2 ******************************************************************************
3 * Copyright (C) 1997-2011, International Business Machines
4 * Corporation and others. All Rights Reserved.
5 ******************************************************************************
6 * file name: nfrule.cpp
8 * tab size: 8 (not used)
11 * Modification history
13 * 10/11/2001 Doug Ported from ICU4J
20 #include "unicode/rbnf.h"
21 #include "unicode/tblcoll.h"
22 #include "unicode/coleitr.h"
23 #include "unicode/uchar.h"
27 #include "patternprops.h"
31 NFRule::NFRule(const RuleBasedNumberFormat
* _rbnf
)
32 : baseValue((int32_t)0)
48 static const UChar gLeftBracket
= 0x005b;
49 static const UChar gRightBracket
= 0x005d;
50 static const UChar gColon
= 0x003a;
51 static const UChar gZero
= 0x0030;
52 static const UChar gNine
= 0x0039;
53 static const UChar gSpace
= 0x0020;
54 static const UChar gSlash
= 0x002f;
55 static const UChar gGreaterThan
= 0x003e;
56 static const UChar gLessThan
= 0x003c;
57 static const UChar gComma
= 0x002c;
58 static const UChar gDot
= 0x002e;
59 static const UChar gTick
= 0x0027;
60 //static const UChar gMinus = 0x002d;
61 static const UChar gSemicolon
= 0x003b;
63 static const UChar gMinusX
[] = {0x2D, 0x78, 0}; /* "-x" */
64 static const UChar gXDotX
[] = {0x78, 0x2E, 0x78, 0}; /* "x.x" */
65 static const UChar gXDotZero
[] = {0x78, 0x2E, 0x30, 0}; /* "x.0" */
66 static const UChar gZeroDotX
[] = {0x30, 0x2E, 0x78, 0}; /* "0.x" */
68 static const UChar gLessLess
[] = {0x3C, 0x3C, 0}; /* "<<" */
69 static const UChar gLessPercent
[] = {0x3C, 0x25, 0}; /* "<%" */
70 static const UChar gLessHash
[] = {0x3C, 0x23, 0}; /* "<#" */
71 static const UChar gLessZero
[] = {0x3C, 0x30, 0}; /* "<0" */
72 static const UChar gGreaterGreater
[] = {0x3E, 0x3E, 0}; /* ">>" */
73 static const UChar gGreaterPercent
[] = {0x3E, 0x25, 0}; /* ">%" */
74 static const UChar gGreaterHash
[] = {0x3E, 0x23, 0}; /* ">#" */
75 static const UChar gGreaterZero
[] = {0x3E, 0x30, 0}; /* ">0" */
76 static const UChar gEqualPercent
[] = {0x3D, 0x25, 0}; /* "=%" */
77 static const UChar gEqualHash
[] = {0x3D, 0x23, 0}; /* "=#" */
78 static const UChar gEqualZero
[] = {0x3D, 0x30, 0}; /* "=0" */
79 static const UChar gGreaterGreaterGreater
[] = {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */
81 static const UChar
* const tokenStrings
[] = {
82 gLessLess
, gLessPercent
, gLessHash
, gLessZero
,
83 gGreaterGreater
, gGreaterPercent
,gGreaterHash
, gGreaterZero
,
84 gEqualPercent
, gEqualHash
, gEqualZero
, NULL
88 NFRule::makeRules(UnicodeString
& description
,
89 const NFRuleSet
*ruleSet
,
90 const NFRule
*predecessor
,
91 const RuleBasedNumberFormat
*rbnf
,
95 // we know we're making at least one rule, so go ahead and
96 // new it up and initialize its basevalue and divisor
97 // (this also strips the rule descriptor, if any, off the
99 NFRule
* rule1
= new NFRule(rbnf
);
102 status
= U_MEMORY_ALLOCATION_ERROR
;
105 rule1
->parseRuleDescriptor(description
, status
);
107 // check the description to see whether there's text enclosed
109 int32_t brack1
= description
.indexOf(gLeftBracket
);
110 int32_t brack2
= description
.indexOf(gRightBracket
);
112 // if the description doesn't contain a matched pair of brackets,
113 // or if it's of a type that doesn't recognize bracketed text,
114 // then leave the description alone, initialize the rule's
115 // rule text and substitutions, and return that rule
116 if (brack1
== -1 || brack2
== -1 || brack1
> brack2
117 || rule1
->getType() == kProperFractionRule
118 || rule1
->getType() == kNegativeNumberRule
) {
119 rule1
->ruleText
= description
;
120 rule1
->extractSubstitutions(ruleSet
, predecessor
, rbnf
, status
);
123 // if the description does contain a matched pair of brackets,
124 // then it's really shorthand for two rules (with one exception)
125 NFRule
* rule2
= NULL
;
128 // we'll actually only split the rule into two rules if its
129 // base value is an even multiple of its divisor (or it's one
130 // of the special rules)
131 if ((rule1
->baseValue
> 0
132 && (rule1
->baseValue
% util64_pow(rule1
->radix
, rule1
->exponent
)) == 0)
133 || rule1
->getType() == kImproperFractionRule
134 || rule1
->getType() == kMasterRule
) {
136 // if it passes that test, new up the second rule. If the
137 // rule set both rules will belong to is a fraction rule
138 // set, they both have the same base value; otherwise,
139 // increment the original rule's base value ("rule1" actually
140 // goes SECOND in the rule set's rule list)
141 rule2
= new NFRule(rbnf
);
144 status
= U_MEMORY_ALLOCATION_ERROR
;
147 if (rule1
->baseValue
>= 0) {
148 rule2
->baseValue
= rule1
->baseValue
;
149 if (!ruleSet
->isFractionRuleSet()) {
154 // if the description began with "x.x" and contains bracketed
155 // text, it describes both the improper fraction rule and
156 // the proper fraction rule
157 else if (rule1
->getType() == kImproperFractionRule
) {
158 rule2
->setType(kProperFractionRule
);
161 // if the description began with "x.0" and contains bracketed
162 // text, it describes both the master rule and the
163 // improper fraction rule
164 else if (rule1
->getType() == kMasterRule
) {
165 rule2
->baseValue
= rule1
->baseValue
;
166 rule1
->setType(kImproperFractionRule
);
169 // both rules have the same radix and exponent (i.e., the
171 rule2
->radix
= rule1
->radix
;
172 rule2
->exponent
= rule1
->exponent
;
174 // rule2's rule text omits the stuff in brackets: initalize
175 // its rule text and substitutions accordingly
176 sbuf
.append(description
, 0, brack1
);
177 if (brack2
+ 1 < description
.length()) {
178 sbuf
.append(description
, brack2
+ 1, description
.length() - brack2
- 1);
180 rule2
->ruleText
.setTo(sbuf
);
181 rule2
->extractSubstitutions(ruleSet
, predecessor
, rbnf
, status
);
184 // rule1's text includes the text in the brackets but omits
185 // the brackets themselves: initialize _its_ rule text and
186 // substitutions accordingly
187 sbuf
.setTo(description
, 0, brack1
);
188 sbuf
.append(description
, brack1
+ 1, brack2
- brack1
- 1);
189 if (brack2
+ 1 < description
.length()) {
190 sbuf
.append(description
, brack2
+ 1, description
.length() - brack2
- 1);
192 rule1
->ruleText
.setTo(sbuf
);
193 rule1
->extractSubstitutions(ruleSet
, predecessor
, rbnf
, status
);
195 // if we only have one rule, return it; if we have two, return
196 // a two-element array containing them (notice that rule2 goes
197 // BEFORE rule1 in the list: in all cases, rule2 OMITS the
198 // material in the brackets and rule1 INCLUDES the material
208 * This function parses the rule's rule descriptor (i.e., the base
209 * value and/or other tokens that precede the rule's rule text
210 * in the description) and sets the rule's base value, radix, and
211 * exponent according to the descriptor. (If the description doesn't
212 * include a rule descriptor, then this function sets everything to
213 * default values and the rule set sets the rule's real base value).
