ICU-64243.0.1.tar.gz
[apple/icu.git] / icuSources / i18n / rematch.cpp
0 / 5828 (  0%)
CommitLineData
1// © 2016 and later: Unicode, Inc. and others.
2// License & terms of use: http://www.unicode.org/copyright.html
3/*
4**************************************************************************
5* Copyright (C) 2002-2016 International Business Machines Corporation
6* and others. All rights reserved.
7**************************************************************************
8*/
9//
10// file: rematch.cpp
11//
12// Contains the implementation of class RegexMatcher,
13// which is one of the main API classes for the ICU regular expression package.
14//
15
16#include "unicode/utypes.h"
17#if !UCONFIG_NO_REGULAR_EXPRESSIONS
18
19#include "unicode/regex.h"
20#include "unicode/uniset.h"
21#include "unicode/uchar.h"
22#include "unicode/ustring.h"
23#include "unicode/rbbi.h"
24#include "unicode/utf.h"
25#include "unicode/utf16.h"
26#include "uassert.h"
27#include "cmemory.h"
28#include "cstr.h"
29#include "uvector.h"
30#include "uvectr32.h"
31#include "uvectr64.h"
32#include "regeximp.h"
33#include "regexst.h"
34#include "regextxt.h"
35#include "ucase.h"
36
37// #include <malloc.h> // Needed for heapcheck testing
38
39
40U_NAMESPACE_BEGIN
41
42// Default limit for the size of the back track stack, to avoid system
43// failures causedby heap exhaustion. Units are in 32 bit words, not bytes.
44// This value puts ICU's limits higher than most other regexp implementations,
45// which use recursion rather than the heap, and take more storage per
46// backtrack point.
47//
48static const int32_t DEFAULT_BACKTRACK_STACK_CAPACITY = 8000000;
49
50// Time limit counter constant.
51// Time limits for expression evaluation are in terms of quanta of work by
52// the engine, each of which is 10,000 state saves.
53// This constant determines that state saves per tick number.
54static const int32_t TIMER_INITIAL_VALUE = 10000;
55
56
57// Test for any of the Unicode line terminating characters.
58static inline UBool isLineTerminator(UChar32 c) {
59 if (c & ~(0x0a | 0x0b | 0x0c | 0x0d | 0x85 | 0x2028 | 0x2029)) {
60 return false;
61 }
62 return (c<=0x0d && c>=0x0a) || c==0x85 || c==0x2028 || c==0x2029;
63}
64
65//-----------------------------------------------------------------------------
66//
67// Constructor and Destructor
68//
69//-----------------------------------------------------------------------------
70RegexMatcher::RegexMatcher(const RegexPattern *pat) {
71 fDeferredStatus = U_ZERO_ERROR;
72 init(fDeferredStatus);
73 if (U_FAILURE(fDeferredStatus)) {
74 return;
75 }
76 if (pat==NULL) {
77 fDeferredStatus = U_ILLEGAL_ARGUMENT_ERROR;
78 return;
79 }
80 fPattern = pat;
81 init2(RegexStaticSets::gStaticSets->fEmptyText, fDeferredStatus);
82}
83
84
85
86RegexMatcher::RegexMatcher(const UnicodeString &regexp, const UnicodeString &input,
87 uint32_t flags, UErrorCode &status) {
88 init(status);
89 if (U_FAILURE(status)) {
90 return;
91 }
92 UParseError pe;
93 fPatternOwned = RegexPattern::compile(regexp, flags, pe, status);
94 fPattern = fPatternOwned;
95
96 UText inputText = UTEXT_INITIALIZER;
97 utext_openConstUnicodeString(&inputText, &input, &status);
98 init2(&inputText, status);
99 utext_close(&inputText);
100
101 fInputUniStrMaybeMutable = TRUE;
102}
103
104
105RegexMatcher::RegexMatcher(UText *regexp, UText *input,
106 uint32_t flags, UErrorCode &status) {
107 init(status);
108 if (U_FAILURE(status)) {
109 return;
110 }
111 UParseError pe;
112 fPatternOwned = RegexPattern::compile(regexp, flags, pe, status);
113 if (U_FAILURE(status)) {
114 return;
115 }
116
117 fPattern = fPatternOwned;
118 init2(input, status);
119}
120
121
122RegexMatcher::RegexMatcher(const UnicodeString &regexp,
123 uint32_t flags, UErrorCode &status) {
124 init(status);
125 if (U_FAILURE(status)) {
126 return;
127 }
128 UParseError pe;
129 fPatternOwned = RegexPattern::compile(regexp, flags, pe, status);
130 if (U_FAILURE(status)) {
131 return;
132 }
133 fPattern = fPatternOwned;
134 init2(RegexStaticSets::gStaticSets->fEmptyText, status);
135}
136
137RegexMatcher::RegexMatcher(UText *regexp,
138 uint32_t flags, UErrorCode &status) {
139 init(status);
140 if (U_FAILURE(status)) {
141 return;
142 }
143 UParseError pe;
144 fPatternOwned = RegexPattern::compile(regexp, flags, pe, status);
145 if (U_FAILURE(status)) {
146 return;
147 }
148
149 fPattern = fPatternOwned;
150 init2(RegexStaticSets::gStaticSets->fEmptyText, status);
151}
152
153
154
155
156RegexMatcher::~RegexMatcher() {
157 delete fStack;
158 if (fData != fSmallData) {
159 uprv_free(fData);
160 fData = NULL;
161 }
162 if (fPatternOwned) {
163 delete fPatternOwned;
164 fPatternOwned = NULL;
165 fPattern = NULL;
166 }
167
168 if (fInput) {
169 delete fInput;
170 }
171 if (fInputText) {
172 utext_close(fInputText);
173 }
174 if (fAltInputText) {
175 utext_close(fAltInputText);
176 }
177
178 #if UCONFIG_NO_BREAK_ITERATION==0
179 delete fWordBreakItr;
180 #endif
181}
182
183//
184// init() common initialization for use by all constructors.
185// Initialize all fields, get the object into a consistent state.
186// This must be done even when the initial status shows an error,
187// so that the object is initialized sufficiently well for the destructor
188// to run safely.
189//
190void RegexMatcher::init(UErrorCode &status) {
191 fPattern = NULL;
192 fPatternOwned = NULL;
193 fFrameSize = 0;
194 fRegionStart = 0;
195 fRegionLimit = 0;
196 fAnchorStart = 0;
197 fAnchorLimit = 0;
198 fLookStart = 0;
199 fLookLimit = 0;
200 fActiveStart = 0;
201 fActiveLimit = 0;
202 fTransparentBounds = FALSE;
203 fAnchoringBounds = TRUE;
204 fMatch = FALSE;
205 fMatchStart = 0;
206 fMatchEnd = 0;
207 fLastMatchEnd = -1;
208 fAppendPosition = 0;
209 fHitEnd = FALSE;
210 fRequireEnd = FALSE;
211 fStack = NULL;
212 fFrame = NULL;
213 fTimeLimit = 0;
214 fTime = 0;
215 fTickCounter = 0;
216 fStackLimit = DEFAULT_BACKTRACK_STACK_CAPACITY;
217 fCallbackFn = NULL;
218 fCallbackContext = NULL;
219 fFindProgressCallbackFn = NULL;
220 fFindProgressCallbackContext = NULL;
221 fTraceDebug = FALSE;
222 fDeferredStatus = status;
223 fData = fSmallData;
224 fWordBreakItr = NULL;
225
226 fStack = NULL;
227 fInputText = NULL;
228 fAltInputText = NULL;
229 fInput = NULL;
230 fInputLength = 0;
231 fInputUniStrMaybeMutable = FALSE;
232}
233
234//
235// init2() Common initialization for use by RegexMatcher constructors, part 2.
236// This handles the common setup to be done after the Pattern is available.
237//
238void RegexMatcher::init2(UText *input, UErrorCode &status) {
239 if (U_FAILURE(status)) {
240 fDeferredStatus = status;
241 return;
242 }
243
244 if (fPattern->fDataSize > UPRV_LENGTHOF(fSmallData)) {
245 fData = (int64_t *)uprv_malloc(fPattern->fDataSize * sizeof(int64_t));
246 if (fData == NULL) {
247 status = fDeferredStatus = U_MEMORY_ALLOCATION_ERROR;
248 return;
249 }
250 }
251
252 fStack = new UVector64(status);
253 if (fStack == NULL) {
254 status = fDeferredStatus = U_MEMORY_ALLOCATION_ERROR;
255 return;
256 }
257
258 reset(input);
259 setStackLimit(DEFAULT_BACKTRACK_STACK_CAPACITY, status);
260 if (U_FAILURE(status)) {
261 fDeferredStatus = status;
262 return;
263 }
264}
265
266
267static const UChar BACKSLASH = 0x5c;
268static const UChar DOLLARSIGN = 0x24;
269static const UChar LEFTBRACKET = 0x7b;
270static const UChar RIGHTBRACKET = 0x7d;
271
272//--------------------------------------------------------------------------------
273//
274// appendReplacement
275//
276//--------------------------------------------------------------------------------
277RegexMatcher &RegexMatcher::appendReplacement(UnicodeString &dest,
278 const UnicodeString &replacement,
279 UErrorCode &status) {
280 UText replacementText = UTEXT_INITIALIZER;
281
282 utext_openConstUnicodeString(&replacementText, &replacement, &status);
283 if (U_SUCCESS(status)) {
284 UText resultText = UTEXT_INITIALIZER;
285 utext_openUnicodeString(&resultText, &dest, &status);
286
287 if (U_SUCCESS(status)) {
288 appendReplacement(&resultText, &replacementText, status);
289 utext_close(&resultText);
290 }
291 utext_close(&replacementText);
292 }
293
294 return *this;
295}
296
297//
298// appendReplacement, UText mode
299//
300RegexMatcher &RegexMatcher::appendReplacement(UText *dest,
301 UText *replacement,
302 UErrorCode &status) {
303 if (U_FAILURE(status)) {
304 return *this;
305 }
306 if (U_FAILURE(fDeferredStatus)) {
307 status = fDeferredStatus;
308 return *this;
309 }
310 if (fMatch == FALSE) {
311 status = U_REGEX_INVALID_STATE;
312 return *this;
313 }
314
315 // Copy input string from the end of previous match to start of current match
316 int64_t destLen = utext_nativeLength(dest);
317 if (fMatchStart > fAppendPosition) {
318 if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
319 destLen += utext_replace(dest, destLen, destLen, fInputText->chunkContents+fAppendPosition,
320 (int32_t)(fMatchStart-fAppendPosition), &status);
321 } else {
322 int32_t len16;
323 if (UTEXT_USES_U16(fInputText)) {
324 len16 = (int32_t)(fMatchStart-fAppendPosition);
325 } else {
326 UErrorCode lengthStatus = U_ZERO_ERROR;
327 len16 = utext_extract(fInputText, fAppendPosition, fMatchStart, NULL, 0, &lengthStatus);
328 }
329 UChar *inputChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16+1));
330 if (inputChars == NULL) {
331 status = U_MEMORY_ALLOCATION_ERROR;
332 return *this;
333 }
334 utext_extract(fInputText, fAppendPosition, fMatchStart, inputChars, len16+1, &status);
335 destLen += utext_replace(dest, destLen, destLen, inputChars, len16, &status);
336 uprv_free(inputChars);
337 }
338 }
339 fAppendPosition = fMatchEnd;
340
341
342 // scan the replacement text, looking for substitutions ($n) and \escapes.
343 // TODO: optimize this loop by efficiently scanning for '$' or '\',
344 // move entire ranges not containing substitutions.
345 UTEXT_SETNATIVEINDEX(replacement, 0);
346 for (UChar32 c = UTEXT_NEXT32(replacement); U_SUCCESS(status) && c != U_SENTINEL; c = UTEXT_NEXT32(replacement)) {
347 if (c == BACKSLASH) {
348 // Backslash Escape. Copy the following char out without further checks.
349 // Note: Surrogate pairs don't need any special handling
350 // The second half wont be a '$' or a '\', and
351 // will move to the dest normally on the next
352 // loop iteration.
353 c = UTEXT_CURRENT32(replacement);
354 if (c == U_SENTINEL) {
355 break;
356 }
357
358 if (c==0x55/*U*/ || c==0x75/*u*/) {
359 // We have a \udddd or \Udddddddd escape sequence.
360 int32_t offset = 0;
361 struct URegexUTextUnescapeCharContext context = U_REGEX_UTEXT_UNESCAPE_CONTEXT(replacement);
362 UChar32 escapedChar = u_unescapeAt(uregex_utext_unescape_charAt, &offset, INT32_MAX, &context);
363 if (escapedChar != (UChar32)0xFFFFFFFF) {
364 if (U_IS_BMP(escapedChar)) {
365 UChar c16 = (UChar)escapedChar;
366 destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status);
367 } else {
368 UChar surrogate[2];
369 surrogate[0] = U16_LEAD(escapedChar);
370 surrogate[1] = U16_TRAIL(escapedChar);
371 if (U_SUCCESS(status)) {
372 destLen += utext_replace(dest, destLen, destLen, surrogate, 2, &status);
373 }
374 }
375 // TODO: Report errors for mal-formed \u escapes?
376 // As this is, the original sequence is output, which may be OK.
377 if (context.lastOffset == offset) {
378 (void)UTEXT_PREVIOUS32(replacement);
379 } else if (context.lastOffset != offset-1) {
380 utext_moveIndex32(replacement, offset - context.lastOffset - 1);
381 }
382 }
383 } else {
384 (void)UTEXT_NEXT32(replacement);
385 // Plain backslash escape. Just put out the escaped character.
386 if (U_IS_BMP(c)) {
387 UChar c16 = (UChar)c;
388 destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status);
389 } else {
390 UChar surrogate[2];
391 surrogate[0] = U16_LEAD(c);
392 surrogate[1] = U16_TRAIL(c);
393 if (U_SUCCESS(status)) {
394 destLen += utext_replace(dest, destLen, destLen, surrogate, 2, &status);
395 }
396 }
397 }
398 } else if (c != DOLLARSIGN) {
399 // Normal char, not a $. Copy it out without further checks.
400 if (U_IS_BMP(c)) {
401 UChar c16 = (UChar)c;
402 destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status);
403 } else {
404 UChar surrogate[2];
405 surrogate[0] = U16_LEAD(c);
406 surrogate[1] = U16_TRAIL(c);
407 if (U_SUCCESS(status)) {
408 destLen += utext_replace(dest, destLen, destLen, surrogate, 2, &status);
409 }
410 }
411 } else {
412 // We've got a $. Pick up a capture group name or number if one follows.
413 // Consume digits so long as the resulting group number <= the number of
414 // number of capture groups in the pattern.
415
416 int32_t groupNum = 0;
417 int32_t numDigits = 0;
418 UChar32 nextChar = utext_current32(replacement);
419 if (nextChar == LEFTBRACKET) {
420 // Scan for a Named Capture Group, ${name}.
421 UnicodeString groupName;
422 utext_next32(replacement);
423 while(U_SUCCESS(status) && nextChar != RIGHTBRACKET) {
424 nextChar = utext_next32(replacement);
425 if (nextChar == U_SENTINEL) {
426 status = U_REGEX_INVALID_CAPTURE_GROUP_NAME;
427 } else if ((nextChar >= 0x41 && nextChar <= 0x5a) || // A..Z
428 (nextChar >= 0x61 && nextChar <= 0x7a) || // a..z
429 (nextChar >= 0x31 && nextChar <= 0x39)) { // 0..9
430 groupName.append(nextChar);
431 } else if (nextChar == RIGHTBRACKET) {
432 groupNum = uhash_geti(fPattern->fNamedCaptureMap, &groupName);
433 if (groupNum == 0) {
434 status = U_REGEX_INVALID_CAPTURE_GROUP_NAME;
435 }
436 } else {
437 // Character was something other than a name char or a closing '}'
438 status = U_REGEX_INVALID_CAPTURE_GROUP_NAME;
439 }
440 }
441
442 } else if (u_isdigit(nextChar)) {
443 // $n Scan for a capture group number
444 int32_t numCaptureGroups = fPattern->fGroupMap->size();
445 for (;;) {
446 nextChar = UTEXT_CURRENT32(replacement);
447 if (nextChar == U_SENTINEL) {
448 break;
449 }
450 if (u_isdigit(nextChar) == FALSE) {
451 break;
452 }
453 int32_t nextDigitVal = u_charDigitValue(nextChar);
454 if (groupNum*10 + nextDigitVal > numCaptureGroups) {
455 // Don't consume the next digit if it makes the capture group number too big.
456 if (numDigits == 0) {
457 status = U_INDEX_OUTOFBOUNDS_ERROR;
458 }
459 break;
460 }
461 (void)UTEXT_NEXT32(replacement);
462 groupNum=groupNum*10 + nextDigitVal;
463 ++numDigits;
464 }
465 } else {
466 // $ not followed by capture group name or number.
467 status = U_REGEX_INVALID_CAPTURE_GROUP_NAME;
468 }
469
470 if (U_SUCCESS(status)) {
471 destLen += appendGroup(groupNum, dest, status);
472 }
473 } // End of $ capture group handling
474 } // End of per-character loop through the replacement string.
475
476 return *this;
477}
478
479
480
481//--------------------------------------------------------------------------------
482//
483// appendTail Intended to be used in conjunction with appendReplacement()
484// To the destination string, append everything following
485// the last match position from the input string.
