANT_DIGITS:
+ setMaximumSignificantDigits(newValue);
+ break;
+
+ case UNUM_MIN_SIGNIFICANT_DIGITS:
+ setMinimumSignificantDigits(newValue);
+ break;
+
+ case UNUM_MULTIPLIER:
+ setMultiplier(newValue);
+ break;
+
+ case UNUM_GROUPING_SIZE:
+ setGroupingSize(newValue);
+ break;
+
+ case UNUM_ROUNDING_MODE:
+ setRoundingMode((DecimalFormat::ERoundingMode)newValue);
+ break;
+
+ case UNUM_FORMAT_WIDTH:
+ setFormatWidth(newValue);
+ break;
+
+ case UNUM_PADDING_POSITION:
+ /** The position at which padding will take place. */
+ setPadPosition((DecimalFormat::EPadPosition)newValue);
+ break;
+
+ case UNUM_SECONDARY_GROUPING_SIZE:
+ setSecondaryGroupingSize(newValue);
+ break;
+
+#if UCONFIG_HAVE_PARSEALLINPUT
+ case UNUM_PARSE_ALL_INPUT:
+ setParseAllInput((UNumberFormatAttributeValue)newValue);
+ break;
+#endif
+
+ /* These are stored in fBoolFlags */
+ case UNUM_PARSE_NO_EXPONENT:
+ case UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS:
+ if(!fBoolFlags.isValidValue(newValue)) {
+ status = U_ILLEGAL_ARGUMENT_ERROR;
+ } else {
+ fBoolFlags.set(attr, newValue);
+ }
+ break;
+
+ case UNUM_SCALE:
+ fScale = newValue;
+ break;
+
+ default:
+ status = U_UNSUPPORTED_ERROR;
+ break;
+ }
+ return *this;
+}
+
+int32_t DecimalFormat::getAttribute( UNumberFormatAttribute attr,
+ UErrorCode &status ) const {
+ if(U_FAILURE(status)) return -1;
+ switch(attr) {
+ case UNUM_LENIENT_PARSE:
+ return isLenient();
+
+ case UNUM_PARSE_INT_ONLY:
+ return isParseIntegerOnly();
+
+ case UNUM_GROUPING_USED:
+ return isGroupingUsed();
+
+ case UNUM_DECIMAL_ALWAYS_SHOWN:
+ return isDecimalSeparatorAlwaysShown();
+
+ case UNUM_MAX_INTEGER_DIGITS:
+ return getMaximumIntegerDigits();
+
+ case UNUM_MIN_INTEGER_DIGITS:
+ return getMinimumIntegerDigits();
+
+ case UNUM_INTEGER_DIGITS:
+ // TBD: what should this return?
+ return getMinimumIntegerDigits();
+
+ case UNUM_MAX_FRACTION_DIGITS:
+ return getMaximumFractionDigits();
+
+ case UNUM_MIN_FRACTION_DIGITS:
+ return getMinimumFractionDigits();
+
+ case UNUM_FRACTION_DIGITS:
+ // TBD: what should this return?
+ return getMinimumFractionDigits();
+
+ case UNUM_SIGNIFICANT_DIGITS_USED:
+ return areSignificantDigitsUsed();
+
+ case UNUM_MAX_SIGNIFICANT_DIGITS:
+ return getMaximumSignificantDigits();
+
+ case UNUM_MIN_SIGNIFICANT_DIGITS:
+ return getMinimumSignificantDigits();
+
+ case UNUM_MULTIPLIER:
+ return getMultiplier();
+
+ case UNUM_GROUPING_SIZE:
+ return getGroupingSize();
+
+ case UNUM_ROUNDING_MODE:
+ return getRoundingMode();
+
+ case UNUM_FORMAT_WIDTH:
+ return getFormatWidth();
+
+ case UNUM_PADDING_POSITION:
+ return getPadPosition();
+
+ case UNUM_SECONDARY_GROUPING_SIZE:
+ return getSecondaryGroupingSize();
+
+ /* These are stored in fBoolFlags */
+ case UNUM_PARSE_NO_EXPONENT:
+ case UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS:
+ return fBoolFlags.get(attr);
+
+ case UNUM_SCALE:
+ return fScale;
+
+ default:
+ status = U_UNSUPPORTED_ERROR;
+ break;
+ }
+
+ return -1; /* undefined */
+}
+
+#if UCONFIG_HAVE_PARSEALLINPUT
+void DecimalFormat::setParseAllInput(UNumberFormatAttributeValue value) {
+ fParseAllInput = value;
+#if UCONFIG_FORMAT_FASTPATHS_49
+ handleChanged();
+#endif
+}
+#endif
+
+void
+DecimalFormat::copyHashForAffix(const Hashtable* source,
+ Hashtable* target,
+ UErrorCode& status) {
+ if ( U_FAILURE(status) ) {
+ return;
+ }
+ int32_t pos = -1;
+ const UHashElement* element = NULL;
+ if ( source ) {
+ while ( (element = source->nextElement(pos)) != NULL ) {
+ const UHashTok keyTok = element->key;
+ const UnicodeString* key = (UnicodeString*)keyTok.pointer;
+
+ const UHashTok valueTok = element->value;
+ const AffixesForCurrency* value = (AffixesForCurrency*)valueTok.pointer;
+ AffixesForCurrency* copy = new AffixesForCurrency(
+ value->negPrefixForCurrency,
+ value->negSuffixForCurrency,
+ value->posPrefixForCurrency,
+ value->posSuffixForCurrency);
+ target->put(UnicodeString(*key), copy, status);
+ if ( U_FAILURE(status) ) {
+ return;
+ }
+ }
}
}