214 * @param description The rule's description
215 * @return If "description" included a rule descriptor, this is
216 * "description" with the descriptor and any trailing whitespace
217 * stripped off. Otherwise; it's "descriptor" unchangd.
220 NFRule::parseRuleDescriptor(UnicodeString
& description
, UErrorCode
& status
)
222 // the description consists of a rule descriptor and a rule body,
223 // separated by a colon. The rule descriptor is optional. If
224 // it's omitted, just set the base value to 0.
225 int32_t p
= description
.indexOf(gColon
);
227 setBaseValue((int32_t)0, status
);
229 // copy the descriptor out into its own string and strip it,
230 // along with any trailing whitespace, out of the original
232 UnicodeString descriptor
;
233 descriptor
.setTo(description
, 0, p
);
236 while (p
< description
.length() && PatternProps::isWhiteSpace(description
.charAt(p
))) {
239 description
.removeBetween(0, p
);
241 // check first to see if the rule descriptor matches the token
242 // for one of the special rules. If it does, set the base
243 // value to the correct identfier value
244 if (0 == descriptor
.compare(gMinusX
, 2)) {
245 setType(kNegativeNumberRule
);
247 else if (0 == descriptor
.compare(gXDotX
, 3)) {
248 setType(kImproperFractionRule
);
250 else if (0 == descriptor
.compare(gZeroDotX
, 3)) {
251 setType(kProperFractionRule
);
253 else if (0 == descriptor
.compare(gXDotZero
, 3)) {
254 setType(kMasterRule
);
257 // if the rule descriptor begins with a digit, it's a descriptor
259 // since we don't have Long.parseLong, and this isn't much work anyway,
260 // just build up the value as we encounter the digits.
261 else if (descriptor
.charAt(0) >= gZero
&& descriptor
.charAt(0) <= gNine
) {
266 // begin parsing the descriptor: copy digits
267 // into "tempValue", skip periods, commas, and spaces,
268 // stop on a slash or > sign (or at the end of the string),
269 // and throw an exception on any other character
271 while (p
< descriptor
.length()) {
272 c
= descriptor
.charAt(p
);
273 if (c
>= gZero
&& c
<= gNine
) {
274 val
= val
* ll_10
+ (int32_t)(c
- gZero
);
276 else if (c
== gSlash
|| c
== gGreaterThan
) {
279 else if (PatternProps::isWhiteSpace(c
) || c
== gComma
|| c
== gDot
) {
282 // throw new IllegalArgumentException("Illegal character in rule descriptor");
283 status
= U_PARSE_ERROR
;
289 // we have the base value, so set it
290 setBaseValue(val
, status
);
292 // if we stopped the previous loop on a slash, we're
293 // now parsing the rule's radix. Again, accumulate digits
294 // in tempValue, skip punctuation, stop on a > mark, and
295 // throw an exception on anything else
300 while (p
< descriptor
.length()) {
301 c
= descriptor
.charAt(p
);
302 if (c
>= gZero
&& c
<= gNine
) {
303 val
= val
* ll_10
+ (int32_t)(c
- gZero
);
305 else if (c
== gGreaterThan
) {
308 else if (PatternProps::isWhiteSpace(c
) || c
== gComma
|| c
== gDot
) {
311 // throw new IllegalArgumentException("Illegal character is rule descriptor");
312 status
= U_PARSE_ERROR
;
318 // tempValue now contain's the rule's radix. Set it
319 // accordingly, and recalculate the rule's exponent
320 radix
= (int32_t)val
;
322 // throw new IllegalArgumentException("Rule can't have radix of 0");
323 status
= U_PARSE_ERROR
;
326 exponent
= expectedExponent();
329 // if we stopped the previous loop on a > sign, then continue
330 // for as long as we still see > signs. For each one,
331 // decrement the exponent (unless the exponent is already 0).
332 // If we see another character before reaching the end of
333 // the descriptor, that's also a syntax error.
334 if (c
== gGreaterThan
) {
335 while (p
< descriptor
.length()) {
336 c
= descriptor
.charAt(p
);
337 if (c
== gGreaterThan
&& exponent
> 0) {
340 // throw new IllegalArgumentException("Illegal character in rule descriptor");
341 status
= U_PARSE_ERROR
;
350 // finally, if the rule body begins with an apostrophe, strip it off
351 // (this is generally used to put whitespace at the beginning of
352 // a rule's rule text)
353 if (description
.length() > 0 && description
.charAt(0) == gTick
) {
354 description
.removeBetween(0, 1);
357 // return the description with all the stuff we've just waded through
358 // stripped off the front. It now contains just the rule body.
359 // return description;
363 * Searches the rule's rule text for the substitution tokens,
364 * creates the substitutions, and removes the substitution tokens
365 * from the rule's rule text.