486//
487// Note: Match ranges do not affect appendTail or appendReplacement
488//
489//--------------------------------------------------------------------------------
490UnicodeString &RegexMatcher::appendTail(UnicodeString &dest) {
491 UErrorCode status = U_ZERO_ERROR;
492 UText resultText = UTEXT_INITIALIZER;
493 utext_openUnicodeString(&resultText, &dest, &status);
494
495 if (U_SUCCESS(status)) {
496 appendTail(&resultText, status);
497 utext_close(&resultText);
498 }
499
500 return dest;
501}
502
503//
504// appendTail, UText mode
505//
506UText *RegexMatcher::appendTail(UText *dest, UErrorCode &status) {
507 if (U_FAILURE(status)) {
508 return dest;
509 }
510 if (U_FAILURE(fDeferredStatus)) {
511 status = fDeferredStatus;
512 return dest;
513 }
514
515 if (fInputLength > fAppendPosition) {
516 if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
517 int64_t destLen = utext_nativeLength(dest);
518 utext_replace(dest, destLen, destLen, fInputText->chunkContents+fAppendPosition,
519 (int32_t)(fInputLength-fAppendPosition), &status);
520 } else {
521 int32_t len16;
522 if (UTEXT_USES_U16(fInputText)) {
523 len16 = (int32_t)(fInputLength-fAppendPosition);
524 } else {
525 len16 = utext_extract(fInputText, fAppendPosition, fInputLength, NULL, 0, &status);
526 status = U_ZERO_ERROR; // buffer overflow
527 }
528
529 UChar *inputChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16));
530 if (inputChars == NULL) {
531 fDeferredStatus = U_MEMORY_ALLOCATION_ERROR;
532 } else {
533 utext_extract(fInputText, fAppendPosition, fInputLength, inputChars, len16, &status); // unterminated
534 int64_t destLen = utext_nativeLength(dest);
535 utext_replace(dest, destLen, destLen, inputChars, len16, &status);
536 uprv_free(inputChars);
537 }
538 }
539 }
540 return dest;
541}
542
543
544
545//--------------------------------------------------------------------------------
546//
547// end
548//
549//--------------------------------------------------------------------------------
550int32_t RegexMatcher::end(UErrorCode &err) const {
551 return end(0, err);
552}
553
554int64_t RegexMatcher::end64(UErrorCode &err) const {
555 return end64(0, err);
556}
557
558int64_t RegexMatcher::end64(int32_t group, UErrorCode &err) const {
559 if (U_FAILURE(err)) {
560 return -1;
561 }
562 if (fMatch == FALSE) {
563 err = U_REGEX_INVALID_STATE;
564 return -1;
565 }
566 if (group < 0 || group > fPattern->fGroupMap->size()) {
567 err = U_INDEX_OUTOFBOUNDS_ERROR;
568 return -1;
569 }
570 int64_t e = -1;
571 if (group == 0) {
572 e = fMatchEnd;
573 } else {
574 // Get the position within the stack frame of the variables for
575 // this capture group.
576 int32_t groupOffset = fPattern->fGroupMap->elementAti(group-1);
577 U_ASSERT(groupOffset < fPattern->fFrameSize);
578 U_ASSERT(groupOffset >= 0);
579 e = fFrame->fExtra[groupOffset + 1];
580 }
581
582 return e;
583}
584
585int32_t RegexMatcher::end(int32_t group, UErrorCode &err) const {
586 return (int32_t)end64(group, err);
587}
588
589//--------------------------------------------------------------------------------
590//
591// findProgressInterrupt This function is called once for each advance in the target
592// string from the find() function, and calls the user progress callback
593// function if there is one installed.
594//
595// Return: TRUE if the find operation is to be terminated.
596// FALSE if the find operation is to continue running.
597//
598//--------------------------------------------------------------------------------
599UBool RegexMatcher::findProgressInterrupt(int64_t pos, UErrorCode &status) {
600 if (fFindProgressCallbackFn && !(*fFindProgressCallbackFn)(fFindProgressCallbackContext, pos)) {
601 status = U_REGEX_STOPPED_BY_CALLER;
602 return TRUE;
603 }
604 return FALSE;
605}
606
607//--------------------------------------------------------------------------------
608//
609// find()
610//
611//--------------------------------------------------------------------------------
612UBool RegexMatcher::find() {
613 if (U_FAILURE(fDeferredStatus)) {
614 return FALSE;
615 }
616 UErrorCode status = U_ZERO_ERROR;
617 UBool result = find(status);
618 return result;
619}
620
621//--------------------------------------------------------------------------------
622//
623// find()
624//
625//--------------------------------------------------------------------------------
626UBool RegexMatcher::find(UErrorCode &status) {
627 // Start at the position of the last match end. (Will be zero if the
628 // matcher has been reset.)
629 //
630 if (U_FAILURE(status)) {
631 return FALSE;
632 }
633 if (U_FAILURE(fDeferredStatus)) {
634 status = fDeferredStatus;
635 return FALSE;
636 }
637
638 if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
639 return findUsingChunk(status);
640 }
641
642 int64_t startPos = fMatchEnd;
643 if (startPos==0) {
644 startPos = fActiveStart;
645 }
646
647 if (fMatch) {
648 // Save the position of any previous successful match.
649 fLastMatchEnd = fMatchEnd;
650
651 if (fMatchStart == fMatchEnd) {
652 // Previous match had zero length. Move start position up one position
653 // to avoid sending find() into a loop on zero-length matches.
654 if (startPos >= fActiveLimit) {
655 fMatch = FALSE;
656 fHitEnd = TRUE;
657 return FALSE;
658 }
659 UTEXT_SETNATIVEINDEX(fInputText, startPos);
660 (void)UTEXT_NEXT32(fInputText);
661 startPos = UTEXT_GETNATIVEINDEX(fInputText);
662 }
663 } else {
664 if (fLastMatchEnd >= 0) {
665 // A previous find() failed to match. Don't try again.
666 // (without this test, a pattern with a zero-length match
667 // could match again at the end of an input string.)
668 fHitEnd = TRUE;
669 return FALSE;
670 }
671 }
672
673
674 // Compute the position in the input string beyond which a match can not begin, because
675 // the minimum length match would extend past the end of the input.
676 // Note: some patterns that cannot match anything will have fMinMatchLength==Max Int.
677 // Be aware of possible overflows if making changes here.
678 int64_t testStartLimit;
679 if (UTEXT_USES_U16(fInputText)) {
680 testStartLimit = fActiveLimit - fPattern->fMinMatchLen;
681 if (startPos > testStartLimit) {
682 fMatch = FALSE;
683 fHitEnd = TRUE;
684 return FALSE;
685 }
686 } else {
687 // We don't know exactly how long the minimum match length is in native characters.
688 // Treat anything > 0 as 1.
689 testStartLimit = fActiveLimit - (fPattern->fMinMatchLen > 0 ? 1 : 0);
690 }
691
692 UChar32 c;
693 U_ASSERT(startPos >= 0);
694
695 switch (fPattern->fStartType) {
696 case START_NO_INFO:
697 // No optimization was found.
698 // Try a match at each input position.
699 for (;;) {
700 MatchAt(startPos, FALSE, status);
701 if (U_FAILURE(status)) {
702 return FALSE;
703 }
704 if (fMatch) {
705 return TRUE;
706 }
707 if (startPos >= testStartLimit) {
708 fHitEnd = TRUE;
709 return FALSE;
710 }
711 UTEXT_SETNATIVEINDEX(fInputText, startPos);
712 (void)UTEXT_NEXT32(fInputText);
713 startPos = UTEXT_GETNATIVEINDEX(fInputText);
714 // Note that it's perfectly OK for a pattern to have a zero-length
715 // match at the end of a string, so we must make sure that the loop
716 // runs with startPos == testStartLimit the last time through.
717 if (findProgressInterrupt(startPos, status))
718 return FALSE;
719 }
720 UPRV_UNREACHABLE;
721
722 case START_START:
723 // Matches are only possible at the start of the input string
724 // (pattern begins with ^ or \A)
725 if (startPos > fActiveStart) {
726 fMatch = FALSE;
727 return FALSE;
728 }
729 MatchAt(startPos, FALSE, status);
730 if (U_FAILURE(status)) {
731 return FALSE;
732 }
733 return fMatch;
734
735
736 case START_SET:
737 {
738 // Match may start on any char from a pre-computed set.
739 U_ASSERT(fPattern->fMinMatchLen > 0);
740 UTEXT_SETNATIVEINDEX(fInputText, startPos);
741 for (;;) {
742 int64_t pos = startPos;
743 c = UTEXT_NEXT32(fInputText);
744 startPos = UTEXT_GETNATIVEINDEX(fInputText);
745 // c will be -1 (U_SENTINEL) at end of text, in which case we
746 // skip this next block (so we don't have a negative array index)
747 // and handle end of text in the following block.
748 if (c >= 0 && ((c<256 && fPattern->fInitialChars8->contains(c)) ||
749 (c>=256 && fPattern->fInitialChars->contains(c)))) {
750 MatchAt(pos, FALSE, status);
751 if (U_FAILURE(status)) {
752 return FALSE;
753 }
754 if (fMatch) {
755 return TRUE;
756 }
757 UTEXT_SETNATIVEINDEX(fInputText, pos);
758 }
759 if (startPos > testStartLimit) {
760 fMatch = FALSE;
761 fHitEnd = TRUE;
762 return FALSE;
763 }
764 if (findProgressInterrupt(startPos, status))
765 return FALSE;
766 }
767 }
768 UPRV_UNREACHABLE;
769
770 case START_STRING:
771 case START_CHAR:
772 {
773 // Match starts on exactly one char.
774 U_ASSERT(fPattern->fMinMatchLen > 0);
775 UChar32 theChar = fPattern->fInitialChar;
776 UTEXT_SETNATIVEINDEX(fInputText, startPos);
777 for (;;) {
778 int64_t pos = startPos;
779 c = UTEXT_NEXT32(fInputText);
780 startPos = UTEXT_GETNATIVEINDEX(fInputText);
781 if (c == theChar) {
782 MatchAt(pos, FALSE, status);
783 if (U_FAILURE(status)) {
784 return FALSE;
785 }
786 if (fMatch) {
787 return TRUE;
788 }
789 UTEXT_SETNATIVEINDEX(fInputText, startPos);
790 }
791 if (startPos > testStartLimit) {
792 fMatch = FALSE;
793 fHitEnd = TRUE;
794 return FALSE;
795 }
796 if (findProgressInterrupt(startPos, status))
797 return FALSE;
798 }
799 }
800 UPRV_UNREACHABLE;
801
802 case START_LINE:
803 {
804 UChar32 ch;
805 if (startPos == fAnchorStart) {
806 MatchAt(startPos, FALSE, status);
807 if (U_FAILURE(status)) {
808 return FALSE;
809 }
810 if (fMatch) {
811 return TRUE;
812 }
813 UTEXT_SETNATIVEINDEX(fInputText, startPos);
814 ch = UTEXT_NEXT32(fInputText);
815 startPos = UTEXT_GETNATIVEINDEX(fInputText);
816 } else {
817 UTEXT_SETNATIVEINDEX(fInputText, startPos);
818 ch = UTEXT_PREVIOUS32(fInputText);
819 UTEXT_SETNATIVEINDEX(fInputText, startPos);
820 }
821
822 if (fPattern->fFlags & UREGEX_UNIX_LINES) {
823 for (;;) {
824 if (ch == 0x0a) {
825 MatchAt(startPos, FALSE, status);
826 if (U_FAILURE(status)) {
827 return FALSE;
828 }
829 if (fMatch) {
830 return TRUE;
831 }
832 UTEXT_SETNATIVEINDEX(fInputText, startPos);
833 }
834 if (startPos >= testStartLimit) {
835 fMatch = FALSE;
836 fHitEnd = TRUE;
837 return FALSE;
838 }
839 ch = UTEXT_NEXT32(fInputText);
840 startPos = UTEXT_GETNATIVEINDEX(fInputText);
841 // Note that it's perfectly OK for a pattern to have a zero-length
842 // match at the end of a string, so we must make sure that the loop
843 // runs with startPos == testStartLimit the last time through.
844 if (findProgressInterrupt(startPos, status))
845 return FALSE;
846 }
847 } else {
848 for (;;) {
849 if (isLineTerminator(ch)) {
850 if (ch == 0x0d && startPos < fActiveLimit && UTEXT_CURRENT32(fInputText) == 0x0a) {
851 (void)UTEXT_NEXT32(fInputText);
852 startPos = UTEXT_GETNATIVEINDEX(fInputText);
853 }
854 MatchAt(startPos, FALSE, status);
855 if (U_FAILURE(status)) {
856 return FALSE;
857 }
858 if (fMatch) {
859 return TRUE;
860 }
861 UTEXT_SETNATIVEINDEX(fInputText, startPos);
862 }
863 if (startPos >= testStartLimit) {
864 fMatch = FALSE;
865 fHitEnd = TRUE;
866 return FALSE;
867 }
868 ch = UTEXT_NEXT32(fInputText);
869 startPos = UTEXT_GETNATIVEINDEX(fInputText);
870 // Note that it's perfectly OK for a pattern to have a zero-length
871 // match at the end of a string, so we must make sure that the loop
872 // runs with startPos == testStartLimit the last time through.
873 if (findProgressInterrupt(startPos, status))
874 return FALSE;
875 }
876 }
877 }
878
879 default:
880 UPRV_UNREACHABLE;
881 }
882
883 UPRV_UNREACHABLE;
884}
885
886
887
888UBool RegexMatcher::find(int64_t start, UErrorCode &status) {
889 if (U_FAILURE(status)) {
890 return FALSE;
891 }
892 if (U_FAILURE(fDeferredStatus)) {
893 status = fDeferredStatus;
894 return FALSE;
895 }
896 this->reset(); // Note: Reset() is specified by Java Matcher documentation.
897 // This will reset the region to be the full input length.
898 if (start < 0) {
899 status = U_INDEX_OUTOFBOUNDS_ERROR;
900 return FALSE;
901 }
902
903 int64_t nativeStart = start;
904 if (nativeStart < fActiveStart || nativeStart > fActiveLimit) {
905 status = U_INDEX_OUTOFBOUNDS_ERROR;
906 return FALSE;
907 }
908 fMatchEnd = nativeStart;
909 return find(status);
910}
911
912
913//--------------------------------------------------------------------------------
914//
915// findUsingChunk() -- like find(), but with the advance knowledge that the
916// entire string is available in the UText's chunk buffer.
917//
918//--------------------------------------------------------------------------------
919UBool RegexMatcher::findUsingChunk(UErrorCode &status) {
920 // Start at the position of the last match end. (Will be zero if the
921 // matcher has been reset.
922 //
923
924 int32_t startPos = (int32_t)fMatchEnd;
925 if (startPos==0) {
926 startPos = (int32_t)fActiveStart;
927 }
928
929 const UChar *inputBuf = fInputText->chunkContents;
930
931 if (fMatch) {
932 // Save the position of any previous successful match.
933 fLastMatchEnd = fMatchEnd;
934
935 if (fMatchStart == fMatchEnd) {
936 // Previous match had zero length. Move start position up one position
937 // to avoid sending find() into a loop on zero-length matches.
938 if (startPos >= fActiveLimit) {
939 fMatch = FALSE;
940 fHitEnd = TRUE;
941 return FALSE;
942 }
943 U16_FWD_1(inputBuf, startPos, fInputLength);
944 }
945 } else {
946 if (fLastMatchEnd >= 0) {
947 // A previous find() failed to match. Don't try again.
948 // (without this test, a pattern with a zero-length match
949 // could match again at the end of an input string.)
950 fHitEnd = TRUE;
951 return FALSE;
952 }
953 }
954
955
956 // Compute the position in the input string beyond which a match can not begin, because
957 // the minimum length match would extend past the end of the input.
958 // Note: some patterns that cannot match anything will have fMinMatchLength==Max Int.
959 // Be aware of possible overflows if making changes here.
960 // Note: a match can begin at inputBuf + testLen; it is an inclusive limit.
961 int32_t testLen = (int32_t)(fActiveLimit - fPattern->fMinMatchLen);
962 if (startPos > testLen) {
963 fMatch = FALSE;
964 fHitEnd = TRUE;
965 return FALSE;
966 }
967
968 UChar32 c;
969 U_ASSERT(startPos >= 0);
970
971 switch (fPattern->fStartType) {
972 case START_NO_INFO:
973 // No optimization was found.
974 // Try a match at each input position.
975 for (;;) {
976 MatchChunkAt(startPos, FALSE, status);
977 if (U_FAILURE(status)) {
978 return FALSE;
979 }
980 if (fMatch) {
981 return TRUE;
982 }
983 if (startPos >= testLen) {
984 fHitEnd = TRUE;
985 return FALSE;
986 }
987 U16_FWD_1(inputBuf, startPos, fActiveLimit);
988 // Note that it's perfectly OK for a pattern to have a zero-length
989 // match at the end of a string, so we must make sure that the loop
990 // runs with startPos == testLen the last time through.
991 if (findProgressInterrupt(startPos, status))
992 return FALSE;
993 }
994 UPRV_UNREACHABLE;
995
996 case START_START:
997 // Matches are only possible at the start of the input string
998 // (pattern begins with ^ or \A)
999 if (startPos > fActiveStart) {
1000 fMatch = FALSE;
1001 return FALSE;
1002 }
1003 MatchChunkAt(startPos, FALSE, status);
1004 if (U_FAILURE(status)) {
1005 return FALSE;
1006 }
1007 return fMatch;
1008
1009
1010 case START_SET:
1011 {
1012 // Match may start on any char from a pre-computed set.
1013 U_ASSERT(fPattern->fMinMatchLen > 0);
1014 for (;;) {
1015 int32_t pos = startPos;
1016 U16_NEXT(inputBuf, startPos, fActiveLimit, c); // like c = inputBuf[startPos++];
1017 if ((c<256 && fPattern->fInitialChars8->contains(c)) ||
1018 (c>=256 && fPattern->fInitialChars->contains(c))) {
1019 MatchChunkAt(pos, FALSE, status);
1020 if (U_FAILURE(status)) {
1021 return FALSE;
1022 }
1023 if (fMatch) {
1024 return TRUE;
1025 }
1026 }
1027 if (startPos > testLen) {
1028 fMatch = FALSE;
1029 fHitEnd = TRUE;
1030 return FALSE;
1031 }
1032 if (findProgressInterrupt(startPos, status))
1033 return FALSE;
1034 }
1035 }
1036 UPRV_UNREACHABLE;
1037
1038 case START_STRING:
1039 case START_CHAR:
1040 {
1041 // Match starts on exactly one char.