366 * @param owner The rule set containing this rule
367 * @param predecessor The rule preseding this one in "owners" rule list
368 * @param ownersOwner The RuleBasedFormat that owns this rule
371 NFRule::extractSubstitutions(const NFRuleSet
* ruleSet
,
372 const NFRule
* predecessor
,
373 const RuleBasedNumberFormat
* rbnf
,
376 if (U_SUCCESS(status
)) {
377 sub1
= extractSubstitution(ruleSet
, predecessor
, rbnf
, status
);
378 sub2
= extractSubstitution(ruleSet
, predecessor
, rbnf
, status
);
383 * Searches the rule's rule text for the first substitution token,
384 * creates a substitution based on it, and removes the token from
385 * the rule's rule text.
386 * @param owner The rule set containing this rule
387 * @param predecessor The rule preceding this one in the rule set's
389 * @param ownersOwner The RuleBasedNumberFormat that owns this rule
390 * @return The newly-created substitution. This is never null; if
391 * the rule text doesn't contain any substitution tokens, this will
392 * be a NullSubstitution.
395 NFRule::extractSubstitution(const NFRuleSet
* ruleSet
,
396 const NFRule
* predecessor
,
397 const RuleBasedNumberFormat
* rbnf
,
400 NFSubstitution
* result
= NULL
;
402 // search the rule's rule text for the first two characters of
403 // a substitution token
404 int32_t subStart
= indexOfAny(tokenStrings
);
405 int32_t subEnd
= subStart
;
407 // if we didn't find one, create a null substitution positioned
408 // at the end of the rule text
409 if (subStart
== -1) {
410 return NFSubstitution::makeSubstitution(ruleText
.length(), this, predecessor
,
411 ruleSet
, rbnf
, UnicodeString(), status
);
414 // special-case the ">>>" token, since searching for the > at the
415 // end will actually find the > in the middle
416 if (ruleText
.indexOf(gGreaterGreaterGreater
, 3, 0) == subStart
) {
417 subEnd
= subStart
+ 2;
419 // otherwise the substitution token ends with the same character
422 UChar c
= ruleText
.charAt(subStart
);
423 subEnd
= ruleText
.indexOf(c
, subStart
+ 1);
424 // special case for '<%foo<<'
425 if (c
== gLessThan
&& subEnd
!= -1 && subEnd
< ruleText
.length() - 1 && ruleText
.charAt(subEnd
+1) == c
) {
426 // ordinals use "=#,##0==%abbrev=" as their rule. Notice that the '==' in the middle
427 // occurs because of the juxtaposition of two different rules. The check for '<' is a hack
428 // to get around this. Having the duplicate at the front would cause problems with
429 // rules like "<<%" to format, say, percents...
434 // if we don't find the end of the token (i.e., if we're on a single,
435 // unmatched token character), create a null substitution positioned
436 // at the end of the rule
438 return NFSubstitution::makeSubstitution(ruleText
.length(), this, predecessor
,
439 ruleSet
, rbnf
, UnicodeString(), status
);
442 // if we get here, we have a real substitution token (or at least
443 // some text bounded by substitution token characters). Use
444 // makeSubstitution() to create the right kind of substitution
445 UnicodeString subToken
;
446 subToken
.setTo(ruleText
, subStart
, subEnd
+ 1 - subStart
);
447 result
= NFSubstitution::makeSubstitution(subStart
, this, predecessor
, ruleSet
,
448 rbnf
, subToken
, status
);
450 // remove the substitution from the rule text
451 ruleText
.removeBetween(subStart
, subEnd
+1);
457 * Sets the rule's base value, and causes the radix and exponent
458 * to be recalculated. This is used during construction when we
459 * don't know the rule's base value until after it's been
460 * constructed. It should be used at any other time.
461 * @param The new base value for the rule.
464 NFRule::setBaseValue(int64_t newBaseValue
, UErrorCode
& status
)
466 // set the base value
467 baseValue
= newBaseValue
;
469 // if this isn't a special rule, recalculate the radix and exponent
470 // (the radix always defaults to 10; if it's supposed to be something
471 // else, it's cleaned up by the caller and the exponent is
472 // recalculated again-- the only function that does this is
473 // NFRule.parseRuleDescriptor() )
474 if (baseValue
>= 1) {
476 exponent
= expectedExponent();
478 // this function gets called on a fully-constructed rule whose
479 // description didn't specify a base value. This means it
480 // has substitutions, and some substitutions hold on to copies
481 // of the rule's divisor. Fix their copies of the divisor.
483 sub1
->setDivisor(radix
, exponent
, status
);
486 sub2
->setDivisor(radix
, exponent
, status
);
489 // if this is a special rule, its radix and exponent are basically
490 // ignored. Set them to "safe" default values
498 * This calculates the rule's exponent based on its radix and base
499 * value. This will be the highest power the radix can be raised to
500 * and still produce a result less than or equal to the base value.
503 NFRule::expectedExponent() const
505 // since the log of 0, or the log base 0 of something, causes an
506 // error, declare the exponent in these cases to be 0 (we also
507 // deal with the special-rule identifiers here)
508 if (radix
== 0 || baseValue
< 1) {
512 // we get rounding error in some cases-- for example, log 1000 / log 10
513 // gives us 1.9999999996 instead of 2. The extra logic here is to take
515 int16_t tempResult
= (int16_t)(uprv_log((double)baseValue
) / uprv_log((double)radix
));
516 int64_t temp
= util64_pow(radix
, tempResult
+ 1);
517 if (temp
<= baseValue
) {
524 * Searches the rule's rule text for any of the specified strings.
525 * @param strings An array of strings to search the rule's rule
527 * @return The index of the first match in the rule's rule text
528 * (i.e., the first substring in the rule's rule text that matches
529 * _any_ of the strings in "strings"). If none of the strings in
530 * "strings" is found in the rule's rule text, returns -1.
533 NFRule::indexOfAny(const UChar
* const strings
[]) const
536 for (int i
= 0; strings
[i
]; i
++) {
537 int32_t pos
= ruleText
.indexOf(*strings
[i
]);
538 if (pos
!= -1 && (result
== -1 || pos
< result
)) {
545 //-----------------------------------------------------------------------
547 //-----------------------------------------------------------------------
550 * Tests two rules for equality.