1042 U_ASSERT(fPattern->fMinMatchLen > 0);
1043 UChar32 theChar = fPattern->fInitialChar;
1044 for (;;) {
1045 int32_t pos = startPos;
1046 U16_NEXT(inputBuf, startPos, fActiveLimit, c); // like c = inputBuf[startPos++];
1047 if (c == theChar) {
1048 MatchChunkAt(pos, FALSE, status);
1049 if (U_FAILURE(status)) {
1050 return FALSE;
1051 }
1052 if (fMatch) {
1053 return TRUE;
1054 }
1055 }
1056 if (startPos > testLen) {
1057 fMatch = FALSE;
1058 fHitEnd = TRUE;
1059 return FALSE;
1060 }
1061 if (findProgressInterrupt(startPos, status))
1062 return FALSE;
1063 }
1064 }
1065 UPRV_UNREACHABLE;
1066
1067 case START_LINE:
1068 {
1069 UChar32 ch;
1070 if (startPos == fAnchorStart) {
1071 MatchChunkAt(startPos, FALSE, status);
1072 if (U_FAILURE(status)) {
1073 return FALSE;
1074 }
1075 if (fMatch) {
1076 return TRUE;
1077 }
1078 // In bug 31063104 which has a zero-length text buffer we get here with
1079 // inputBuf=NULL, startPos=fActiveLimit=0 (and fMatch F) which violates the
1080 // requirement for U16_FWD_1 (utf16.h) that startPos < fActiveLimit. Having
1081 // inputBuf=NULL (chunkContexts NULL) is probably due to an error in the
1082 // CFStringUText functions. Nevertheless, to be defensive, add test below.
1083 if (startPos >= testLen) {
1084 fHitEnd = TRUE;
1085 return FALSE;
1086 }
1087 U16_FWD_1(inputBuf, startPos, fActiveLimit);
1088 }
1089
1090 if (fPattern->fFlags & UREGEX_UNIX_LINES) {
1091 for (;;) {
1092 ch = inputBuf[startPos-1];
1093 if (ch == 0x0a) {
1094 MatchChunkAt(startPos, FALSE, status);
1095 if (U_FAILURE(status)) {
1096 return FALSE;
1097 }
1098 if (fMatch) {
1099 return TRUE;
1100 }
1101 }
1102 if (startPos >= testLen) {
1103 fMatch = FALSE;
1104 fHitEnd = TRUE;
1105 return FALSE;
1106 }
1107 U16_FWD_1(inputBuf, startPos, fActiveLimit);
1108 // Note that it's perfectly OK for a pattern to have a zero-length
1109 // match at the end of a string, so we must make sure that the loop
1110 // runs with startPos == testLen the last time through.
1111 if (findProgressInterrupt(startPos, status))
1112 return FALSE;
1113 }
1114 } else {
1115 for (;;) {
1116 ch = inputBuf[startPos-1];
1117 if (isLineTerminator(ch)) {
1118 if (ch == 0x0d && startPos < fActiveLimit && inputBuf[startPos] == 0x0a) {
1119 startPos++;
1120 }
1121 MatchChunkAt(startPos, FALSE, status);
1122 if (U_FAILURE(status)) {
1123 return FALSE;
1124 }
1125 if (fMatch) {
1126 return TRUE;
1127 }
1128 }
1129 if (startPos >= testLen) {
1130 fMatch = FALSE;
1131 fHitEnd = TRUE;
1132 return FALSE;
1133 }
1134 U16_FWD_1(inputBuf, startPos, fActiveLimit);
1135 // Note that it's perfectly OK for a pattern to have a zero-length
1136 // match at the end of a string, so we must make sure that the loop
1137 // runs with startPos == testLen the last time through.
1138 if (findProgressInterrupt(startPos, status))
1139 return FALSE;
1140 }
1141 }
1142 }
1143
1144 default:
1145 UPRV_UNREACHABLE;
1146 }
1147
1148 UPRV_UNREACHABLE;
1149}
1150
1151
1152
1153//--------------------------------------------------------------------------------
1154//
1155// group()
1156//
1157//--------------------------------------------------------------------------------
1158UnicodeString RegexMatcher::group(UErrorCode &status) const {
1159 return group(0, status);
1160}
1161
1162// Return immutable shallow clone
1163UText *RegexMatcher::group(UText *dest, int64_t &group_len, UErrorCode &status) const {
1164 return group(0, dest, group_len, status);
1165}
1166
1167// Return immutable shallow clone
1168UText *RegexMatcher::group(int32_t groupNum, UText *dest, int64_t &group_len, UErrorCode &status) const {
1169 group_len = 0;
1170 if (U_FAILURE(status)) {
1171 return dest;
1172 }
1173 if (U_FAILURE(fDeferredStatus)) {
1174 status = fDeferredStatus;
1175 } else if (fMatch == FALSE) {
1176 status = U_REGEX_INVALID_STATE;
1177 } else if (groupNum < 0 || groupNum > fPattern->fGroupMap->size()) {
1178 status = U_INDEX_OUTOFBOUNDS_ERROR;
1179 }
1180
1181 if (U_FAILURE(status)) {
1182 return dest;
1183 }
1184
1185 int64_t s, e;
1186 if (groupNum == 0) {
1187 s = fMatchStart;
1188 e = fMatchEnd;
1189 } else {
1190 int32_t groupOffset = fPattern->fGroupMap->elementAti(groupNum-1);
1191 U_ASSERT(groupOffset < fPattern->fFrameSize);
1192 U_ASSERT(groupOffset >= 0);
1193 s = fFrame->fExtra[groupOffset];
1194 e = fFrame->fExtra[groupOffset+1];
1195 }
1196
1197 if (s < 0) {
1198 // A capture group wasn't part of the match
1199 return utext_clone(dest, fInputText, FALSE, TRUE, &status);
1200 }
1201 U_ASSERT(s <= e);
1202 group_len = e - s;
1203
1204 dest = utext_clone(dest, fInputText, FALSE, TRUE, &status);
1205 if (dest)
1206 UTEXT_SETNATIVEINDEX(dest, s);
1207 return dest;
1208}
1209
1210UnicodeString RegexMatcher::group(int32_t groupNum, UErrorCode &status) const {
1211 UnicodeString result;
1212 int64_t groupStart = start64(groupNum, status);
1213 int64_t groupEnd = end64(groupNum, status);
1214 if (U_FAILURE(status) || groupStart == -1 || groupStart == groupEnd) {
1215 return result;
1216 }
1217
1218 // Get the group length using a utext_extract preflight.
1219 // UText is actually pretty efficient at this when underlying encoding is UTF-16.
1220 int32_t length = utext_extract(fInputText, groupStart, groupEnd, NULL, 0, &status);
1221 if (status != U_BUFFER_OVERFLOW_ERROR) {
1222 return result;
1223 }
1224
1225 status = U_ZERO_ERROR;
1226 UChar *buf = result.getBuffer(length);
1227 if (buf == NULL) {
1228 status = U_MEMORY_ALLOCATION_ERROR;
1229 } else {
1230 int32_t extractLength = utext_extract(fInputText, groupStart, groupEnd, buf, length, &status);
1231 result.releaseBuffer(extractLength);
1232 U_ASSERT(length == extractLength);
1233 }
1234 return result;
1235}
1236
1237
1238//--------------------------------------------------------------------------------
1239//
1240// appendGroup() -- currently internal only, appends a group to a UText rather
1241// than replacing its contents
1242//
1243//--------------------------------------------------------------------------------
1244
1245int64_t RegexMatcher::appendGroup(int32_t groupNum, UText *dest, UErrorCode &status) const {
1246 if (U_FAILURE(status)) {
1247 return 0;
1248 }
1249 if (U_FAILURE(fDeferredStatus)) {
1250 status = fDeferredStatus;
1251 return 0;
1252 }
1253 int64_t destLen = utext_nativeLength(dest);
1254
1255 if (fMatch == FALSE) {
1256 status = U_REGEX_INVALID_STATE;
1257 return utext_replace(dest, destLen, destLen, NULL, 0, &status);
1258 }
1259 if (groupNum < 0 || groupNum > fPattern->fGroupMap->size()) {
1260 status = U_INDEX_OUTOFBOUNDS_ERROR;
1261 return utext_replace(dest, destLen, destLen, NULL, 0, &status);
1262 }
1263
1264 int64_t s, e;
1265 if (groupNum == 0) {
1266 s = fMatchStart;
1267 e = fMatchEnd;
1268 } else {
1269 int32_t groupOffset = fPattern->fGroupMap->elementAti(groupNum-1);
1270 U_ASSERT(groupOffset < fPattern->fFrameSize);
1271 U_ASSERT(groupOffset >= 0);
1272 s = fFrame->fExtra[groupOffset];
1273 e = fFrame->fExtra[groupOffset+1];
1274 }
1275
1276 if (s < 0) {
1277 // A capture group wasn't part of the match
1278 return utext_replace(dest, destLen, destLen, NULL, 0, &status);
1279 }
1280 U_ASSERT(s <= e);
1281
1282 int64_t deltaLen;
1283 if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
1284 U_ASSERT(e <= fInputLength);
1285 deltaLen = utext_replace(dest, destLen, destLen, fInputText->chunkContents+s, (int32_t)(e-s), &status);
1286 } else {
1287 int32_t len16;
1288 if (UTEXT_USES_U16(fInputText)) {
1289 len16 = (int32_t)(e-s);
1290 } else {
1291 UErrorCode lengthStatus = U_ZERO_ERROR;
1292 len16 = utext_extract(fInputText, s, e, NULL, 0, &lengthStatus);
1293 }
1294 UChar *groupChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16+1));
1295 if (groupChars == NULL) {
1296 status = U_MEMORY_ALLOCATION_ERROR;
1297 return 0;
1298 }
1299 utext_extract(fInputText, s, e, groupChars, len16+1, &status);
1300
1301 deltaLen = utext_replace(dest, destLen, destLen, groupChars, len16, &status);
1302 uprv_free(groupChars);
1303 }
1304 return deltaLen;
1305}
1306
1307
1308
1309//--------------------------------------------------------------------------------
1310//
1311// groupCount()
1312//
1313//--------------------------------------------------------------------------------
1314int32_t RegexMatcher::groupCount() const {
1315 return fPattern->fGroupMap->size();
1316}
1317
1318//--------------------------------------------------------------------------------
1319//
1320// hasAnchoringBounds()
1321//
1322//--------------------------------------------------------------------------------
1323UBool RegexMatcher::hasAnchoringBounds() const {
1324 return fAnchoringBounds;
1325}
1326
1327
1328//--------------------------------------------------------------------------------
1329//
1330// hasTransparentBounds()
1331//
1332//--------------------------------------------------------------------------------
1333UBool RegexMatcher::hasTransparentBounds() const {
1334 return fTransparentBounds;
1335}
1336
1337
1338
1339//--------------------------------------------------------------------------------
1340//
1341// hitEnd()
1342//
1343//--------------------------------------------------------------------------------
1344UBool RegexMatcher::hitEnd() const {
1345 return fHitEnd;
1346}
1347
1348
1349//--------------------------------------------------------------------------------
1350//
1351// input()
1352//
1353//--------------------------------------------------------------------------------
1354const UnicodeString &RegexMatcher::input() const {
1355 if (!fInput) {
1356 UErrorCode status = U_ZERO_ERROR;
1357 int32_t len16;
1358 if (UTEXT_USES_U16(fInputText)) {
1359 len16 = (int32_t)fInputLength;
1360 } else {
1361 len16 = utext_extract(fInputText, 0, fInputLength, NULL, 0, &status);
1362 status = U_ZERO_ERROR; // overflow, length status
1363 }
1364 UnicodeString *result = new UnicodeString(len16, 0, 0);
1365
1366 UChar *inputChars = result->getBuffer(len16);
1367 utext_extract(fInputText, 0, fInputLength, inputChars, len16, &status); // unterminated warning
1368 result->releaseBuffer(len16);
1369
1370 (*(const UnicodeString **)&fInput) = result; // pointer assignment, rather than operator=
1371 }
1372
1373 return *fInput;
1374}
1375
1376//--------------------------------------------------------------------------------
1377//
1378// inputText()
1379//
1380//--------------------------------------------------------------------------------
1381UText *RegexMatcher::inputText() const {
1382 return fInputText;
1383}
1384
1385
1386//--------------------------------------------------------------------------------
1387//
1388// getInput() -- like inputText(), but makes a clone or copies into another UText
1389//
1390//--------------------------------------------------------------------------------
1391UText *RegexMatcher::getInput (UText *dest, UErrorCode &status) const {
1392 if (U_FAILURE(status)) {
1393 return dest;
1394 }
1395 if (U_FAILURE(fDeferredStatus)) {
1396 status = fDeferredStatus;
1397 return dest;
1398 }
1399
1400 if (dest) {
1401 if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
1402 utext_replace(dest, 0, utext_nativeLength(dest), fInputText->chunkContents, (int32_t)fInputLength, &status);
1403 } else {
1404 int32_t input16Len;
1405 if (UTEXT_USES_U16(fInputText)) {
1406 input16Len = (int32_t)fInputLength;
1407 } else {
1408 UErrorCode lengthStatus = U_ZERO_ERROR;
1409 input16Len = utext_extract(fInputText, 0, fInputLength, NULL, 0, &lengthStatus); // buffer overflow error
1410 }
1411 UChar *inputChars = (UChar *)uprv_malloc(sizeof(UChar)*(input16Len));
1412 if (inputChars == NULL) {
1413 return dest;
1414 }
1415
1416 status = U_ZERO_ERROR;
1417 utext_extract(fInputText, 0, fInputLength, inputChars, input16Len, &status); // not terminated warning
1418 status = U_ZERO_ERROR;
1419 utext_replace(dest, 0, utext_nativeLength(dest), inputChars, input16Len, &status);
1420
1421 uprv_free(inputChars);
1422 }
1423 return dest;
1424 } else {
1425 return utext_clone(NULL, fInputText, FALSE, TRUE, &status);
1426 }
1427}
1428
1429
1430static UBool compat_SyncMutableUTextContents(UText *ut);
1431static UBool compat_SyncMutableUTextContents(UText *ut) {
1432 UBool retVal = FALSE;
1433
1434 // In the following test, we're really only interested in whether the UText should switch
1435 // between heap and stack allocation. If length hasn't changed, we won't, so the chunkContents
1436 // will still point to the correct data.
1437 if (utext_nativeLength(ut) != ut->nativeIndexingLimit) {
1438 UnicodeString *us=(UnicodeString *)ut->context;
1439
1440 // Update to the latest length.
1441 // For example, (utext_nativeLength(ut) != ut->nativeIndexingLimit).
1442 int32_t newLength = us->length();
1443
1444 // Update the chunk description.
1445 // The buffer may have switched between stack- and heap-based.