551 * @param that The rule to compare this one against
552 * @return True is the two rules are functionally equivalent
555 NFRule::operator==(const NFRule
& rhs
) const
557 return baseValue
== rhs
.baseValue
558 && radix
== rhs
.radix
559 && exponent
== rhs
.exponent
560 && ruleText
== rhs
.ruleText
561 && *sub1
== *rhs
.sub1
562 && *sub2
== *rhs
.sub2
;
566 * Returns a textual representation of the rule. This won't
567 * necessarily be the same as the description that this rule
568 * was created with, but it will produce the same result.
569 * @return A textual description of the rule
571 static void util_append64(UnicodeString
& result
, int64_t n
)
574 int32_t len
= util64_tou(n
, buffer
, sizeof(buffer
));
575 UnicodeString
temp(buffer
, len
);
580 NFRule::_appendRuleText(UnicodeString
& result
) const
583 case kNegativeNumberRule
: result
.append(gMinusX
, 2); break;
584 case kImproperFractionRule
: result
.append(gXDotX
, 3); break;
585 case kProperFractionRule
: result
.append(gZeroDotX
, 3); break;
586 case kMasterRule
: result
.append(gXDotZero
, 3); break;
588 // for a normal rule, write out its base value, and if the radix is
589 // something other than 10, write out the radix (with the preceding
590 // slash, of course). Then calculate the expected exponent and if
591 // if isn't the same as the actual exponent, write an appropriate
592 // number of > signs. Finally, terminate the whole thing with
594 util_append64(result
, baseValue
);
596 result
.append(gSlash
);
597 util_append64(result
, radix
);
599 int numCarets
= expectedExponent() - exponent
;
600 for (int i
= 0; i
< numCarets
; i
++) {
601 result
.append(gGreaterThan
);
605 result
.append(gColon
);
606 result
.append(gSpace
);
608 // if the rule text begins with a space, write an apostrophe
609 // (whitespace after the rule descriptor is ignored; the
610 // apostrophe is used to make the whitespace significant)
611 if (ruleText
.charAt(0) == gSpace
&& sub1
->getPos() != 0) {
612 result
.append(gTick
);
615 // now, write the rule's rule text, inserting appropriate
616 // substitution tokens in the appropriate places
617 UnicodeString ruleTextCopy
;
618 ruleTextCopy
.setTo(ruleText
);
621 sub2
->toString(temp
);
622 ruleTextCopy
.insert(sub2
->getPos(), temp
);
623 sub1
->toString(temp
);
624 ruleTextCopy
.insert(sub1
->getPos(), temp
);
626 result
.append(ruleTextCopy
);
628 // and finally, top the whole thing off with a semicolon and
630 result
.append(gSemicolon
);
633 //-----------------------------------------------------------------------
635 //-----------------------------------------------------------------------
638 * Formats the number, and inserts the resulting text into
640 * @param number The number being formatted
641 * @param toInsertInto The string where the resultant text should
643 * @param pos The position in toInsertInto where the resultant text
647 NFRule::doFormat(int64_t number
, UnicodeString
& toInsertInto
, int32_t pos
) const
649 // first, insert the rule's rule text into toInsertInto at the
650 // specified position, then insert the results of the substitutions
651 // into the right places in toInsertInto (notice we do the
652 // substitutions in reverse order so that the offsets don't get
654 toInsertInto
.insert(pos
, ruleText
);
655 sub2
->doSubstitution(number
, toInsertInto
, pos
);
656 sub1
->doSubstitution(number
, toInsertInto
, pos
);
660 * Formats the number, and inserts the resulting text into
662 * @param number The number being formatted
663 * @param toInsertInto The string where the resultant text should
665 * @param pos The position in toInsertInto where the resultant text
669 NFRule::doFormat(double number
, UnicodeString
& toInsertInto
, int32_t pos
) const
671 // first, insert the rule's rule text into toInsertInto at the
672 // specified position, then insert the results of the substitutions
673 // into the right places in toInsertInto
674 // [again, we have two copies of this routine that do the same thing
675 // so that we don't sacrifice precision in a long by casting it
677 toInsertInto
.insert(pos
, ruleText
);
678 sub2
->doSubstitution(number
, toInsertInto
, pos
);
679 sub1
->doSubstitution(number
, toInsertInto
, pos
);
683 * Used by the owning rule set to determine whether to invoke the
684 * rollback rule (i.e., whether this rule or the one that precedes
685 * it in the rule set's list should be used to format the number)
686 * @param The number being formatted
687 * @return True if the rule set should use the rule that precedes
688 * this one in its list; false if it should use this rule
691 NFRule::shouldRollBack(double number
) const
693 // we roll back if the rule contains a modulus substitution,
694 // the number being formatted is an even multiple of the rule's
695 // divisor, and the rule's base value is NOT an even multiple
697 // In other words, if the original description had
698 // 100: << hundred[ >>];
701 // 101: << hundred >>;
702 // internally. But when we're formatting 200, if we use the rule
703 // at 101, which would normally apply, we get "two hundred zero".
704 // To prevent this, we roll back and use the rule at 100 instead.
705 // This is the logic that makes this happen: the rule at 101 has
706 // a modulus substitution, its base value isn't an even multiple
707 // of 100, and the value we're trying to format _is_ an even
708 // multiple of 100. This is called the "rollback rule."
709 if ((sub1
->isModulusSubstitution()) || (sub2
->isModulusSubstitution())) {
710 int64_t re
= util64_pow(radix
, exponent
);
711 return uprv_fmod(number
, (double)re
) == 0 && (baseValue
% re
) != 0;
716 //-----------------------------------------------------------------------
718 //-----------------------------------------------------------------------
721 * Attempts to parse the string with this rule.
722 * @param text The string being parsed
723 * @param parsePosition On entry, the value is ignored and assumed to
724 * be 0. On exit, this has been updated with the position of the first
725 * character not consumed by matching the text against this rule
726 * (if this rule doesn't match the text at all, the parse position
727 * if left unchanged (presumably at 0) and the function returns
729 * @param isFractionRule True if this rule is contained within a
730 * fraction rule set. This is only used if the rule has no
732 * @return If this rule matched the text, this is the rule's base value
733 * combined appropriately with the results of parsing the substitutions.
734 * If nothing matched, this is new Long(0) and the parse position is
735 * left unchanged. The result will be an instance of Long if the
736 * result is an integer and Double otherwise. The result is never null.