1446 ut->chunkContents = us->getBuffer();
1447 ut->chunkLength = newLength;
1448 ut->chunkNativeLimit = newLength;
1449 ut->nativeIndexingLimit = newLength;
1450 retVal = TRUE;
1451 }
1452
1453 return retVal;
1454}
1455
1456//--------------------------------------------------------------------------------
1457//
1458// lookingAt()
1459//
1460//--------------------------------------------------------------------------------
1461UBool RegexMatcher::lookingAt(UErrorCode &status) {
1462 if (U_FAILURE(status)) {
1463 return FALSE;
1464 }
1465 if (U_FAILURE(fDeferredStatus)) {
1466 status = fDeferredStatus;
1467 return FALSE;
1468 }
1469
1470 if (fInputUniStrMaybeMutable) {
1471 if (compat_SyncMutableUTextContents(fInputText)) {
1472 fInputLength = utext_nativeLength(fInputText);
1473 reset();
1474 }
1475 }
1476 else {
1477 resetPreserveRegion();
1478 }
1479 if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
1480 MatchChunkAt((int32_t)fActiveStart, FALSE, status);
1481 } else {
1482 MatchAt(fActiveStart, FALSE, status);
1483 }
1484 return fMatch;
1485}
1486
1487
1488UBool RegexMatcher::lookingAt(int64_t start, UErrorCode &status) {
1489 if (U_FAILURE(status)) {
1490 return FALSE;
1491 }
1492 if (U_FAILURE(fDeferredStatus)) {
1493 status = fDeferredStatus;
1494 return FALSE;
1495 }
1496 reset();
1497
1498 if (start < 0) {
1499 status = U_INDEX_OUTOFBOUNDS_ERROR;
1500 return FALSE;
1501 }
1502
1503 if (fInputUniStrMaybeMutable) {
1504 if (compat_SyncMutableUTextContents(fInputText)) {
1505 fInputLength = utext_nativeLength(fInputText);
1506 reset();
1507 }
1508 }
1509
1510 int64_t nativeStart;
1511 nativeStart = start;
1512 if (nativeStart < fActiveStart || nativeStart > fActiveLimit) {
1513 status = U_INDEX_OUTOFBOUNDS_ERROR;
1514 return FALSE;
1515 }
1516
1517 if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
1518 MatchChunkAt((int32_t)nativeStart, FALSE, status);
1519 } else {
1520 MatchAt(nativeStart, FALSE, status);
1521 }
1522 return fMatch;
1523}
1524
1525
1526
1527//--------------------------------------------------------------------------------
1528//
1529// matches()
1530//
1531//--------------------------------------------------------------------------------
1532UBool RegexMatcher::matches(UErrorCode &status) {
1533 if (U_FAILURE(status)) {
1534 return FALSE;
1535 }
1536 if (U_FAILURE(fDeferredStatus)) {
1537 status = fDeferredStatus;
1538 return FALSE;
1539 }
1540
1541 if (fInputUniStrMaybeMutable) {
1542 if (compat_SyncMutableUTextContents(fInputText)) {
1543 fInputLength = utext_nativeLength(fInputText);
1544 reset();
1545 }
1546 }
1547 else {
1548 resetPreserveRegion();
1549 }
1550
1551 if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
1552 MatchChunkAt((int32_t)fActiveStart, TRUE, status);
1553 } else {
1554 MatchAt(fActiveStart, TRUE, status);
1555 }
1556 return fMatch;
1557}
1558
1559
1560UBool RegexMatcher::matches(int64_t start, UErrorCode &status) {
1561 if (U_FAILURE(status)) {
1562 return FALSE;
1563 }
1564 if (U_FAILURE(fDeferredStatus)) {
1565 status = fDeferredStatus;
1566 return FALSE;
1567 }
1568 reset();
1569
1570 if (start < 0) {
1571 status = U_INDEX_OUTOFBOUNDS_ERROR;
1572 return FALSE;
1573 }
1574
1575 if (fInputUniStrMaybeMutable) {
1576 if (compat_SyncMutableUTextContents(fInputText)) {
1577 fInputLength = utext_nativeLength(fInputText);
1578 reset();
1579 }
1580 }
1581
1582 int64_t nativeStart;
1583 nativeStart = start;
1584 if (nativeStart < fActiveStart || nativeStart > fActiveLimit) {
1585 status = U_INDEX_OUTOFBOUNDS_ERROR;
1586 return FALSE;
1587 }
1588
1589 if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
1590 MatchChunkAt((int32_t)nativeStart, TRUE, status);
1591 } else {
1592 MatchAt(nativeStart, TRUE, status);
1593 }
1594 return fMatch;
1595}
1596
1597
1598
1599//--------------------------------------------------------------------------------
1600//
1601// pattern
1602//
1603//--------------------------------------------------------------------------------
1604const RegexPattern &RegexMatcher::pattern() const {
1605 return *fPattern;
1606}
1607
1608
1609
1610//--------------------------------------------------------------------------------
1611//
1612// region
1613//
1614//--------------------------------------------------------------------------------
1615RegexMatcher &RegexMatcher::region(int64_t regionStart, int64_t regionLimit, int64_t startIndex, UErrorCode &status) {
1616 if (U_FAILURE(status)) {
1617 return *this;
1618 }
1619
1620 if (regionStart>regionLimit || regionStart<0 || regionLimit<0) {
1621 status = U_ILLEGAL_ARGUMENT_ERROR;
1622 }
1623
1624 int64_t nativeStart = regionStart;
1625 int64_t nativeLimit = regionLimit;
1626 if (nativeStart > fInputLength || nativeLimit > fInputLength) {
1627 status = U_ILLEGAL_ARGUMENT_ERROR;
1628 }
1629
1630 if (startIndex == -1)
1631 this->reset();
1632 else
1633 resetPreserveRegion();
1634
1635 fRegionStart = nativeStart;
1636 fRegionLimit = nativeLimit;
1637 fActiveStart = nativeStart;
1638 fActiveLimit = nativeLimit;
1639
1640 if (startIndex != -1) {
1641 if (startIndex < fActiveStart || startIndex > fActiveLimit) {
1642 status = U_INDEX_OUTOFBOUNDS_ERROR;
1643 }
1644 fMatchEnd = startIndex;
1645 }
1646
1647 if (!fTransparentBounds) {
1648 fLookStart = nativeStart;
1649 fLookLimit = nativeLimit;
1650 }
1651 if (fAnchoringBounds) {
1652 fAnchorStart = nativeStart;
1653 fAnchorLimit = nativeLimit;
1654 }
1655 return *this;
1656}
1657
1658RegexMatcher &RegexMatcher::region(int64_t start, int64_t limit, UErrorCode &status) {
1659 return region(start, limit, -1, status);
1660}
1661
1662//--------------------------------------------------------------------------------
1663//
1664// regionEnd
1665//
1666//--------------------------------------------------------------------------------
1667int32_t RegexMatcher::regionEnd() const {
1668 return (int32_t)fRegionLimit;
1669}
1670
1671int64_t RegexMatcher::regionEnd64() const {
1672 return fRegionLimit;
1673}
1674
1675//--------------------------------------------------------------------------------
1676//
1677// regionStart
1678//
1679//--------------------------------------------------------------------------------
1680int32_t RegexMatcher::regionStart() const {
1681 return (int32_t)fRegionStart;
1682}
1683
1684int64_t RegexMatcher::regionStart64() const {
1685 return fRegionStart;
1686}
1687
1688
1689//--------------------------------------------------------------------------------
1690//
1691// replaceAll
1692//
1693//--------------------------------------------------------------------------------
1694UnicodeString RegexMatcher::replaceAll(const UnicodeString &replacement, UErrorCode &status) {
1695 UText replacementText = UTEXT_INITIALIZER;
1696 UText resultText = UTEXT_INITIALIZER;
1697 UnicodeString resultString;
1698 if (U_FAILURE(status)) {
1699 return resultString;
1700 }
1701
1702 utext_openConstUnicodeString(&replacementText, &replacement, &status);
1703 utext_openUnicodeString(&resultText, &resultString, &status);
1704
1705 replaceAll(&replacementText, &resultText, status);
1706
1707 utext_close(&resultText);
1708 utext_close(&replacementText);
1709
1710 return resultString;
1711}
1712
1713
1714//
1715// replaceAll, UText mode
1716//
1717UText *RegexMatcher::replaceAll(UText *replacement, UText *dest, UErrorCode &status) {
1718 if (U_FAILURE(status)) {
1719 return dest;
1720 }
1721 if (U_FAILURE(fDeferredStatus)) {
1722 status = fDeferredStatus;
1723 return dest;
1724 }
1725
1726 if (dest == NULL) {
1727 UnicodeString emptyString;
1728 UText empty = UTEXT_INITIALIZER;
1729
1730 utext_openUnicodeString(&empty, &emptyString, &status);
1731 dest = utext_clone(NULL, &empty, TRUE, FALSE, &status);
1732 utext_close(&empty);
1733 }
1734
1735 if (U_SUCCESS(status)) {
1736 reset();
1737 while (find()) {
1738 appendReplacement(dest, replacement, status);
1739 if (U_FAILURE(status)) {
1740 break;
1741 }
1742 }
1743 appendTail(dest, status);
1744 }
1745
1746 return dest;
1747}
1748
1749
1750//--------------------------------------------------------------------------------
1751//
1752// replaceFirst
1753//
1754//--------------------------------------------------------------------------------
1755UnicodeString RegexMatcher::replaceFirst(const UnicodeString &replacement, UErrorCode &status) {
1756 UText replacementText = UTEXT_INITIALIZER;
1757 UText resultText = UTEXT_INITIALIZER;
1758 UnicodeString resultString;
1759
1760 utext_openConstUnicodeString(&replacementText, &replacement, &status);
1761 utext_openUnicodeString(&resultText, &resultString, &status);
1762
1763 replaceFirst(&replacementText, &resultText, status);
1764
1765 utext_close(&resultText);
1766 utext_close(&replacementText);
1767
1768 return resultString;
1769}
1770
1771//
1772// replaceFirst, UText mode
1773//
1774UText *RegexMatcher::replaceFirst(UText *replacement, UText *dest, UErrorCode &status) {
1775 if (U_FAILURE(status)) {
1776 return dest;
1777 }
1778 if (U_FAILURE(fDeferredStatus)) {
1779 status = fDeferredStatus;
1780 return dest;
1781 }
1782
1783 reset();
1784 if (!find()) {
1785 return getInput(dest, status);
1786 }
1787
1788 if (dest == NULL) {
1789 UnicodeString emptyString;
1790 UText empty = UTEXT_INITIALIZER;
1791
1792 utext_openUnicodeString(&empty, &emptyString, &status);
1793 dest = utext_clone(NULL, &empty, TRUE, FALSE, &status);
1794 utext_close(&empty);
1795 }
1796
1797 appendReplacement(dest, replacement, status);
1798 appendTail(dest, status);
1799
1800 return dest;
1801}
1802
1803
1804//--------------------------------------------------------------------------------
1805//
1806// requireEnd
1807//
1808//--------------------------------------------------------------------------------
1809UBool RegexMatcher::requireEnd() const {
1810 return fRequireEnd;
1811}
1812
1813
1814//--------------------------------------------------------------------------------
1815//
1816// reset
1817//
1818//--------------------------------------------------------------------------------
1819RegexMatcher &RegexMatcher::reset() {
1820 fRegionStart = 0;
1821 fRegionLimit = fInputLength;
1822 fActiveStart = 0;
1823 fActiveLimit = fInputLength;
1824 fAnchorStart = 0;
1825 fAnchorLimit = fInputLength;
1826 fLookStart = 0;
1827 fLookLimit = fInputLength;
1828 resetPreserveRegion();
1829 return *this;
1830}
1831
1832
1833
1834void RegexMatcher::resetPreserveRegion() {
1835 fMatchStart = 0;
1836 fMatchEnd = 0;
1837 fLastMatchEnd = -1;
1838 fAppendPosition = 0;
1839 fMatch = FALSE;
1840 fHitEnd = FALSE;
1841 fRequireEnd = FALSE;
1842 fTime = 0;
1843 fTickCounter = TIMER_INITIAL_VALUE;
1844 //resetStack(); // more expensive than it looks...
1845}
1846
1847
1848RegexMatcher &RegexMatcher::reset(const UnicodeString &input) {
1849 fInputText = utext_openConstUnicodeString(fInputText, &input, &fDeferredStatus);
1850 if (fPattern->fNeedsAltInput) {
1851 fAltInputText = utext_clone(fAltInputText, fInputText, FALSE, TRUE, &fDeferredStatus);
1852 }
1853 if (U_FAILURE(fDeferredStatus)) {
1854 return *this;
1855 }
1856 fInputLength = utext_nativeLength(fInputText);
1857
1858 reset();
1859 delete fInput;
1860 fInput = NULL;
1861
1862 // Do the following for any UnicodeString.
1863 // This is for compatibility for those clients who modify the input string "live" during regex operations.
1864 fInputUniStrMaybeMutable = TRUE;
1865
1866 if (fWordBreakItr != NULL) {
1867#if UCONFIG_NO_BREAK_ITERATION==0
1868 UErrorCode status = U_ZERO_ERROR;
1869 fWordBreakItr->setText(fInputText, status);
1870#endif
1871 }
1872 return *this;
1873}
1874
1875
1876RegexMatcher &RegexMatcher::reset(UText *input) {
1877 if (fInputText != input) {
1878 fInputText = utext_clone(fInputText, input, FALSE, TRUE, &fDeferredStatus);
1879 if (fPattern->fNeedsAltInput) fAltInputText = utext_clone(fAltInputText, fInputText, FALSE, TRUE, &fDeferredStatus);
1880 if (U_FAILURE(fDeferredStatus)) {
1881 return *this;
1882 }
1883 fInputLength = utext_nativeLength(fInputText);
1884
1885 delete fInput;
1886 fInput = NULL;
1887
1888 if (fWordBreakItr != NULL) {
1889#if UCONFIG_NO_BREAK_ITERATION==0
1890 UErrorCode status = U_ZERO_ERROR;
1891 fWordBreakItr->setText(input, status);
1892#endif
1893 }
1894 }
1895 reset();
1896 fInputUniStrMaybeMutable = FALSE;
1897
1898 return *this;
1899}
1900
1901/*RegexMatcher &RegexMatcher::reset(const UChar *) {
1902 fDeferredStatus = U_INTERNAL_PROGRAM_ERROR;
1903 return *this;
1904}*/
1905
1906RegexMatcher &RegexMatcher::reset(int64_t position, UErrorCode &status) {
1907 if (U_FAILURE(status)) {
1908 return *this;
1909 }
1910 reset(); // Reset also resets the region to be the entire string.
1911
1912 if (position < 0 || position > fActiveLimit) {
1913 status = U_INDEX_OUTOFBOUNDS_ERROR;
1914 return *this;
1915 }
1916 fMatchEnd = position;
1917 return *this;
1918}
1919
1920
1921//--------------------------------------------------------------------------------
1922//
1923// refresh
1924//
1925//--------------------------------------------------------------------------------
1926RegexMatcher &RegexMatcher::refreshInputText(UText *input, UErrorCode &status) {
1927 if (U_FAILURE(status)) {
1928 return *this;
1929 }
1930 if (input == NULL) {
1931 status = U_ILLEGAL_ARGUMENT_ERROR;
1932 return *this;
1933 }
1934 if (utext_nativeLength(fInputText) != utext_nativeLength(input)) {
1935 status = U_ILLEGAL_ARGUMENT_ERROR;
1936 return *this;
1937 }
1938 int64_t pos = utext_getNativeIndex(fInputText);
1939 // Shallow read-only clone of the new UText into the existing input UText
1940 fInputText = utext_clone(fInputText, input, FALSE, TRUE, &status);
1941 if (U_FAILURE(status)) {
1942 return *this;
1943 }
1944 utext_setNativeIndex(fInputText, pos);
1945
1946 if (fAltInputText != NULL) {
1947 pos = utext_getNativeIndex(fAltInputText);
1948 fAltInputText = utext_clone(fAltInputText, input, FALSE, TRUE, &status);
1949 if (U_FAILURE(status)) {
1950 return *this;
1951 }
1952 utext_setNativeIndex(fAltInputText, pos);
1953 }
1954 return *this;
1955}
1956
1957
1958
1959//--------------------------------------------------------------------------------
1960//
1961// setTrace
1962//
1963//--------------------------------------------------------------------------------
1964void RegexMatcher::setTrace(UBool state) {
1965 fTraceDebug = state;
1966}
1967
1968
1969
1970/**
1971 * UText, replace entire contents of the destination UText with a substring of the source UText.
1972 *
1973 * @param src The source UText
1974 * @param dest The destination UText. Must be writable.
1975 * May be NULL, in which case a new UText will be allocated.
1976 * @param start Start index of source substring.
1977 * @param limit Limit index of source substring.
1978 * @param status An error code.
1979 */
1980static UText *utext_extract_replace(UText *src, UText *dest, int64_t start, int64_t limit, UErrorCode *status) {
1981 if (U_FAILURE(*status)) {
1982 return dest;
1983 }
1984 if (start == limit) {
1985 if (dest) {
1986 utext_replace(dest, 0, utext_nativeLength(dest), NULL, 0, status);
1987 return dest;
1988 } else {
1989 return utext_openUChars(NULL, NULL, 0, status);
1990 }
1991 }
1992 int32_t length = utext_extract(src, start, limit, NULL, 0, status);
1993 if (*status != U_BUFFER_OVERFLOW_ERROR && U_FAILURE(*status)) {
1994 return dest;
1995 }
1996 *status = U_ZERO_ERROR;
1997 MaybeStackArray<UChar, 40> buffer;
1998 if (length >= buffer.getCapacity()) {
1999 UChar *newBuf = buffer.resize(length+1); // Leave space for terminating Nul.
2000 if (newBuf == NULL) {
2001 *status = U_MEMORY_ALLOCATION_ERROR;
2002 }
2003 }
2004 utext_extract(src, start, limit, buffer.getAlias(), length+1, status);
2005 if (dest) {
2006 utext_replace(dest, 0, utext_nativeLength(dest), buffer.getAlias(), length, status);
2007 return dest;
2008 }
2009
2010 // Caller did not provide a prexisting UText.
2011 // Open a new one, and have it adopt the text buffer storage.
2012 if (U_FAILURE(*status)) {
2013 return NULL;
2014 }
2015 int32_t ownedLength = 0;
2016 UChar *ownedBuf = buffer.orphanOrClone(length+1, ownedLength);
2017 if (ownedBuf == NULL) {
2018 *status = U_MEMORY_ALLOCATION_ERROR;
2019 return NULL;
2020 }
2021 UText *result = utext_openUChars(NULL, ownedBuf, length, status);
2022 if (U_FAILURE(*status)) {
2023 uprv_free(ownedBuf);
2024 return NULL;
2025 }
2026 result->providerProperties |= (1 << UTEXT_PROVIDER_OWNS_TEXT);
2027 return result;
2028}
2029
2030
2031//---------------------------------------------------------------------
2032//
2033// split
2034//
2035//---------------------------------------------------------------------
2036int32_t RegexMatcher::split(const UnicodeString &input,
2037 UnicodeString dest[],
2038 int32_t destCapacity,
2039 UErrorCode &status)
2040{
2041 UText inputText = UTEXT_INITIALIZER;
2042 utext_openConstUnicodeString(&inputText, &input, &status);
2043 if (U_FAILURE(status)) {
2044 return 0;
2045 }
2046
2047 UText **destText = (UText **)uprv_malloc(sizeof(UText*)*destCapacity);
2048 if (destText == NULL) {
2049 status = U_MEMORY_ALLOCATION_ERROR;
2050 return 0;
2051 }
2052 int32_t i;
2053 for (i = 0; i < destCapacity; i++) {
2054 destText[i] = utext_openUnicodeString(NULL, &dest[i], &status);
2055 }
2056
2057 int32_t fieldCount = split(&inputText, destText, destCapacity, status);
2058
2059 for (i = 0; i < destCapacity; i++) {
2060 utext_close(destText[i]);
2061 }
2062
2063 uprv_free(destText);
2064 utext_close(&inputText);
2065 return fieldCount;
2066}
2067
2068//
2069// split, UText mode
2070//
2071int32_t RegexMatcher::split(UText *input,
2072 UText *dest[],
2073 int32_t destCapacity,
2074 UErrorCode &status)
2075{
2076 //
2077 // Check arguements for validity
2078 //
2079 if (U_FAILURE(status)) {
2080 return 0;
2081 };
2082
2083 if (destCapacity < 1) {
2084 status = U_ILLEGAL_ARGUMENT_ERROR;
2085 return 0;
2086 }
2087
2088 //
2089 // Reset for the input text
2090 //
2091 reset(input);
2092 int64_t nextOutputStringStart = 0;
2093 if (fActiveLimit == 0) {
2094 return 0;
2095 }
2096
2097 //
2098 // Loop through the input text, searching for the delimiter pattern
2099 //
2100 int32_t i;
2101 int32_t numCaptureGroups = fPattern->fGroupMap->size();
2102 for (i=0; ; i++) {
2103 if (i>=destCapacity-1) {
2104 // There is one or zero output string left.
2105 // Fill the last output string with whatever is left from the input, then exit the loop.
2106 // ( i will be == destCapacity if we filled the output array while processing
2107 // capture groups of the delimiter expression, in which case we will discard the
2108 // last capture group saved in favor of the unprocessed remainder of the
2109 // input string.)