741 static void dumpUS(FILE* f
, const UnicodeString
& us
) {
742 int len
= us
.length();
743 char* buf
= (char *)uprv_malloc((len
+1)*sizeof(char)); //new char[len+1];
745 us
.extract(0, len
, buf
);
747 fprintf(f
, "%s", buf
);
748 uprv_free(buf
); //delete[] buf;
754 NFRule::doParse(const UnicodeString
& text
,
755 ParsePosition
& parsePosition
,
756 UBool isFractionRule
,
759 UBool isDecimFmtParseable
) const
761 // internally we operate on a copy of the string being parsed
762 // (because we're going to change it) and use our own ParsePosition
764 UnicodeString
workText(text
);
766 // check to see whether the text before the first substitution
767 // matches the text at the beginning of the string being
768 // parsed. If it does, strip that off the front of workText;
769 // otherwise, dump out with a mismatch
770 UnicodeString prefix
;
771 prefix
.setTo(ruleText
, 0, sub1
->getPos());
774 fprintf(stderr
, "doParse %x ", this);
781 fprintf(stderr
, " text: '", this);
782 dumpUS(stderr
, text
);
783 fprintf(stderr
, "' prefix: '");
784 dumpUS(stderr
, prefix
);
786 stripPrefix(workText
, prefix
, pp
);
787 int32_t prefixLength
= text
.length() - workText
.length();
790 fprintf(stderr
, "' pl: %d ppi: %d s1p: %d\n", prefixLength
, pp
.getIndex(), sub1
->getPos());
793 if (pp
.getIndex() == 0 && sub1
->getPos() != 0) {
794 // commented out because ParsePosition doesn't have error index in 1.1.x
795 // restored for ICU4C port
796 parsePosition
.setErrorIndex(pp
.getErrorIndex());
801 // Detect when this rule's main job is to parse a decimal format and we're not
803 if (!isDecimFmtParseable
) {
804 // The following tries to detect a rule like "x.x: =#,##0.#=;"
805 if ( sub1
->isDecimalFormatSubstitutionOnly() && sub2
->isRuleSetSubstitutionOnly() ) {
806 parsePosition
.setErrorIndex(pp
.getErrorIndex());
812 // this is the fun part. The basic guts of the rule-matching
813 // logic is matchToDelimiter(), which is called twice. The first
814 // time it searches the input string for the rule text BETWEEN
815 // the substitutions and tries to match the intervening text
816 // in the input string with the first substitution. If that
817 // succeeds, it then calls it again, this time to look for the
818 // rule text after the second substitution and to match the
819 // intervening input text against the second substitution.
821 // For example, say we have a rule that looks like this:
822 // first << middle >> last;
823 // and input text that looks like this:
824 // first one middle two last
825 // First we use stripPrefix() to match "first " in both places and
826 // strip it off the front, leaving
827 // one middle two last
828 // Then we use matchToDelimiter() to match " middle " and try to
829 // match "one" against a substitution. If it's successful, we now
832 // We use matchToDelimiter() a second time to match " last" and
833 // try to match "two" against a substitution. If "two" matches
834 // the substitution, we have a successful parse.
836 // Since it's possible in many cases to find multiple instances
837 // of each of these pieces of rule text in the input string,
838 // we need to try all the possible combinations of these
839 // locations. This prevents us from prematurely declaring a mismatch,
840 // and makes sure we match as much input text as we can.
841 int highWaterMark
= 0;
844 double tempBaseValue
= (double)(baseValue
<= 0 ? 0 : baseValue
);
848 // our partial parse result starts out as this rule's base
849 // value. If it finds a successful match, matchToDelimiter()
850 // will compose this in some way with what it gets back from
851 // the substitution, giving us a new partial parse result
854 temp
.setTo(ruleText
, sub1
->getPos(), sub2
->getPos() - sub1
->getPos());
855 double partialResult
= matchToDelimiter(workText
, start
, tempBaseValue
,
859 // if we got a successful match (or were trying to match a
860 // null substitution), pp is now pointing at the first unmatched
861 // character. Take note of that, and try matchToDelimiter()
862 // on the input text again
863 if (pp
.getIndex() != 0 || sub1
->isNullSubstitution()) {
864 start
= pp
.getIndex();
866 UnicodeString workText2
;
867 workText2
.setTo(workText
, pp
.getIndex(), workText
.length() - pp
.getIndex());
870 // the second matchToDelimiter() will compose our previous
871 // partial result with whatever it gets back from its
872 // substitution if there's a successful match, giving us
874 temp
.setTo(ruleText
, sub2
->getPos(), ruleText
.length() - sub2
->getPos());
875 partialResult
= matchToDelimiter(workText2
, 0, partialResult
,
879 // if we got a successful match on this second
880 // matchToDelimiter() call, update the high-water mark
881 // and result (if necessary)
882 if (pp2
.getIndex() != 0 || sub2
->isNullSubstitution()) {
883 if (prefixLength
+ pp
.getIndex() + pp2
.getIndex() > highWaterMark
) {
884 highWaterMark
= prefixLength
+ pp
.getIndex() + pp2
.getIndex();
885 result
= partialResult
;
888 // commented out because ParsePosition doesn't have error index in 1.1.x
889 // restored for ICU4C port
891 int32_t temp
= pp2
.getErrorIndex() + sub1
->getPos() + pp
.getIndex();
892 if (temp
> parsePosition
.getErrorIndex()) {
893 parsePosition
.setErrorIndex(temp
);
897 // commented out because ParsePosition doesn't have error index in 1.1.x
898 // restored for ICU4C port
900 int32_t temp
= sub1
->getPos() + pp
.getErrorIndex();
901 if (temp
> parsePosition
.getErrorIndex()) {
902 parsePosition
.setErrorIndex(temp
);
905 // keep trying to match things until the outer matchToDelimiter()
906 // call fails to make a match (each time, it picks up where it
907 // left off the previous time)
908 } while (sub1
->getPos() != sub2
->getPos()
910 && pp
.getIndex() < workText
.length()
911 && pp
.getIndex() != start
);
913 // update the caller's ParsePosition with our high-water mark
914 // (i.e., it now points at the first character this function
915 // didn't match-- the ParsePosition is therefore unchanged if
916 // we didn't match anything)
917 parsePosition
.setIndex(highWaterMark
);
918 // commented out because ParsePosition doesn't have error index in 1.1.x
919 // restored for ICU4C port
920 if (highWaterMark
> 0) {
921 parsePosition
.setErrorIndex(0);
924 // this is a hack for one unusual condition: Normally, whether this
925 // rule belong to a fraction rule set or not is handled by its
926 // substitutions. But if that rule HAS NO substitutions, then
927 // we have to account for it here. By definition, if the matching
928 // rule in a fraction rule set has no substitutions, its numerator
929 // is 1, and so the result is the reciprocal of its base value.