2110 i = destCapacity-1;
2111 if (fActiveLimit > nextOutputStringStart) {
2112 if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)) {
2113 if (dest[i]) {
2114 utext_replace(dest[i], 0, utext_nativeLength(dest[i]),
2115 input->chunkContents+nextOutputStringStart,
2116 (int32_t)(fActiveLimit-nextOutputStringStart), &status);
2117 } else {
2118 UText remainingText = UTEXT_INITIALIZER;
2119 utext_openUChars(&remainingText, input->chunkContents+nextOutputStringStart,
2120 fActiveLimit-nextOutputStringStart, &status);
2121 dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status);
2122 utext_close(&remainingText);
2123 }
2124 } else {
2125 UErrorCode lengthStatus = U_ZERO_ERROR;
2126 int32_t remaining16Length =
2127 utext_extract(input, nextOutputStringStart, fActiveLimit, NULL, 0, &lengthStatus);
2128 UChar *remainingChars = (UChar *)uprv_malloc(sizeof(UChar)*(remaining16Length+1));
2129 if (remainingChars == NULL) {
2130 status = U_MEMORY_ALLOCATION_ERROR;
2131 break;
2132 }
2133
2134 utext_extract(input, nextOutputStringStart, fActiveLimit, remainingChars, remaining16Length+1, &status);
2135 if (dest[i]) {
2136 utext_replace(dest[i], 0, utext_nativeLength(dest[i]), remainingChars, remaining16Length, &status);
2137 } else {
2138 UText remainingText = UTEXT_INITIALIZER;
2139 utext_openUChars(&remainingText, remainingChars, remaining16Length, &status);
2140 dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status);
2141 utext_close(&remainingText);
2142 }
2143
2144 uprv_free(remainingChars);
2145 }
2146 }
2147 break;
2148 }
2149 if (find()) {
2150 // We found another delimiter. Move everything from where we started looking
2151 // up until the start of the delimiter into the next output string.
2152 if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)) {
2153 if (dest[i]) {
2154 utext_replace(dest[i], 0, utext_nativeLength(dest[i]),
2155 input->chunkContents+nextOutputStringStart,
2156 (int32_t)(fMatchStart-nextOutputStringStart), &status);
2157 } else {
2158 UText remainingText = UTEXT_INITIALIZER;
2159 utext_openUChars(&remainingText, input->chunkContents+nextOutputStringStart,
2160 fMatchStart-nextOutputStringStart, &status);
2161 dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status);
2162 utext_close(&remainingText);
2163 }
2164 } else {
2165 UErrorCode lengthStatus = U_ZERO_ERROR;
2166 int32_t remaining16Length = utext_extract(input, nextOutputStringStart, fMatchStart, NULL, 0, &lengthStatus);
2167 UChar *remainingChars = (UChar *)uprv_malloc(sizeof(UChar)*(remaining16Length+1));
2168 if (remainingChars == NULL) {
2169 status = U_MEMORY_ALLOCATION_ERROR;
2170 break;
2171 }
2172 utext_extract(input, nextOutputStringStart, fMatchStart, remainingChars, remaining16Length+1, &status);
2173 if (dest[i]) {
2174 utext_replace(dest[i], 0, utext_nativeLength(dest[i]), remainingChars, remaining16Length, &status);
2175 } else {
2176 UText remainingText = UTEXT_INITIALIZER;
2177 utext_openUChars(&remainingText, remainingChars, remaining16Length, &status);
2178 dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status);
2179 utext_close(&remainingText);
2180 }
2181
2182 uprv_free(remainingChars);
2183 }
2184 nextOutputStringStart = fMatchEnd;
2185
2186 // If the delimiter pattern has capturing parentheses, the captured
2187 // text goes out into the next n destination strings.
2188 int32_t groupNum;
2189 for (groupNum=1; groupNum<=numCaptureGroups; groupNum++) {
2190 if (i >= destCapacity-2) {
2191 // Never fill the last available output string with capture group text.
2192 // It will filled with the last field, the remainder of the
2193 // unsplit input text.
2194 break;
2195 }
2196 i++;
2197 dest[i] = utext_extract_replace(fInputText, dest[i],
2198 start64(groupNum, status), end64(groupNum, status), &status);
2199 }
2200
2201 if (nextOutputStringStart == fActiveLimit) {
2202 // The delimiter was at the end of the string. We're done, but first
2203 // we output one last empty string, for the empty field following
2204 // the delimiter at the end of input.
2205 if (i+1 < destCapacity) {
2206 ++i;
2207 if (dest[i] == NULL) {
2208 dest[i] = utext_openUChars(NULL, NULL, 0, &status);
2209 } else {
2210 static const UChar emptyString[] = {(UChar)0};
2211 utext_replace(dest[i], 0, utext_nativeLength(dest[i]), emptyString, 0, &status);
2212 }
2213 }
2214 break;
2215
2216 }
2217 }
2218 else
2219 {
2220 // We ran off the end of the input while looking for the next delimiter.
2221 // All the remaining text goes into the current output string.
2222 if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)) {
2223 if (dest[i]) {
2224 utext_replace(dest[i], 0, utext_nativeLength(dest[i]),
2225 input->chunkContents+nextOutputStringStart,
2226 (int32_t)(fActiveLimit-nextOutputStringStart), &status);
2227 } else {
2228 UText remainingText = UTEXT_INITIALIZER;
2229 utext_openUChars(&remainingText, input->chunkContents+nextOutputStringStart,
2230 fActiveLimit-nextOutputStringStart, &status);
2231 dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status);
2232 utext_close(&remainingText);
2233 }
2234 } else {
2235 UErrorCode lengthStatus = U_ZERO_ERROR;
2236 int32_t remaining16Length = utext_extract(input, nextOutputStringStart, fActiveLimit, NULL, 0, &lengthStatus);
2237 UChar *remainingChars = (UChar *)uprv_malloc(sizeof(UChar)*(remaining16Length+1));
2238 if (remainingChars == NULL) {
2239 status = U_MEMORY_ALLOCATION_ERROR;
2240 break;
2241 }
2242
2243 utext_extract(input, nextOutputStringStart, fActiveLimit, remainingChars, remaining16Length+1, &status);
2244 if (dest[i]) {
2245 utext_replace(dest[i], 0, utext_nativeLength(dest[i]), remainingChars, remaining16Length, &status);
2246 } else {
2247 UText remainingText = UTEXT_INITIALIZER;
2248 utext_openUChars(&remainingText, remainingChars, remaining16Length, &status);
2249 dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status);
2250 utext_close(&remainingText);
2251 }
2252
2253 uprv_free(remainingChars);
2254 }
2255 break;
2256 }
2257 if (U_FAILURE(status)) {
2258 break;
2259 }
2260 } // end of for loop
2261 return i+1;
2262}
2263
2264
2265//--------------------------------------------------------------------------------
2266//
2267// start
2268//
2269//--------------------------------------------------------------------------------
2270int32_t RegexMatcher::start(UErrorCode &status) const {
2271 return start(0, status);
2272}
2273
2274int64_t RegexMatcher::start64(UErrorCode &status) const {
2275 return start64(0, status);
2276}
2277
2278//--------------------------------------------------------------------------------
2279//
2280// start(int32_t group, UErrorCode &status)
2281//
2282//--------------------------------------------------------------------------------
2283
2284int64_t RegexMatcher::start64(int32_t group, UErrorCode &status) const {
2285 if (U_FAILURE(status)) {
2286 return -1;
2287 }
2288 if (U_FAILURE(fDeferredStatus)) {
2289 status = fDeferredStatus;
2290 return -1;
2291 }
2292 if (fMatch == FALSE) {
2293 status = U_REGEX_INVALID_STATE;
2294 return -1;
2295 }
2296 if (group < 0 || group > fPattern->fGroupMap->size()) {
2297 status = U_INDEX_OUTOFBOUNDS_ERROR;
2298 return -1;
2299 }
2300 int64_t s;
2301 if (group == 0) {
2302 s = fMatchStart;
2303 } else {
2304 int32_t groupOffset = fPattern->fGroupMap->elementAti(group-1);
2305 U_ASSERT(groupOffset < fPattern->fFrameSize);
2306 U_ASSERT(groupOffset >= 0);
2307 s = fFrame->fExtra[groupOffset];
2308 }
2309
2310 return s;
2311}
2312
2313
2314int32_t RegexMatcher::start(int32_t group, UErrorCode &status) const {
2315 return (int32_t)start64(group, status);
2316}
2317
2318//--------------------------------------------------------------------------------
2319//
2320// useAnchoringBounds
2321//
2322//--------------------------------------------------------------------------------
2323RegexMatcher &RegexMatcher::useAnchoringBounds(UBool b) {
2324 fAnchoringBounds = b;
2325 fAnchorStart = (fAnchoringBounds ? fRegionStart : 0);
2326 fAnchorLimit = (fAnchoringBounds ? fRegionLimit : fInputLength);
2327 return *this;
2328}
2329
2330
2331//--------------------------------------------------------------------------------
2332//
2333// useTransparentBounds
2334//
2335//--------------------------------------------------------------------------------
2336RegexMatcher &RegexMatcher::useTransparentBounds(UBool b) {
2337 fTransparentBounds = b;
2338 fLookStart = (fTransparentBounds ? 0 : fRegionStart);
2339 fLookLimit = (fTransparentBounds ? fInputLength : fRegionLimit);
2340 return *this;
2341}
2342
2343//--------------------------------------------------------------------------------
2344//
2345// setTimeLimit
2346//
2347//--------------------------------------------------------------------------------
2348void RegexMatcher::setTimeLimit(int32_t limit, UErrorCode &status) {
2349 if (U_FAILURE(status)) {
2350 return;
2351 }
2352 if (U_FAILURE(fDeferredStatus)) {
2353 status = fDeferredStatus;
2354 return;
2355 }
2356 if (limit < 0) {
2357 status = U_ILLEGAL_ARGUMENT_ERROR;
2358 return;
2359 }
2360 fTimeLimit = limit;
2361}
2362
2363
2364//--------------------------------------------------------------------------------
2365//
2366// getTimeLimit
2367//
2368//--------------------------------------------------------------------------------
2369int32_t RegexMatcher::getTimeLimit() const {
2370 return fTimeLimit;
2371}
2372
2373
2374//--------------------------------------------------------------------------------
2375//
2376// setStackLimit
2377//
2378//--------------------------------------------------------------------------------
2379void RegexMatcher::setStackLimit(int32_t limit, UErrorCode &status) {
2380 if (U_FAILURE(status)) {
2381 return;
2382 }
2383 if (U_FAILURE(fDeferredStatus)) {
2384 status = fDeferredStatus;
2385 return;
2386 }
2387 if (limit < 0) {
2388 status = U_ILLEGAL_ARGUMENT_ERROR;
2389 return;
2390 }
2391
2392 // Reset the matcher. This is needed here in case there is a current match
2393 // whose final stack frame (containing the match results, pointed to by fFrame)
2394 // would be lost by resizing to a smaller stack size.
2395 reset();
2396
2397 if (limit == 0) {
2398 // Unlimited stack expansion
2399 fStack->setMaxCapacity(0);
2400 } else {
2401 // Change the units of the limit from bytes to ints, and bump the size up
2402 // to be big enough to hold at least one stack frame for the pattern,
2403 // if it isn't there already.
2404 int32_t adjustedLimit = limit / sizeof(int32_t);
2405 if (adjustedLimit < fPattern->fFrameSize) {
2406 adjustedLimit = fPattern->fFrameSize;
2407 }
2408 fStack->setMaxCapacity(adjustedLimit);
2409 }
2410 fStackLimit = limit;
2411}
2412
2413
2414//--------------------------------------------------------------------------------
2415//
2416// getStackLimit
2417//
2418//--------------------------------------------------------------------------------
2419int32_t RegexMatcher::getStackLimit() const {
2420 return fStackLimit;
2421}
2422
2423
2424//--------------------------------------------------------------------------------
2425//
2426// setMatchCallback
2427//
2428//--------------------------------------------------------------------------------
2429void RegexMatcher::setMatchCallback(URegexMatchCallback *callback,
2430 const void *context,
2431 UErrorCode &status) {
2432 if (U_FAILURE(status)) {
2433 return;
2434 }
2435 fCallbackFn = callback;
2436 fCallbackContext = context;
2437}
2438
2439
2440//--------------------------------------------------------------------------------
2441//
2442// getMatchCallback
2443//
2444//--------------------------------------------------------------------------------
2445void RegexMatcher::getMatchCallback(URegexMatchCallback *&callback,
2446 const void *&context,
2447 UErrorCode &status) {
2448 if (U_FAILURE(status)) {
2449 return;
2450 }
2451 callback = fCallbackFn;
2452 context = fCallbackContext;
2453}
2454
2455
2456//--------------------------------------------------------------------------------
2457//
2458// setMatchCallback
2459//
2460//--------------------------------------------------------------------------------
2461void RegexMatcher::setFindProgressCallback(URegexFindProgressCallback *callback,
2462 const void *context,
2463 UErrorCode &status) {
2464 if (U_FAILURE(status)) {
2465 return;
2466 }
2467 fFindProgressCallbackFn = callback;
2468 fFindProgressCallbackContext = context;
2469}
2470
2471
2472//--------------------------------------------------------------------------------
2473//
2474// getMatchCallback
2475//
2476//--------------------------------------------------------------------------------
2477void RegexMatcher::getFindProgressCallback(URegexFindProgressCallback *&callback,
2478 const void *&context,
2479 UErrorCode &status) {
2480 if (U_FAILURE(status)) {
2481 return;
2482 }
2483 callback = fFindProgressCallbackFn;
2484 context = fFindProgressCallbackContext;
2485}
2486
2487
2488//================================================================================
2489//
2490// Code following this point in this file is the internal
2491// Match Engine Implementation.
2492//
2493//================================================================================
2494
2495
2496//--------------------------------------------------------------------------------
2497//
2498// resetStack
2499// Discard any previous contents of the state save stack, and initialize a
2500// new stack frame to all -1. The -1s are needed for capture group limits,
2501// where they indicate that a group has not yet matched anything.
2502//--------------------------------------------------------------------------------
2503REStackFrame *RegexMatcher::resetStack() {
2504 // Discard any previous contents of the state save stack, and initialize a
2505 // new stack frame with all -1 data. The -1s are needed for capture group limits,
2506 // where they indicate that a group has not yet matched anything.
2507 fStack->removeAllElements();
2508
2509 REStackFrame *iFrame = (REStackFrame *)fStack->reserveBlock(fPattern->fFrameSize, fDeferredStatus);
2510 if(U_FAILURE(fDeferredStatus)) {
2511 return NULL;
2512 }
2513
2514 int32_t i;
2515 for (i=0; i<fPattern->fFrameSize-RESTACKFRAME_HDRCOUNT; i++) {
2516 iFrame->fExtra[i] = -1;
2517 }
2518 return iFrame;
2519}
2520
2521
2522
2523//--------------------------------------------------------------------------------
2524//
2525// isWordBoundary
2526// in perl, "xab..cd..", \b is true at positions 0,3,5,7
2527// For us,
2528// If the current char is a combining mark,
2529// \b is FALSE.
2530// Else Scan backwards to the first non-combining char.
2531// We are at a boundary if the this char and the original chars are
2532// opposite in membership in \w set
2533//
2534// parameters: pos - the current position in the input buffer
2535//
2536// TODO: double-check edge cases at region boundaries.
2537//
2538//--------------------------------------------------------------------------------
2539UBool RegexMatcher::isWordBoundary(int64_t pos) {
2540 UBool isBoundary = FALSE;
2541 UBool cIsWord = FALSE;
2542
2543 if (pos >= fLookLimit) {
2544 fHitEnd = TRUE;
2545 } else {
2546 // Determine whether char c at current position is a member of the word set of chars.
2547 // If we're off the end of the string, behave as though we're not at a word char.
2548 UTEXT_SETNATIVEINDEX(fInputText, pos);
2549 UChar32 c = UTEXT_CURRENT32(fInputText);
2550 if (u_hasBinaryProperty(c, UCHAR_GRAPHEME_EXTEND) || u_charType(c) == U_FORMAT_CHAR) {
2551 // Current char is a combining one. Not a boundary.
2552 return FALSE;
2553 }
2554 cIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(c);
2555 }
2556
2557 // Back up until we come to a non-combining char, determine whether
2558 // that char is a word char.
2559 UBool prevCIsWord = FALSE;
2560 for (;;) {
2561 if (UTEXT_GETNATIVEINDEX(fInputText) <= fLookStart) {
2562 break;
2563 }
2564 UChar32 prevChar = UTEXT_PREVIOUS32(fInputText);
2565 if (!(u_hasBinaryProperty(prevChar, UCHAR_GRAPHEME_EXTEND)
2566 || u_charType(prevChar) == U_FORMAT_CHAR)) {
2567 prevCIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(prevChar);
2568 break;
2569 }
2570 }
2571 isBoundary = cIsWord ^ prevCIsWord;
2572 return isBoundary;
2573}
2574
2575UBool RegexMatcher::isChunkWordBoundary(int32_t pos) {
2576 UBool isBoundary = FALSE;
2577 UBool cIsWord = FALSE;
2578
2579 const UChar *inputBuf = fInputText->chunkContents;
2580
2581 if (pos >= fLookLimit) {
2582 fHitEnd = TRUE;
2583 } else {
2584 // Determine whether char c at current position is a member of the word set of chars.
2585 // If we're off the end of the string, behave as though we're not at a word char.
2586 UChar32 c;
2587 U16_GET(inputBuf, fLookStart, pos, fLookLimit, c);
2588 if (u_hasBinaryProperty(c, UCHAR_GRAPHEME_EXTEND) || u_charType(c) == U_FORMAT_CHAR) {
2589 // Current char is a combining one. Not a boundary.
2590 return FALSE;
2591 }
2592 cIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(c);
2593 }
2594
2595 // Back up until we come to a non-combining char, determine whether
2596 // that char is a word char.
2597 UBool prevCIsWord = FALSE;
2598 for (;;) {
2599 if (pos <= fLookStart) {
2600 break;
2601 }
2602 UChar32 prevChar;
2603 U16_PREV(inputBuf, fLookStart, pos, prevChar);
2604 if (!(u_hasBinaryProperty(prevChar, UCHAR_GRAPHEME_EXTEND)
2605 || u_charType(prevChar) == U_FORMAT_CHAR)) {
2606 prevCIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(prevChar);
2607 break;
2608 }
2609 }
2610 isBoundary = cIsWord ^ prevCIsWord;
2611 return isBoundary;
2612}
2613
2614//--------------------------------------------------------------------------------
2615//
2616// isUWordBoundary
2617//
2618// Test for a word boundary using RBBI word break.
2619//
2620// parameters: pos - the current position in the input buffer
2621//
2622//--------------------------------------------------------------------------------
2623UBool RegexMatcher::isUWordBoundary(int64_t pos) {
2624 UBool returnVal = FALSE;
2625#if UCONFIG_NO_BREAK_ITERATION==0
2626
2627 // If we haven't yet created a break iterator for this matcher, do it now.
2628 if (fWordBreakItr == NULL) {
2629 fWordBreakItr =
2630 (RuleBasedBreakIterator *)BreakIterator::createWordInstance(Locale::getEnglish(), fDeferredStatus);
2631 if (U_FAILURE(fDeferredStatus)) {
2632 return FALSE;
2633 }
2634 fWordBreakItr->setText(fInputText, fDeferredStatus);
2635 }
2636
2637 if (pos >= fLookLimit) {
2638 fHitEnd = TRUE;
2639 returnVal = TRUE; // With Unicode word rules, only positions within the interior of "real"
2640 // words are not boundaries. All non-word chars stand by themselves,
2641 // with word boundaries on both sides.
2642 } else {
2643 if (!UTEXT_USES_U16(fInputText)) {
2644 // !!!: Would like a better way to do this!
2645 UErrorCode status = U_ZERO_ERROR;
2646 pos = utext_extract(fInputText, 0, pos, NULL, 0, &status);
2647 }
2648 returnVal = fWordBreakItr->isBoundary((int32_t)pos);
2649 }
2650#endif
2651 return returnVal;
2652}
2653
2654//--------------------------------------------------------------------------------
2655//
2656// IncrementTime This function is called once each TIMER_INITIAL_VALUE state
2657// saves. Increment the "time" counter, and call the
2658// user callback function if there is one installed.
2659//
2660// If the match operation needs to be aborted, either for a time-out
2661// or because the user callback asked for it, just set an error status.
2662// The engine will pick that up and stop in its outer loop.
2663//
2664//--------------------------------------------------------------------------------
2665void RegexMatcher::IncrementTime(UErrorCode &status) {
2666 fTickCounter = TIMER_INITIAL_VALUE;
2667 fTime++;
2668 if (fCallbackFn != NULL) {
2669 if ((*fCallbackFn)(fCallbackContext, fTime) == FALSE) {
2670 status = U_REGEX_STOPPED_BY_CALLER;
2671 return;
2672 }
2673 }
2674 if (fTimeLimit > 0 && fTime >= fTimeLimit) {
2675 status = U_REGEX_TIME_OUT;
2676 }
2677}
2678
2679//--------------------------------------------------------------------------------
2680//
2681// StateSave
2682// Make a new stack frame, initialized as a copy of the current stack frame.
2683// Set the pattern index in the original stack frame from the operand value
2684// in the opcode. Execution of the engine continues with the state in
2685// the newly created stack frame
2686//
2687// Note that reserveBlock() may grow the stack, resulting in the
2688// whole thing being relocated in memory.
2689//
2690// Parameters:
2691// fp The top frame pointer when called. At return, a new
2692// fame will be present
2693// savePatIdx An index into the compiled pattern. Goes into the original
2694// (not new) frame. If execution ever back-tracks out of the
2695// new frame, this will be where we continue from in the pattern.
2696// Return
2697// The new frame pointer.
2698//
2699//--------------------------------------------------------------------------------
2700inline REStackFrame *RegexMatcher::StateSave(REStackFrame *fp, int64_t savePatIdx, UErrorCode &status) {
2701 if (U_FAILURE(status)) {
2702 return fp;
2703 }
2704 // push storage for a new frame.
2705 int64_t *newFP = fStack->reserveBlock(fFrameSize, status);
2706 if (U_FAILURE(status)) {
2707 // Failure on attempted stack expansion.
2708 // Stack function set some other error code, change it to a more
2709 // specific one for regular expressions.
2710 status = U_REGEX_STACK_OVERFLOW;
2711 // We need to return a writable stack frame, so just return the
2712 // previous frame. The match operation will stop quickly
2713 // because of the error status, after which the frame will never
2714 // be looked at again.
2715 return fp;
2716 }
2717 fp = (REStackFrame *)(newFP - fFrameSize); // in case of realloc of stack.
2718
2719 // New stack frame = copy of old top frame.
2720 int64_t *source = (int64_t *)fp;
2721 int64_t *dest = newFP;
2722 for (;;) {
2723 *dest++ = *source++;
2724 if (source == newFP) {
2725 break;
2726 }
2727 }
2728
2729 fTickCounter--;
2730 if (fTickCounter <= 0) {
2731 IncrementTime(status); // Re-initializes fTickCounter
2732 }
2733 fp->fPatIdx = savePatIdx;
2734 return (REStackFrame *)newFP;
2735}
2736
2737#if defined(REGEX_DEBUG)
2738namespace {
2739UnicodeString StringFromUText(UText *ut) {
2740 UnicodeString result;
2741 for (UChar32 c = utext_next32From(ut, 0); c != U_SENTINEL; c = UTEXT_NEXT32(ut)) {
2742 result.append(c);
2743 }
2744 return result;
2745}
2746}
2747#endif // REGEX_DEBUG
2748
2749
2750//--------------------------------------------------------------------------------
2751//
2752// MatchAt This is the actual matching engine.
2753//
2754// startIdx: begin matching a this index.
2755// toEnd: if true, match must extend to end of the input region
2756//
2757//--------------------------------------------------------------------------------
2758void RegexMatcher::MatchAt(int64_t startIdx, UBool toEnd, UErrorCode &status) {
2759 UBool isMatch = FALSE; // True if the we have a match.
2760
2761 int64_t backSearchIndex = U_INT64_MAX; // used after greedy single-character matches for searching backwards
2762
2763 int32_t op; // Operation from the compiled pattern, split into
2764 int32_t opType; // the opcode
2765 int32_t opValue; // and the operand value.
2766
2767#ifdef REGEX_RUN_DEBUG
2768 if (fTraceDebug) {
2769 printf("MatchAt(startIdx=%ld)\n", startIdx);
2770 printf("Original Pattern: \"%s\"\n", CStr(StringFromUText(fPattern->fPattern))());
2771 printf("Input String: \"%s\"\n\n", CStr(StringFromUText(fInputText))());
2772 }
2773#endif
2774
2775 if (U_FAILURE(status)) {
2776 return;
2777 }
2778
2779 // Cache frequently referenced items from the compiled pattern
2780 //
2781 int64_t *pat = fPattern->fCompiledPat->getBuffer();
2782
2783 const UChar *litText = fPattern->fLiteralText.getBuffer();
2784 UVector *fSets = fPattern->fSets;
2785
2786 fFrameSize = fPattern->fFrameSize;
2787 REStackFrame *fp = resetStack();
2788 if (U_FAILURE(fDeferredStatus)) {
2789 status = fDeferredStatus;
2790 return;
2791 }
2792
2793 fp->fPatIdx = 0;
2794 fp->fInputIdx = startIdx;
2795
2796 // Zero out the pattern's static data
2797 int32_t i;
2798 for (i = 0; i<fPattern->fDataSize; i++) {
2799 fData[i] = 0;
2800 }
2801
2802 //
2803 // Main loop for interpreting the compiled pattern.
2804 // One iteration of the loop per pattern operation performed.
2805 //
2806 for (;;) {
2807 op = (int32_t)pat[fp->fPatIdx];
2808 opType = URX_TYPE(op);
2809 opValue = URX_VAL(op);
2810#ifdef REGEX_RUN_DEBUG
2811 if (fTraceDebug) {
2812 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
2813 printf("inputIdx=%ld inputChar=%x sp=%3ld activeLimit=%ld ", fp->fInputIdx,
2814 UTEXT_CURRENT32(fInputText), (int64_t *)fp-fStack->getBuffer(), fActiveLimit);
2815 fPattern->dumpOp(fp->fPatIdx);
2816 }
2817#endif
2818 fp->fPatIdx++;
2819
2820 switch (opType) {
2821
2822
2823 case URX_NOP:
2824 break;
2825
2826
2827 case URX_BACKTRACK:
2828 // Force a backtrack. In some circumstances, the pattern compiler
2829 // will notice that the pattern can't possibly match anything, and will
2830 // emit one of these at that point.
2831 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
2832 break;
2833
2834
2835 case URX_ONECHAR:
2836 if (fp->fInputIdx < fActiveLimit) {
2837 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
2838 UChar32 c = UTEXT_NEXT32(fInputText);
2839 if (c == opValue) {
2840 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
2841 break;
2842 }
2843 } else {
2844 fHitEnd = TRUE;
2845 }
2846 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
2847 break;
2848
2849
2850 case URX_STRING:
2851 {
2852 // Test input against a literal string.
2853 // Strings require two slots in the compiled pattern, one for the
2854 // offset to the string text, and one for the length.
2855
2856 int32_t stringStartIdx = opValue;
2857 op = (int32_t)pat[fp->fPatIdx]; // Fetch the second operand
2858 fp->fPatIdx++;
2859 opType = URX_TYPE(op);
2860 int32_t stringLen = URX_VAL(op);
2861 U_ASSERT(opType == URX_STRING_LEN);
2862 U_ASSERT(stringLen >= 2);
2863
2864 const UChar *patternString = litText+stringStartIdx;
2865 int32_t patternStringIndex = 0;
2866 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
2867 UChar32 inputChar;
2868 UChar32 patternChar;
2869 UBool success = TRUE;
2870 while (patternStringIndex < stringLen) {
2871 if (UTEXT_GETNATIVEINDEX(fInputText) >= fActiveLimit) {
2872 success = FALSE;
2873 fHitEnd = TRUE;
2874 break;
2875 }
2876 inputChar = UTEXT_NEXT32(fInputText);
2877 U16_NEXT(patternString, patternStringIndex, stringLen, patternChar);
2878 if (patternChar != inputChar) {
2879 success = FALSE;
2880 break;
2881 }
2882 }
2883
2884 if (success) {
2885 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
2886 } else {
2887 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
2888 }
2889 }
2890 break;
2891
2892
2893 case URX_STATE_SAVE:
2894 fp = StateSave(fp, opValue, status);
2895 break;
2896
2897
2898 case URX_END:
2899 // The match loop will exit via this path on a successful match,
2900 // when we reach the end of the pattern.
2901 if (toEnd && fp->fInputIdx != fActiveLimit) {
2902 // The pattern matched, but not to the end of input. Try some more.
2903 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
2904 break;
2905 }
2906 isMatch = TRUE;
2907 goto breakFromLoop;
2908
2909 // Start and End Capture stack frame variables are laid out out like this:
2910 // fp->fExtra[opValue] - The start of a completed capture group
2911 // opValue+1 - The end of a completed capture group
2912 // opValue+2 - the start of a capture group whose end
2913 // has not yet been reached (and might not ever be).
2914 case URX_START_CAPTURE:
2915 U_ASSERT(opValue >= 0 && opValue < fFrameSize-3);
2916 fp->fExtra[opValue+2] = fp->fInputIdx;
2917 break;
2918
2919
2920 case URX_END_CAPTURE:
2921 U_ASSERT(opValue >= 0 && opValue < fFrameSize-3);
2922 U_ASSERT(fp->fExtra[opValue+2] >= 0); // Start pos for this group must be set.
2923 fp->fExtra[opValue] = fp->fExtra[opValue+2]; // Tentative start becomes real.
2924 fp->fExtra[opValue+1] = fp->fInputIdx; // End position
2925 U_ASSERT(fp->fExtra[opValue] <= fp->fExtra[opValue+1]);
2926 break;
2927
2928
2929 case URX_DOLLAR: // $, test for End of line
2930 // or for position before new line at end of input
2931 {
2932 if (fp->fInputIdx >= fAnchorLimit) {
2933 // We really are at the end of input. Success.
2934 fHitEnd = TRUE;
2935 fRequireEnd = TRUE;
2936 break;
2937 }
2938
2939 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
2940
2941 // If we are positioned just before a new-line that is located at the
2942 // end of input, succeed.
2943 UChar32 c = UTEXT_NEXT32(fInputText);
2944 if (UTEXT_GETNATIVEINDEX(fInputText) >= fAnchorLimit) {
2945 if (isLineTerminator(c)) {
2946 // If not in the middle of a CR/LF sequence
2947 if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && ((void)UTEXT_PREVIOUS32(fInputText), UTEXT_PREVIOUS32(fInputText))==0x0d)) {
2948 // At new-line at end of input. Success
2949 fHitEnd = TRUE;
2950 fRequireEnd = TRUE;
2951
2952 break;
2953 }
2954 }
2955 } else {
2956 UChar32 nextC = UTEXT_NEXT32(fInputText);
2957 if (c == 0x0d && nextC == 0x0a && UTEXT_GETNATIVEINDEX(fInputText) >= fAnchorLimit) {
2958 fHitEnd = TRUE;
2959 fRequireEnd = TRUE;
2960 break; // At CR/LF at end of input. Success
2961 }
2962 }
2963
2964 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
2965 }
2966 break;
2967
2968
2969 case URX_DOLLAR_D: // $, test for End of Line, in UNIX_LINES mode.
2970 if (fp->fInputIdx >= fAnchorLimit) {
2971 // Off the end of input. Success.
2972 fHitEnd = TRUE;
2973 fRequireEnd = TRUE;
2974 break;
2975 } else {
2976 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
2977 UChar32 c = UTEXT_NEXT32(fInputText);
2978 // Either at the last character of input, or off the end.
2979 if (c == 0x0a && UTEXT_GETNATIVEINDEX(fInputText) == fAnchorLimit) {
2980 fHitEnd = TRUE;
2981 fRequireEnd = TRUE;
2982 break;
2983 }
2984 }
2985
2986 // Not at end of input. Back-track out.
2987 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
2988 break;
2989
2990
2991 case URX_DOLLAR_M: // $, test for End of line in multi-line mode
2992 {
2993 if (fp->fInputIdx >= fAnchorLimit) {
2994 // We really are at the end of input. Success.
2995 fHitEnd = TRUE;
2996 fRequireEnd = TRUE;
2997 break;
2998 }
2999 // If we are positioned just before a new-line, succeed.
3000 // It makes no difference where the new-line is within the input.
3001 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
3002 UChar32 c = UTEXT_CURRENT32(fInputText);
3003 if (isLineTerminator(c)) {
3004 // At a line end, except for the odd chance of being in the middle of a CR/LF sequence
3005 // In multi-line mode, hitting a new-line just before the end of input does not
3006 // set the hitEnd or requireEnd flags
3007 if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && UTEXT_PREVIOUS32(fInputText)==0x0d)) {
3008 break;
3009 }
3010 }
3011 // not at a new line. Fail.
3012 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3013 }
3014 break;
3015
3016
3017 case URX_DOLLAR_MD: // $, test for End of line in multi-line and UNIX_LINES mode
3018 {
3019 if (fp->fInputIdx >= fAnchorLimit) {
3020 // We really are at the end of input. Success.
3021 fHitEnd = TRUE;
3022 fRequireEnd = TRUE; // Java set requireEnd in this case, even though
3023 break; // adding a new-line would not lose the match.
3024 }
3025 // If we are not positioned just before a new-line, the test fails; backtrack out.
3026 // It makes no difference where the new-line is within the input.
3027 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
3028 if (UTEXT_CURRENT32(fInputText) != 0x0a) {
3029 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3030 }
3031 }
3032 break;
3033
3034
3035 case URX_CARET: // ^, test for start of line
3036 if (fp->fInputIdx != fAnchorStart) {
3037 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3038 }
3039 break;
3040
3041
3042 case URX_CARET_M: // ^, test for start of line in mulit-line mode
3043 {
3044 if (fp->fInputIdx == fAnchorStart) {
3045 // We are at the start input. Success.
3046 break;
3047 }
3048 // Check whether character just before the current pos is a new-line
3049 // unless we are at the end of input
3050 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
3051 UChar32 c = UTEXT_PREVIOUS32(fInputText);
3052 if ((fp->fInputIdx < fAnchorLimit) && isLineTerminator(c)) {
3053 // It's a new-line. ^ is true. Success.
3054 // TODO: what should be done with positions between a CR and LF?
3055 break;
3056 }
3057 // Not at the start of a line. Fail.
3058 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3059 }
3060 break;
3061
3062
3063 case URX_CARET_M_UNIX: // ^, test for start of line in mulit-line + Unix-line mode
3064 {
3065 U_ASSERT(fp->fInputIdx >= fAnchorStart);
3066 if (fp->fInputIdx <= fAnchorStart) {
3067 // We are at the start input. Success.
3068 break;
3069 }
3070 // Check whether character just before the current pos is a new-line
3071 U_ASSERT(fp->fInputIdx <= fAnchorLimit);
3072 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
3073 UChar32 c = UTEXT_PREVIOUS32(fInputText);
3074 if (c != 0x0a) {
3075 // Not at the start of a line. Back-track out.
3076 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3077 }
3078 }
3079 break;
3080
3081 case URX_BACKSLASH_B: // Test for word boundaries
3082 {
3083 UBool success = isWordBoundary(fp->fInputIdx);
3084 success ^= (UBool)(opValue != 0); // flip sense for \B
3085 if (!success) {
3086 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3087 }
3088 }
3089 break;
3090
3091
3092 case URX_BACKSLASH_BU: // Test for word boundaries, Unicode-style
3093 {
3094 UBool success = isUWordBoundary(fp->fInputIdx);
3095 success ^= (UBool)(opValue != 0); // flip sense for \B
3096 if (!success) {
3097 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3098 }
3099 }
3100 break;
3101
3102
3103 case URX_BACKSLASH_D: // Test for decimal digit
3104 {
3105 if (fp->fInputIdx >= fActiveLimit) {
3106 fHitEnd = TRUE;
3107 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3108 break;
3109 }
3110
3111 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
3112
3113 UChar32 c = UTEXT_NEXT32(fInputText);
3114 int8_t ctype = u_charType(c); // TODO: make a unicode set for this. Will be faster.
3115 UBool success = (ctype == U_DECIMAL_DIGIT_NUMBER);
3116 success ^= (UBool)(opValue != 0); // flip sense for \D
3117 if (success) {
3118 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
3119 } else {
3120 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3121 }
3122 }
3123 break;
3124
3125
3126 case URX_BACKSLASH_G: // Test for position at end of previous match
3127 if (!((fMatch && fp->fInputIdx==fMatchEnd) || (fMatch==FALSE && fp->fInputIdx==fActiveStart))) {
3128 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3129 }
3130 break;
3131
3132
3133 case URX_BACKSLASH_H: // Test for \h, horizontal white space.