930 if (isFractionRule
&&
932 sub1
->isNullSubstitution()) {
936 resVal
.setDouble(result
);
937 return TRUE
; // ??? do we need to worry if it is a long or a double?
941 * This function is used by parse() to match the text being parsed
942 * against a possible prefix string. This function
943 * matches characters from the beginning of the string being parsed
944 * to characters from the prospective prefix. If they match, pp is
945 * updated to the first character not matched, and the result is
946 * the unparsed part of the string. If they don't match, the whole
947 * string is returned, and pp is left unchanged.
948 * @param text The string being parsed
949 * @param prefix The text to match against
950 * @param pp On entry, ignored and assumed to be 0. On exit, points
951 * to the first unmatched character (assuming the whole prefix matched),
952 * or is unchanged (if the whole prefix didn't match).
953 * @return If things match, this is the unparsed part of "text";
954 * if they didn't match, this is "text".
957 NFRule::stripPrefix(UnicodeString
& text
, const UnicodeString
& prefix
, ParsePosition
& pp
) const
959 // if the prefix text is empty, dump out without doing anything
960 if (prefix
.length() != 0) {
961 UErrorCode status
= U_ZERO_ERROR
;
962 // use prefixLength() to match the beginning of
963 // "text" against "prefix". This function returns the
964 // number of characters from "text" that matched (or 0 if
965 // we didn't match the whole prefix)
966 int32_t pfl
= prefixLength(text
, prefix
, status
);
967 if (U_FAILURE(status
)) { // Memory allocation error.
971 // if we got a successful match, update the parse position
972 // and strip the prefix off of "text"
973 pp
.setIndex(pp
.getIndex() + pfl
);
980 * Used by parse() to match a substitution and any following text.
981 * "text" is searched for instances of "delimiter". For each instance
982 * of delimiter, the intervening text is tested to see whether it
983 * matches the substitution. The longest match wins.
984 * @param text The string being parsed
985 * @param startPos The position in "text" where we should start looking
987 * @param baseValue A partial parse result (often the rule's base value),
988 * which is combined with the result from matching the substitution
989 * @param delimiter The string to search "text" for.
990 * @param pp Ignored and presumed to be 0 on entry. If there's a match,
991 * on exit this will point to the first unmatched character.
992 * @param sub If we find "delimiter" in "text", this substitution is used
993 * to match the text between the beginning of the string and the
994 * position of "delimiter." (If "delimiter" is the empty string, then
995 * this function just matches against this substitution and updates
996 * everything accordingly.)
997 * @param upperBound When matching the substitution, it will only
998 * consider rules with base values lower than this value.
999 * @return If there's a match, this is the result of composing
1000 * baseValue with the result of matching the substitution. Otherwise,
1001 * this is new Long(0). It's never null. If the result is an integer,
1002 * this will be an instance of Long; otherwise, it's an instance of
1005 * !!! note {dlf} in point of fact, in the java code the caller always converts
1006 * the result to a double, so we might as well return one.
1009 NFRule::matchToDelimiter(const UnicodeString
& text
,
1012 const UnicodeString
& delimiter
,
1014 const NFSubstitution
* sub
,
1015 double upperBound
) const
1017 UErrorCode status
= U_ZERO_ERROR
;
1018 // if "delimiter" contains real (i.e., non-ignorable) text, search
1019 // it for "delimiter" beginning at "start". If that succeeds, then
1020 // use "sub"'s doParse() method to match the text before the
1021 // instance of "delimiter" we just found.
1022 if (!allIgnorable(delimiter
, status
)) {
1023 if (U_FAILURE(status
)) { //Memory allocation error.
1026 ParsePosition tempPP
;
1029 // use findText() to search for "delimiter". It returns a two-
1030 // element array: element 0 is the position of the match, and
1031 // element 1 is the number of characters that matched
1034 int32_t dPos
= findText(text
, delimiter
, startPos
, &dLen
);
1036 // if findText() succeeded, isolate the text preceding the
1037 // match, and use "sub" to match that text
1039 UnicodeString subText
;
1040 subText
.setTo(text
, 0, dPos
);
1041 if (subText
.length() > 0) {
1042 UBool success
= sub
->doParse(subText
, tempPP
, _baseValue
, upperBound
,
1043 #if UCONFIG_NO_COLLATION
1046 formatter
->isLenient(),
1050 // if the substitution could match all the text up to
1051 // where we found "delimiter", then this function has
1052 // a successful match. Bump the caller's parse position
1053 // to point to the first character after the text
1054 // that matches "delimiter", and return the result
1055 // we got from parsing the substitution.
1056 if (success
&& tempPP
.getIndex() == dPos
) {
1057 pp
.setIndex(dPos
+ dLen
);
1058 return result
.getDouble();
1060 // commented out because ParsePosition doesn't have error index in 1.1.x
1061 // restored for ICU4C port
1063 if (tempPP
.getErrorIndex() > 0) {
1064 pp
.setErrorIndex(tempPP
.getErrorIndex());
1066 pp
.setErrorIndex(tempPP
.getIndex());
1071 // if we didn't match the substitution, search for another
1072 // copy of "delimiter" in "text" and repeat the loop if
1075 dPos
= findText(text
, delimiter
, dPos
+ dLen
, &dLen
);
1077 // if we make it here, this was an unsuccessful match, and we
1078 // leave pp unchanged and return 0
1082 // if "delimiter" is empty, or consists only of ignorable characters
1083 // (i.e., is semantically empty), thwe we obviously can't search
1084 // for "delimiter". Instead, just use "sub" to parse as much of
1085 // "text" as possible.