3134 {
3135 if (fp->fInputIdx >= fActiveLimit) {
3136 fHitEnd = TRUE;
3137 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3138 break;
3139 }
3140 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
3141 UChar32 c = UTEXT_NEXT32(fInputText);
3142 int8_t ctype = u_charType(c);
3143 UBool success = (ctype == U_SPACE_SEPARATOR || c == 9); // SPACE_SEPARATOR || TAB
3144 success ^= (UBool)(opValue != 0); // flip sense for \H
3145 if (success) {
3146 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
3147 } else {
3148 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3149 }
3150 }
3151 break;
3152
3153
3154 case URX_BACKSLASH_R: // Test for \R, any line break sequence.
3155 {
3156 if (fp->fInputIdx >= fActiveLimit) {
3157 fHitEnd = TRUE;
3158 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3159 break;
3160 }
3161 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
3162 UChar32 c = UTEXT_NEXT32(fInputText);
3163 if (isLineTerminator(c)) {
3164 if (c == 0x0d && utext_current32(fInputText) == 0x0a) {
3165 utext_next32(fInputText);
3166 }
3167 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
3168 } else {
3169 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3170 }
3171 }
3172 break;
3173
3174
3175 case URX_BACKSLASH_V: // \v, any single line ending character.
3176 {
3177 if (fp->fInputIdx >= fActiveLimit) {
3178 fHitEnd = TRUE;
3179 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3180 break;
3181 }
3182 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
3183 UChar32 c = UTEXT_NEXT32(fInputText);
3184 UBool success = isLineTerminator(c);
3185 success ^= (UBool)(opValue != 0); // flip sense for \V
3186 if (success) {
3187 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
3188 } else {
3189 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3190 }
3191 }
3192 break;
3193
3194
3195 case URX_BACKSLASH_X:
3196 // Match a Grapheme, as defined by Unicode TR 29.
3197 // Differs slightly from Perl, which consumes combining marks independently
3198 // of context.
3199 {
3200
3201 // Fail if at end of input
3202 if (fp->fInputIdx >= fActiveLimit) {
3203 fHitEnd = TRUE;
3204 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3205 break;
3206 }
3207
3208 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
3209
3210 // Examine (and consume) the current char.
3211 // Dispatch into a little state machine, based on the char.
3212 UChar32 c;
3213 c = UTEXT_NEXT32(fInputText);
3214 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
3215 UnicodeSet **sets = fPattern->fStaticSets;
3216 if (sets[URX_GC_NORMAL]->contains(c)) goto GC_Extend;
3217 if (sets[URX_GC_CONTROL]->contains(c)) goto GC_Control;
3218 if (sets[URX_GC_L]->contains(c)) goto GC_L;
3219 if (sets[URX_GC_LV]->contains(c)) goto GC_V;
3220 if (sets[URX_GC_LVT]->contains(c)) goto GC_T;
3221 if (sets[URX_GC_V]->contains(c)) goto GC_V;
3222 if (sets[URX_GC_T]->contains(c)) goto GC_T;
3223 goto GC_Extend;
3224
3225
3226
3227GC_L:
3228 if (fp->fInputIdx >= fActiveLimit) goto GC_Done;
3229 c = UTEXT_NEXT32(fInputText);
3230 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
3231 if (sets[URX_GC_L]->contains(c)) goto GC_L;
3232 if (sets[URX_GC_LV]->contains(c)) goto GC_V;
3233 if (sets[URX_GC_LVT]->contains(c)) goto GC_T;
3234 if (sets[URX_GC_V]->contains(c)) goto GC_V;
3235 (void)UTEXT_PREVIOUS32(fInputText);
3236 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
3237 goto GC_Extend;
3238
3239GC_V:
3240 if (fp->fInputIdx >= fActiveLimit) goto GC_Done;
3241 c = UTEXT_NEXT32(fInputText);
3242 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
3243 if (sets[URX_GC_V]->contains(c)) goto GC_V;
3244 if (sets[URX_GC_T]->contains(c)) goto GC_T;
3245 (void)UTEXT_PREVIOUS32(fInputText);
3246 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
3247 goto GC_Extend;
3248
3249GC_T:
3250 if (fp->fInputIdx >= fActiveLimit) goto GC_Done;
3251 c = UTEXT_NEXT32(fInputText);
3252 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
3253 if (sets[URX_GC_T]->contains(c)) goto GC_T;
3254 (void)UTEXT_PREVIOUS32(fInputText);
3255 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
3256 goto GC_Extend;
3257
3258GC_Extend:
3259 // Combining characters are consumed here
3260 for (;;) {
3261 if (fp->fInputIdx >= fActiveLimit) {
3262 break;
3263 }
3264 c = UTEXT_CURRENT32(fInputText);
3265 if (sets[URX_GC_EXTEND]->contains(c) == FALSE) {
3266 break;
3267 }
3268 (void)UTEXT_NEXT32(fInputText);
3269 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
3270 }
3271 goto GC_Done;
3272
3273GC_Control:
3274 // Most control chars stand alone (don't combine with combining chars),
3275 // except for that CR/LF sequence is a single grapheme cluster.
3276 if (c == 0x0d && fp->fInputIdx < fActiveLimit && UTEXT_CURRENT32(fInputText) == 0x0a) {
3277 c = UTEXT_NEXT32(fInputText);
3278 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
3279 }
3280
3281GC_Done:
3282 if (fp->fInputIdx >= fActiveLimit) {
3283 fHitEnd = TRUE;
3284 }
3285 break;
3286 }
3287
3288
3289
3290
3291 case URX_BACKSLASH_Z: // Test for end of Input
3292 if (fp->fInputIdx < fAnchorLimit) {
3293 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3294 } else {
3295 fHitEnd = TRUE;
3296 fRequireEnd = TRUE;
3297 }
3298 break;
3299
3300
3301
3302 case URX_STATIC_SETREF:
3303 {
3304 // Test input character against one of the predefined sets
3305 // (Word Characters, for example)
3306 // The high bit of the op value is a flag for the match polarity.
3307 // 0: success if input char is in set.
3308 // 1: success if input char is not in set.
3309 if (fp->fInputIdx >= fActiveLimit) {
3310 fHitEnd = TRUE;
3311 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3312 break;
3313 }
3314
3315 UBool success = ((opValue & URX_NEG_SET) == URX_NEG_SET);
3316 opValue &= ~URX_NEG_SET;
3317 U_ASSERT(opValue > 0 && opValue < URX_LAST_SET);
3318
3319 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
3320 UChar32 c = UTEXT_NEXT32(fInputText);
3321 if (c < 256) {
3322 Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue];
3323 if (s8->contains(c)) {
3324 success = !success;
3325 }
3326 } else {
3327 const UnicodeSet *s = fPattern->fStaticSets[opValue];
3328 if (s->contains(c)) {
3329 success = !success;
3330 }
3331 }
3332 if (success) {
3333 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
3334 } else {
3335 // the character wasn't in the set.
3336 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3337 }
3338 }
3339 break;
3340
3341
3342 case URX_STAT_SETREF_N:
3343 {
3344 // Test input character for NOT being a member of one of
3345 // the predefined sets (Word Characters, for example)
3346 if (fp->fInputIdx >= fActiveLimit) {
3347 fHitEnd = TRUE;
3348 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3349 break;
3350 }
3351
3352 U_ASSERT(opValue > 0 && opValue < URX_LAST_SET);
3353
3354 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
3355
3356 UChar32 c = UTEXT_NEXT32(fInputText);
3357 if (c < 256) {
3358 Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue];
3359 if (s8->contains(c) == FALSE) {
3360 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
3361 break;
3362 }
3363 } else {
3364 const UnicodeSet *s = fPattern->fStaticSets[opValue];
3365 if (s->contains(c) == FALSE) {
3366 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
3367 break;
3368 }
3369 }
3370 // the character wasn't in the set.
3371 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3372 }
3373 break;
3374
3375
3376 case URX_SETREF:
3377 if (fp->fInputIdx >= fActiveLimit) {
3378 fHitEnd = TRUE;
3379 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3380 break;
3381 } else {
3382 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
3383
3384 // There is input left. Pick up one char and test it for set membership.
3385 UChar32 c = UTEXT_NEXT32(fInputText);
3386 U_ASSERT(opValue > 0 && opValue < fSets->size());
3387 if (c<256) {
3388 Regex8BitSet *s8 = &fPattern->fSets8[opValue];
3389 if (s8->contains(c)) {
3390 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
3391 break;
3392 }
3393 } else {
3394 UnicodeSet *s = (UnicodeSet *)fSets->elementAt(opValue);
3395 if (s->contains(c)) {
3396 // The character is in the set. A Match.
3397 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
3398 break;
3399 }
3400 }
3401
3402 // the character wasn't in the set.
3403 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3404 }
3405 break;
3406
3407
3408 case URX_DOTANY:
3409 {
3410 // . matches anything, but stops at end-of-line.
3411 if (fp->fInputIdx >= fActiveLimit) {
3412 // At end of input. Match failed. Backtrack out.
3413 fHitEnd = TRUE;
3414 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3415 break;
3416 }
3417
3418 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
3419
3420 // There is input left. Advance over one char, unless we've hit end-of-line
3421 UChar32 c = UTEXT_NEXT32(fInputText);
3422 if (isLineTerminator(c)) {
3423 // End of line in normal mode. . does not match.
3424 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3425 break;
3426 }
3427 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
3428 }
3429 break;
3430
3431
3432 case URX_DOTANY_ALL:
3433 {
3434 // ., in dot-matches-all (including new lines) mode
3435 if (fp->fInputIdx >= fActiveLimit) {
3436 // At end of input. Match failed. Backtrack out.
3437 fHitEnd = TRUE;
3438 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3439 break;
3440 }
3441
3442 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
3443
3444 // There is input left. Advance over one char, except if we are
3445 // at a cr/lf, advance over both of them.
3446 UChar32 c;
3447 c = UTEXT_NEXT32(fInputText);
3448 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
3449 if (c==0x0d && fp->fInputIdx < fActiveLimit) {
3450 // In the case of a CR/LF, we need to advance over both.
3451 UChar32 nextc = UTEXT_CURRENT32(fInputText);
3452 if (nextc == 0x0a) {
3453 (void)UTEXT_NEXT32(fInputText);
3454 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
3455 }
3456 }
3457 }
3458 break;
3459
3460
3461 case URX_DOTANY_UNIX:
3462 {
3463 // '.' operator, matches all, but stops at end-of-line.
3464 // UNIX_LINES mode, so 0x0a is the only recognized line ending.
3465 if (fp->fInputIdx >= fActiveLimit) {
3466 // At end of input. Match failed. Backtrack out.
3467 fHitEnd = TRUE;
3468 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3469 break;
3470 }
3471
3472 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
3473
3474 // There is input left. Advance over one char, unless we've hit end-of-line
3475 UChar32 c = UTEXT_NEXT32(fInputText);
3476 if (c == 0x0a) {
3477 // End of line in normal mode. '.' does not match the \n
3478 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3479 } else {
3480 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
3481 }
3482 }
3483 break;
3484
3485
3486 case URX_JMP:
3487 fp->fPatIdx = opValue;
3488 break;
3489
3490 case URX_FAIL:
3491 isMatch = FALSE;
3492 goto breakFromLoop;
3493
3494 case URX_JMP_SAV:
3495 U_ASSERT(opValue < fPattern->fCompiledPat->size());
3496 fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current
3497 fp->fPatIdx = opValue; // Then JMP.
3498 break;
3499
3500 case URX_JMP_SAV_X:
3501 // This opcode is used with (x)+, when x can match a zero length string.
3502 // Same as JMP_SAV, except conditional on the match having made forward progress.
3503 // Destination of the JMP must be a URX_STO_INP_LOC, from which we get the
3504 // data address of the input position at the start of the loop.
3505 {
3506 U_ASSERT(opValue > 0 && opValue < fPattern->fCompiledPat->size());
3507 int32_t stoOp = (int32_t)pat[opValue-1];
3508 U_ASSERT(URX_TYPE(stoOp) == URX_STO_INP_LOC);
3509 int32_t frameLoc = URX_VAL(stoOp);
3510 U_ASSERT(frameLoc >= 0 && frameLoc < fFrameSize);
3511 int64_t prevInputIdx = fp->fExtra[frameLoc];
3512 U_ASSERT(prevInputIdx <= fp->fInputIdx);
3513 if (prevInputIdx < fp->fInputIdx) {
3514 // The match did make progress. Repeat the loop.
3515 fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current
3516 fp->fPatIdx = opValue;
3517 fp->fExtra[frameLoc] = fp->fInputIdx;
3518 }
3519 // If the input position did not advance, we do nothing here,
3520 // execution will fall out of the loop.
3521 }
3522 break;
3523
3524 case URX_CTR_INIT:
3525 {
3526 U_ASSERT(opValue >= 0 && opValue < fFrameSize-2);
3527 fp->fExtra[opValue] = 0; // Set the loop counter variable to zero
3528
3529 // Pick up the three extra operands that CTR_INIT has, and
3530 // skip the pattern location counter past
3531 int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
3532 fp->fPatIdx += 3;
3533 int32_t loopLoc = URX_VAL(pat[instrOperandLoc]);
3534 int32_t minCount = (int32_t)pat[instrOperandLoc+1];
3535 int32_t maxCount = (int32_t)pat[instrOperandLoc+2];
3536 U_ASSERT(minCount>=0);
3537 U_ASSERT(maxCount>=minCount || maxCount==-1);
3538 U_ASSERT(loopLoc>=fp->fPatIdx);
3539
3540 if (minCount == 0) {
3541 fp = StateSave(fp, loopLoc+1, status);
3542 }
3543 if (maxCount == -1) {
3544 fp->fExtra[opValue+1] = fp->fInputIdx; // For loop breaking.
3545 } else if (maxCount == 0) {
3546 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3547 }
3548 }
3549 break;
3550
3551 case URX_CTR_LOOP:
3552 {
3553 U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2);
3554 int32_t initOp = (int32_t)pat[opValue];
3555 U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT);
3556 int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
3557 int32_t minCount = (int32_t)pat[opValue+2];
3558 int32_t maxCount = (int32_t)pat[opValue+3];
3559 (*pCounter)++;
3560 if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) {
3561 U_ASSERT(*pCounter == maxCount);
3562 break;
3563 }
3564 if (*pCounter >= minCount) {
3565 if (maxCount == -1) {
3566 // Loop has no hard upper bound.
3567 // Check that it is progressing through the input, break if it is not.
3568 int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp) + 1];
3569 if (fp->fInputIdx == *pLastInputIdx) {
3570 break;
3571 } else {
3572 *pLastInputIdx = fp->fInputIdx;
3573 }
3574 }
3575 fp = StateSave(fp, fp->fPatIdx, status);
3576 } else {
3577 // Increment time-out counter. (StateSave() does it if count >= minCount)
3578 fTickCounter--;
3579 if (fTickCounter <= 0) {
3580 IncrementTime(status); // Re-initializes fTickCounter
3581 }
3582 }
3583
3584 fp->fPatIdx = opValue + 4; // Loop back.
3585 }
3586 break;
3587
3588 case URX_CTR_INIT_NG:
3589 {
3590 // Initialize a non-greedy loop
3591 U_ASSERT(opValue >= 0 && opValue < fFrameSize-2);
3592 fp->fExtra[opValue] = 0; // Set the loop counter variable to zero
3593
3594 // Pick up the three extra operands that CTR_INIT_NG has, and
3595 // skip the pattern location counter past
3596 int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
3597 fp->fPatIdx += 3;
3598 int32_t loopLoc = URX_VAL(pat[instrOperandLoc]);
3599 int32_t minCount = (int32_t)pat[instrOperandLoc+1];
3600 int32_t maxCount = (int32_t)pat[instrOperandLoc+2];
3601 U_ASSERT(minCount>=0);
3602 U_ASSERT(maxCount>=minCount || maxCount==-1);
3603 U_ASSERT(loopLoc>fp->fPatIdx);
3604 if (maxCount == -1) {
3605 fp->fExtra[opValue+1] = fp->fInputIdx; // Save initial input index for loop breaking.
3606 }
3607
3608 if (minCount == 0) {
3609 if (maxCount != 0) {
3610 fp = StateSave(fp, fp->fPatIdx, status);
3611 }
3612 fp->fPatIdx = loopLoc+1; // Continue with stuff after repeated block
3613 }
3614 }
3615 break;
3616
3617 case URX_CTR_LOOP_NG:
3618 {
3619 // Non-greedy {min, max} loops
3620 U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2);
3621 int32_t initOp = (int32_t)pat[opValue];
3622 U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT_NG);
3623 int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
3624 int32_t minCount = (int32_t)pat[opValue+2];
3625 int32_t maxCount = (int32_t)pat[opValue+3];
3626
3627 (*pCounter)++;
3628 if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) {
3629 // The loop has matched the maximum permitted number of times.
3630 // Break out of here with no action. Matching will
3631 // continue with the following pattern.
3632 U_ASSERT(*pCounter == maxCount);
3633 break;
3634 }
3635
3636 if (*pCounter < minCount) {
3637 // We haven't met the minimum number of matches yet.
3638 // Loop back for another one.
3639 fp->fPatIdx = opValue + 4; // Loop back.
3640 // Increment time-out counter. (StateSave() does it if count >= minCount)
3641 fTickCounter--;
3642 if (fTickCounter <= 0) {
3643 IncrementTime(status); // Re-initializes fTickCounter
3644 }
3645 } else {
3646 // We do have the minimum number of matches.
3647
3648 // If there is no upper bound on the loop iterations, check that the input index
3649 // is progressing, and stop the loop if it is not.
3650 if (maxCount == -1) {
3651 int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp) + 1];
3652 if (fp->fInputIdx == *pLastInputIdx) {
3653 break;
3654 }
3655 *pLastInputIdx = fp->fInputIdx;
3656 }
3657
3658 // Loop Continuation: we will fall into the pattern following the loop
3659 // (non-greedy, don't execute loop body first), but first do
3660 // a state save to the top of the loop, so that a match failure
3661 // in the following pattern will try another iteration of the loop.