1087 ParsePosition tempPP
;
1090 // try to match the whole string against the substitution
1091 UBool success
= sub
->doParse(text
, tempPP
, _baseValue
, upperBound
,
1092 #if UCONFIG_NO_COLLATION
1095 formatter
->isLenient(),
1098 if (success
&& (tempPP
.getIndex() != 0 || sub
->isNullSubstitution())) {
1099 // if there's a successful match (or it's a null
1100 // substitution), update pp to point to the first
1101 // character we didn't match, and pass the result from
1102 // sub.doParse() on through to the caller
1103 pp
.setIndex(tempPP
.getIndex());
1104 return result
.getDouble();
1106 // commented out because ParsePosition doesn't have error index in 1.1.x
1107 // restored for ICU4C port
1109 pp
.setErrorIndex(tempPP
.getErrorIndex());
1112 // and if we get to here, then nothing matched, so we return
1113 // 0 and leave pp alone
1119 * Used by stripPrefix() to match characters. If lenient parse mode
1120 * is off, this just calls startsWith(). If lenient parse mode is on,
1121 * this function uses CollationElementIterators to match characters in
1122 * the strings (only primary-order differences are significant in
1123 * determining whether there's a match).
1124 * @param str The string being tested
1125 * @param prefix The text we're hoping to see at the beginning
1127 * @return If "prefix" is found at the beginning of "str", this
1128 * is the number of characters in "str" that were matched (this
1129 * isn't necessarily the same as the length of "prefix" when matching
1130 * text with a collator). If there's no match, this is 0.
1133 NFRule::prefixLength(const UnicodeString
& str
, const UnicodeString
& prefix
, UErrorCode
& status
) const
1135 // if we're looking for an empty prefix, it obviously matches
1136 // zero characters. Just go ahead and return 0.
1137 if (prefix
.length() == 0) {
1141 #if !UCONFIG_NO_COLLATION
1142 // go through all this grief if we're in lenient-parse mode
1143 if (formatter
->isLenient()) {
1144 // get the formatter's collator and use it to create two
1145 // collation element iterators, one over the target string
1146 // and another over the prefix (right now, we'll throw an
1147 // exception if the collator we get back from the formatter
1148 // isn't a RuleBasedCollator, because RuleBasedCollator defines
1149 // the CollationElementIterator protocol. Hopefully, this
1150 // will change someday.)
1151 RuleBasedCollator
* collator
= (RuleBasedCollator
*)formatter
->getCollator();
1152 CollationElementIterator
* strIter
= collator
->createCollationElementIterator(str
);
1153 CollationElementIterator
* prefixIter
= collator
->createCollationElementIterator(prefix
);
1154 // Check for memory allocation error.
1155 if (collator
== NULL
|| strIter
== NULL
|| prefixIter
== NULL
) {
1159 status
= U_MEMORY_ALLOCATION_ERROR
;
1163 UErrorCode err
= U_ZERO_ERROR
;
1165 // The original code was problematic. Consider this match:
1166 // prefix = "fifty-"
1167 // string = " fifty-7"
1168 // The intent is to match string up to the '7', by matching 'fifty-' at position 1
1169 // in the string. Unfortunately, we were getting a match, and then computing where
1170 // the match terminated by rematching the string. The rematch code was using as an
1171 // initial guess the substring of string between 0 and prefix.length. Because of
1172 // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving
1173 // the position before the hyphen in the string. Recursing down, we then parsed the
1174 // remaining string '-7' as numeric. The resulting number turned out as 43 (50 - 7).
1175 // This was not pretty, especially since the string "fifty-7" parsed just fine.
1177 // We have newer APIs now, so we can use calls on the iterator to determine what we
1178 // matched up to. If we terminate because we hit the last element in the string,
1179 // our match terminates at this length. If we terminate because we hit the last element
1180 // in the target, our match terminates at one before the element iterator position.
1182 // match collation elements between the strings
1183 int32_t oStr
= strIter
->next(err
);
1184 int32_t oPrefix
= prefixIter
->next(err
);
1186 while (oPrefix
!= CollationElementIterator::NULLORDER
) {
1187 // skip over ignorable characters in the target string
1188 while (CollationElementIterator::primaryOrder(oStr
) == 0
1189 && oStr
!= CollationElementIterator::NULLORDER
) {
1190 oStr
= strIter
->next(err
);
1193 // skip over ignorable characters in the prefix
1194 while (CollationElementIterator::primaryOrder(oPrefix
) == 0
1195 && oPrefix
!= CollationElementIterator::NULLORDER
) {
1196 oPrefix
= prefixIter
->next(err
);
1199 // dlf: move this above following test, if we consume the
1200 // entire target, aren't we ok even if the source was also
1201 // entirely consumed?
1203 // if skipping over ignorables brought to the end of
1204 // the prefix, we DID match: drop out of the loop
1205 if (oPrefix
== CollationElementIterator::NULLORDER
) {
1209 // if skipping over ignorables brought us to the end
1210 // of the target string, we didn't match and return 0
1211 if (oStr
== CollationElementIterator::NULLORDER
) {
1217 // match collation elements from the two strings
1218 // (considering only primary differences). If we
1219 // get a mismatch, dump out and return 0
1220 if (CollationElementIterator::primaryOrder(oStr
)
1221 != CollationElementIterator::primaryOrder(oPrefix
)) {
1226 // otherwise, advance to the next character in each string
1227 // and loop (we drop out of the loop when we exhaust
1228 // collation elements in the prefix)
1230 oStr
= strIter
->next(err
);
1231 oPrefix
= prefixIter
->next(err
);
1235 int32_t result
= strIter
->getOffset();
1236 if (oStr
!= CollationElementIterator::NULLORDER
) {
1237 --result
; // back over character that we don't want to consume;
1241 fprintf(stderr
, "prefix length: %d\n", result
);
1248 //----------------------------------------------------------------
1249 // JDK 1.2-specific API call
1250 // return strIter.getOffset();
1251 //----------------------------------------------------------------
1252 // JDK 1.1 HACK (take out for 1.2-specific code)
1254 // if we make it to here, we have a successful match. Now we
1255 // have to find out HOW MANY characters from the target string
1256 // matched the prefix (there isn't necessarily a one-to-one
1257 // mapping between collation elements and characters).
1258 // In JDK 1.2, there's a simple getOffset() call we can use.
1259 // In JDK 1.1, on the other hand, we have to go through some
1260 // ugly contortions. First, use the collator to compare the
1261 // same number of characters from the prefix and target string.
1262 // If they're equal, we're done.
1263 collator
->setStrength(Collator::PRIMARY
);
1264 if (str
.length() >= prefix
.length()) {
1266 temp
.setTo(str
, 0, prefix
.length());
1267 if (collator
->equals(temp
, prefix
)) {
1269 fprintf(stderr
, "returning: %d\n", prefix
.length());
1271 return prefix
.length();
1275 // if they're not equal, then we have to compare successively
1276 // larger and larger substrings of the target string until we
1277 // get to one that matches the prefix. At that point, we know
1278 // how many characters matched the prefix, and we can return.
1280 while (p
<= str
.length()) {
1282 temp
.setTo(str
, 0, p
);
1283 if (collator
->equals(temp
, prefix
)) {
1290 // SHOULD NEVER GET HERE!!!
1292 //----------------------------------------------------------------
1295 // If lenient parsing is turned off, forget all that crap above.
1296 // Just use String.startsWith() and be done with it.
1300 if (str
.startsWith(prefix
)) {
1301 return prefix
.length();
1309 * Searches a string for another string. If lenient parsing is off,
1310 * this just calls indexOf(). If lenient parsing is on, this function
1311 * uses CollationElementIterator to match characters, and only
1312 * primary-order differences are significant in determining whether
1314 * @param str The string to search
1315 * @param key The string to search "str" for
1316 * @param startingAt The index into "str" where the search is to
1318 * @return A two-element array of ints. Element 0 is the position
1319 * of the match, or -1 if there was no match. Element 1 is the
1320 * number of characters in "str" that matched (which isn't necessarily
1321 * the same as the length of "key")
1324 NFRule::findText(const UnicodeString
& str
,
1325 const UnicodeString
& key
,
1327 int32_t* length
) const
1329 #if !UCONFIG_NO_COLLATION
1330 // if lenient parsing is turned off, this is easy: just call
1331 // String.indexOf() and we're done
1332 if (!formatter
->isLenient()) {
1333 *length
= key
.length();
1334 return str
.indexOf(key
, startingAt
);
1336 // but if lenient parsing is turned ON, we've got some work
1341 //----------------------------------------------------------------
1342 // JDK 1.1 HACK (take out of 1.2-specific code)
1344 // in JDK 1.2, CollationElementIterator provides us with an
1345 // API to map between character offsets and collation elements
1346 // and we can do this by marching through the string comparing
1347 // collation elements. We can't do that in JDK 1.1. Insted,
1348 // we have to go through this horrible slow mess:
1349 int32_t p
= startingAt
;
1352 // basically just isolate smaller and smaller substrings of
1353 // the target string (each running to the end of the string,
1354 // and with the first one running from startingAt to the end)
1355 // and then use prefixLength() to see if the search key is at
1356 // the beginning of each substring. This is excruciatingly
1357 // slow, but it will locate the key and tell use how long the
1358 // matching text was.
1360 UErrorCode status
= U_ZERO_ERROR
;
1361 while (p
< str
.length() && keyLen
== 0) {
1362 temp
.setTo(str
, p
, str
.length() - p
);
1363 keyLen
= prefixLength(temp
, key
, status
);
1364 if (U_FAILURE(status
)) {
1373 // if we make it to here, we didn't find it. Return -1 for the
1374 // location. The length should be ignored, but set it to 0,
1375 // which should be "safe"
1379 //----------------------------------------------------------------
1380 // JDK 1.2 version of this routine
1381 //RuleBasedCollator collator = (RuleBasedCollator)formatter.getCollator();
1383 //CollationElementIterator strIter = collator.getCollationElementIterator(str);
1384 //CollationElementIterator keyIter = collator.getCollationElementIterator(key);
1386 //int keyStart = -1;
1388 //str.setOffset(startingAt);
1390 //int oStr = strIter.next();
1391 //int oKey = keyIter.next();
1392 //while (oKey != CollationElementIterator.NULLORDER) {
1393 // while (oStr != CollationElementIterator.NULLORDER &&
1394 // CollationElementIterator.primaryOrder(oStr) == 0)
1395 // oStr = strIter.next();
1397 // while (oKey != CollationElementIterator.NULLORDER &&
1398 // CollationElementIterator.primaryOrder(oKey) == 0)
1399 // oKey = keyIter.next();
1401 // if (oStr == CollationElementIterator.NULLORDER) {
1402 // return new int[] { -1, 0 };
1405 // if (oKey == CollationElementIterator.NULLORDER) {
1409 // if (CollationElementIterator.primaryOrder(oStr) ==
1410 // CollationElementIterator.primaryOrder(oKey)) {
1411 // keyStart = strIter.getOffset();
1412 // oStr = strIter.next();
1413 // oKey = keyIter.next();
1415 // if (keyStart != -1) {
1419 // oStr = strIter.next();
1424 //if (oKey == CollationElementIterator.NULLORDER) {
1425 // return new int[] { keyStart, strIter.getOffset() - keyStart };
1427 // return new int[] { -1, 0 };
1433 * Checks to see whether a string consists entirely of ignorable
1435 * @param str The string to test.
1436 * @return true if the string is empty of consists entirely of
1437 * characters that the number formatter's collator says are
1438 * ignorable at the primary-order level. false otherwise.
1441 NFRule::allIgnorable(const UnicodeString
& str
, UErrorCode
& status
) const
1443 // if the string is empty, we can just return true
1444 if (str
.length() == 0) {
1448 #if !UCONFIG_NO_COLLATION
1449 // if lenient parsing is turned on, walk through the string with
1450 // a collation element iterator and make sure each collation
1451 // element is 0 (ignorable) at the primary level
1452 if (formatter
->isLenient()) {
1453 RuleBasedCollator
* collator
= (RuleBasedCollator
*)(formatter
->getCollator());
1454 CollationElementIterator
* iter
= collator
->createCollationElementIterator(str
);
1456 // Memory allocation error check.
1457 if (collator
== NULL
|| iter
== NULL
) {
1460 status
= U_MEMORY_ALLOCATION_ERROR
;
1464 UErrorCode err
= U_ZERO_ERROR
;
1465 int32_t o
= iter
->next(err
);
1466 while (o
!= CollationElementIterator::NULLORDER
1467 && CollationElementIterator::primaryOrder(o
) == 0) {
1468 o
= iter
->next(err
);
1472 return o
== CollationElementIterator::NULLORDER
;
1476 // if lenient parsing is turned off, there is no such thing as
1477 // an ignorable character: return true only if the string is empty