3662 fp = StateSave(fp, opValue + 4, status);
3663 }
3664 }
3665 break;
3666
3667 case URX_STO_SP:
3668 U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize);
3669 fData[opValue] = fStack->size();
3670 break;
3671
3672 case URX_LD_SP:
3673 {
3674 U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize);
3675 int32_t newStackSize = (int32_t)fData[opValue];
3676 U_ASSERT(newStackSize <= fStack->size());
3677 int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize;
3678 if (newFP == (int64_t *)fp) {
3679 break;
3680 }
3681 int32_t j;
3682 for (j=0; j<fFrameSize; j++) {
3683 newFP[j] = ((int64_t *)fp)[j];
3684 }
3685 fp = (REStackFrame *)newFP;
3686 fStack->setSize(newStackSize);
3687 }
3688 break;
3689
3690 case URX_BACKREF:
3691 {
3692 U_ASSERT(opValue < fFrameSize);
3693 int64_t groupStartIdx = fp->fExtra[opValue];
3694 int64_t groupEndIdx = fp->fExtra[opValue+1];
3695 U_ASSERT(groupStartIdx <= groupEndIdx);
3696 if (groupStartIdx < 0) {
3697 // This capture group has not participated in the match thus far,
3698 fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match.
3699 break;
3700 }
3701 UTEXT_SETNATIVEINDEX(fAltInputText, groupStartIdx);
3702 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
3703
3704 // Note: if the capture group match was of an empty string the backref
3705 // match succeeds. Verified by testing: Perl matches succeed
3706 // in this case, so we do too.
3707
3708 UBool success = TRUE;
3709 for (;;) {
3710 if (utext_getNativeIndex(fAltInputText) >= groupEndIdx) {
3711 success = TRUE;
3712 break;
3713 }
3714 if (utext_getNativeIndex(fInputText) >= fActiveLimit) {
3715 success = FALSE;
3716 fHitEnd = TRUE;
3717 break;
3718 }
3719 UChar32 captureGroupChar = utext_next32(fAltInputText);
3720 UChar32 inputChar = utext_next32(fInputText);
3721 if (inputChar != captureGroupChar) {
3722 success = FALSE;
3723 break;
3724 }
3725 }
3726
3727 if (success) {
3728 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
3729 } else {
3730 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3731 }
3732 }
3733 break;
3734
3735
3736
3737 case URX_BACKREF_I:
3738 {
3739 U_ASSERT(opValue < fFrameSize);
3740 int64_t groupStartIdx = fp->fExtra[opValue];
3741 int64_t groupEndIdx = fp->fExtra[opValue+1];
3742 U_ASSERT(groupStartIdx <= groupEndIdx);
3743 if (groupStartIdx < 0) {
3744 // This capture group has not participated in the match thus far,
3745 fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match.
3746 break;
3747 }
3748 utext_setNativeIndex(fAltInputText, groupStartIdx);
3749 utext_setNativeIndex(fInputText, fp->fInputIdx);
3750 CaseFoldingUTextIterator captureGroupItr(*fAltInputText);
3751 CaseFoldingUTextIterator inputItr(*fInputText);
3752
3753 // Note: if the capture group match was of an empty string the backref
3754 // match succeeds. Verified by testing: Perl matches succeed
3755 // in this case, so we do too.
3756
3757 UBool success = TRUE;
3758 for (;;) {
3759 if (!captureGroupItr.inExpansion() && utext_getNativeIndex(fAltInputText) >= groupEndIdx) {
3760 success = TRUE;
3761 break;
3762 }
3763 if (!inputItr.inExpansion() && utext_getNativeIndex(fInputText) >= fActiveLimit) {
3764 success = FALSE;
3765 fHitEnd = TRUE;
3766 break;
3767 }
3768 UChar32 captureGroupChar = captureGroupItr.next();
3769 UChar32 inputChar = inputItr.next();
3770 if (inputChar != captureGroupChar) {
3771 success = FALSE;
3772 break;
3773 }
3774 }
3775
3776 if (success && inputItr.inExpansion()) {
3777 // We otained a match by consuming part of a string obtained from
3778 // case-folding a single code point of the input text.
3779 // This does not count as an overall match.
3780 success = FALSE;
3781 }
3782
3783 if (success) {
3784 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
3785 } else {
3786 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3787 }
3788
3789 }
3790 break;
3791
3792 case URX_STO_INP_LOC:
3793 {
3794 U_ASSERT(opValue >= 0 && opValue < fFrameSize);
3795 fp->fExtra[opValue] = fp->fInputIdx;
3796 }
3797 break;
3798
3799 case URX_JMPX:
3800 {
3801 int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
3802 fp->fPatIdx += 1;
3803 int32_t dataLoc = URX_VAL(pat[instrOperandLoc]);
3804 U_ASSERT(dataLoc >= 0 && dataLoc < fFrameSize);
3805 int64_t savedInputIdx = fp->fExtra[dataLoc];
3806 U_ASSERT(savedInputIdx <= fp->fInputIdx);
3807 if (savedInputIdx < fp->fInputIdx) {
3808 fp->fPatIdx = opValue; // JMP
3809 } else {
3810 fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no progress in loop.
3811 }
3812 }
3813 break;
3814
3815 case URX_LA_START:
3816 {
3817 // Entering a lookahead block.
3818 // Save Stack Ptr, Input Pos.
3819 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
3820 fData[opValue] = fStack->size();
3821 fData[opValue+1] = fp->fInputIdx;
3822 fActiveStart = fLookStart; // Set the match region change for
3823 fActiveLimit = fLookLimit; // transparent bounds.
3824 }
3825 break;
3826
3827 case URX_LA_END:
3828 {
3829 // Leaving a look-ahead block.
3830 // restore Stack Ptr, Input Pos to positions they had on entry to block.
3831 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
3832 int32_t stackSize = fStack->size();
3833 int32_t newStackSize =(int32_t)fData[opValue];
3834 U_ASSERT(stackSize >= newStackSize);
3835 if (stackSize > newStackSize) {
3836 // Copy the current top frame back to the new (cut back) top frame.
3837 // This makes the capture groups from within the look-ahead
3838 // expression available.
3839 int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize;
3840 int32_t j;
3841 for (j=0; j<fFrameSize; j++) {
3842 newFP[j] = ((int64_t *)fp)[j];
3843 }
3844 fp = (REStackFrame *)newFP;
3845 fStack->setSize(newStackSize);
3846 }
3847 fp->fInputIdx = fData[opValue+1];
3848
3849 // Restore the active region bounds in the input string; they may have
3850 // been changed because of transparent bounds on a Region.
3851 fActiveStart = fRegionStart;
3852 fActiveLimit = fRegionLimit;
3853 }
3854 break;
3855
3856 case URX_ONECHAR_I:
3857 // Case insensitive one char. The char from the pattern is already case folded.
3858 // Input text is not, but case folding the input can not reduce two or more code
3859 // points to one.
3860 if (fp->fInputIdx < fActiveLimit) {
3861 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
3862
3863 UChar32 c = UTEXT_NEXT32(fInputText);
3864 if (u_foldCase(c, U_FOLD_CASE_DEFAULT) == opValue) {
3865 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
3866 break;
3867 }
3868 } else {
3869 fHitEnd = TRUE;
3870 }
3871
3872 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3873 break;
3874
3875 case URX_STRING_I:
3876 {
3877 // Case-insensitive test input against a literal string.
3878 // Strings require two slots in the compiled pattern, one for the
3879 // offset to the string text, and one for the length.
3880 // The compiled string has already been case folded.
3881 {
3882 const UChar *patternString = litText + opValue;
3883 int32_t patternStringIdx = 0;
3884
3885 op = (int32_t)pat[fp->fPatIdx];
3886 fp->fPatIdx++;
3887 opType = URX_TYPE(op);
3888 opValue = URX_VAL(op);
3889 U_ASSERT(opType == URX_STRING_LEN);
3890 int32_t patternStringLen = opValue; // Length of the string from the pattern.
3891
3892
3893 UChar32 cPattern;
3894 UChar32 cText;
3895 UBool success = TRUE;
3896
3897 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
3898 CaseFoldingUTextIterator inputIterator(*fInputText);
3899 while (patternStringIdx < patternStringLen) {
3900 if (!inputIterator.inExpansion() && UTEXT_GETNATIVEINDEX(fInputText) >= fActiveLimit) {
3901 success = FALSE;
3902 fHitEnd = TRUE;
3903 break;
3904 }
3905 U16_NEXT(patternString, patternStringIdx, patternStringLen, cPattern);
3906 cText = inputIterator.next();
3907 if (cText != cPattern) {
3908 success = FALSE;
3909 break;
3910 }
3911 }
3912 if (inputIterator.inExpansion()) {
3913 success = FALSE;
3914 }
3915
3916 if (success) {
3917 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
3918 } else {
3919 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3920 }
3921 }
3922 }
3923 break;
3924
3925 case URX_LB_START:
3926 {
3927 // Entering a look-behind block.
3928 // Save Stack Ptr, Input Pos.
3929 // TODO: implement transparent bounds. Ticket #6067
3930 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
3931 fData[opValue] = fStack->size();
3932 fData[opValue+1] = fp->fInputIdx;
3933 // Init the variable containing the start index for attempted matches.
3934 fData[opValue+2] = -1;
3935 // Save input string length, then reset to pin any matches to end at
3936 // the current position.
3937 fData[opValue+3] = fActiveLimit;
3938 fActiveLimit = fp->fInputIdx;
3939 }
3940 break;
3941
3942
3943 case URX_LB_CONT:
3944 {
3945 // Positive Look-Behind, at top of loop checking for matches of LB expression
3946 // at all possible input starting positions.
3947
3948 // Fetch the min and max possible match lengths. They are the operands
3949 // of this op in the pattern.
3950 int32_t minML = (int32_t)pat[fp->fPatIdx++];
3951 int32_t maxML = (int32_t)pat[fp->fPatIdx++];
3952 if (!UTEXT_USES_U16(fInputText)) {
3953 // utf-8 fix to maximum match length. The pattern compiler assumes utf-16.
3954 // The max length need not be exact; it just needs to be >= actual maximum.
3955 maxML *= 3;
3956 }
3957 U_ASSERT(minML <= maxML);
3958 U_ASSERT(minML >= 0);
3959
3960 // Fetch (from data) the last input index where a match was attempted.
3961 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
3962 int64_t &lbStartIdx = fData[opValue+2];
3963 if (lbStartIdx < 0) {
3964 // First time through loop.
3965 lbStartIdx = fp->fInputIdx - minML;
3966 if (lbStartIdx > 0) {
3967 // move index to a code point boudary, if it's not on one already.
3968 UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx);
3969 lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText);
3970 }
3971 } else {
3972 // 2nd through nth time through the loop.
3973 // Back up start position for match by one.
3974 if (lbStartIdx == 0) {
3975 (lbStartIdx)--;
3976 } else {
3977 UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx);
3978 (void)UTEXT_PREVIOUS32(fInputText);
3979 lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText);
3980 }
3981 }
3982
3983 if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) {
3984 // We have tried all potential match starting points without
3985 // getting a match. Backtrack out, and out of the
3986 // Look Behind altogether.
3987 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
3988 int64_t restoreInputLen = fData[opValue+3];
3989 U_ASSERT(restoreInputLen >= fActiveLimit);
3990 U_ASSERT(restoreInputLen <= fInputLength);
3991 fActiveLimit = restoreInputLen;
3992 break;
3993 }
3994
3995 // Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
3996 // (successful match will fall off the end of the loop.)
3997 fp = StateSave(fp, fp->fPatIdx-3, status);
3998 fp->fInputIdx = lbStartIdx;
3999 }
4000 break;
4001
4002 case URX_LB_END:
4003 // End of a look-behind block, after a successful match.
4004 {
4005 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
4006 if (fp->fInputIdx != fActiveLimit) {
4007 // The look-behind expression matched, but the match did not
4008 // extend all the way to the point that we are looking behind from.
4009 // FAIL out of here, which will take us back to the LB_CONT, which
4010 // will retry the match starting at another position or fail
4011 // the look-behind altogether, whichever is appropriate.
4012 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4013 break;
4014 }
4015
4016 // Look-behind match is good. Restore the orignal input string length,
4017 // which had been truncated to pin the end of the lookbehind match to the
4018 // position being looked-behind.
4019 int64_t originalInputLen = fData[opValue+3];
4020 U_ASSERT(originalInputLen >= fActiveLimit);
4021 U_ASSERT(originalInputLen <= fInputLength);
4022 fActiveLimit = originalInputLen;
4023 }
4024 break;
4025
4026
4027 case URX_LBN_CONT:
4028 {
4029 // Negative Look-Behind, at top of loop checking for matches of LB expression
4030 // at all possible input starting positions.
4031
4032 // Fetch the extra parameters of this op.
4033 int32_t minML = (int32_t)pat[fp->fPatIdx++];
4034 int32_t maxML = (int32_t)pat[fp->fPatIdx++];
4035 if (!UTEXT_USES_U16(fInputText)) {
4036 // utf-8 fix to maximum match length. The pattern compiler assumes utf-16.
4037 // The max length need not be exact; it just needs to be >= actual maximum.
4038 maxML *= 3;
4039 }
4040 int32_t continueLoc = (int32_t)pat[fp->fPatIdx++];
4041 continueLoc = URX_VAL(continueLoc);
4042 U_ASSERT(minML <= maxML);
4043 U_ASSERT(minML >= 0);
4044 U_ASSERT(continueLoc > fp->fPatIdx);
4045
4046 // Fetch (from data) the last input index where a match was attempted.
4047 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
4048 int64_t &lbStartIdx = fData[opValue+2];
4049 if (lbStartIdx < 0) {
4050 // First time through loop.
4051 lbStartIdx = fp->fInputIdx - minML;
4052 if (lbStartIdx > 0) {
4053 // move index to a code point boudary, if it's not on one already.
4054 UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx);
4055 lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText);
4056 }
4057 } else {
4058 // 2nd through nth time through the loop.
4059 // Back up start position for match by one.
4060 if (lbStartIdx == 0) {
4061 (lbStartIdx)--;
4062 } else {
4063 UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx);
4064 (void)UTEXT_PREVIOUS32(fInputText);
4065 lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText);
4066 }
4067 }
4068
4069 if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) {
4070 // We have tried all potential match starting points without
4071 // getting a match, which means that the negative lookbehind as
4072 // a whole has succeeded. Jump forward to the continue location
4073 int64_t restoreInputLen = fData[opValue+3];
4074 U_ASSERT(restoreInputLen >= fActiveLimit);
4075 U_ASSERT(restoreInputLen <= fInputLength);
4076 fActiveLimit = restoreInputLen;
4077 fp->fPatIdx = continueLoc;
4078 break;
4079 }
4080
4081 // Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
4082 // (successful match will cause a FAIL out of the loop altogether.)
4083 fp = StateSave(fp, fp->fPatIdx-4, status);
4084 fp->fInputIdx = lbStartIdx;
4085 }
4086 break;
4087
4088 case URX_LBN_END:
4089 // End of a negative look-behind block, after a successful match.
4090 {
4091 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
4092 if (fp->fInputIdx != fActiveLimit) {
4093 // The look-behind expression matched, but the match did not
4094 // extend all the way to the point that we are looking behind from.
4095 // FAIL out of here, which will take us back to the LB_CONT, which
4096 // will retry the match starting at another position or succeed
4097 // the look-behind altogether, whichever is appropriate.
4098 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4099 break;
4100 }
4101
4102 // Look-behind expression matched, which means look-behind test as
4103 // a whole Fails
4104
4105 // Restore the orignal input string length, which had been truncated
4106 // inorder to pin the end of the lookbehind match
4107 // to the position being looked-behind.
4108 int64_t originalInputLen = fData[opValue+3];
4109 U_ASSERT(originalInputLen >= fActiveLimit);
4110 U_ASSERT(originalInputLen <= fInputLength);
4111 fActiveLimit = originalInputLen;
4112
4113 // Restore original stack position, discarding any state saved
4114 // by the successful pattern match.
4115 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
4116 int32_t newStackSize = (int32_t)fData[opValue];
4117 U_ASSERT(fStack->size() > newStackSize);
4118 fStack->setSize(newStackSize);
4119
4120 // FAIL, which will take control back to someplace
4121 // prior to entering the look-behind test.
4122 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4123 }
4124 break;
4125
4126
4127 case URX_LOOP_SR_I:
4128 // Loop Initialization for the optimized implementation of
4129 // [some character set]*
4130 // This op scans through all matching input.
4131 // The following LOOP_C op emulates stack unwinding if the following pattern fails.
4132 {
4133 U_ASSERT(opValue > 0 && opValue < fSets->size());
4134 Regex8BitSet *s8 = &fPattern->fSets8[opValue];
4135 UnicodeSet *s = (UnicodeSet *)fSets->elementAt(opValue);
4136
4137 // Loop through input, until either the input is exhausted or
4138 // we reach a character that is not a member of the set.
4139 int64_t ix = fp->fInputIdx;
4140 UTEXT_SETNATIVEINDEX(fInputText, ix);
4141 for (;;) {
4142 if (ix >= fActiveLimit) {
4143 fHitEnd = TRUE;
4144 break;
4145 }
4146 UChar32 c = UTEXT_NEXT32(fInputText);
4147 if (c<256) {
4148 if (s8->contains(c) == FALSE) {
4149 break;
4150 }
4151 } else {
4152 if (s->contains(c) == FALSE) {
4153 break;
4154 }
4155 }
4156 ix = UTEXT_GETNATIVEINDEX(fInputText);
4157 }
4158
4159 // If there were no matching characters, skip over the loop altogether.
4160 // The loop doesn't run at all, a * op always succeeds.
4161 if (ix == fp->fInputIdx) {
4162 fp->fPatIdx++; // skip the URX_LOOP_C op.
4163 break;
4164 }
4165
4166 // Peek ahead in the compiled pattern, to the URX_LOOP_C that
4167 // must follow. It's operand is the stack location
4168 // that holds the starting input index for the match of this [set]*
4169 int32_t loopcOp = (int32_t)pat[fp->fPatIdx];
4170 U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C);
4171 int32_t stackLoc = URX_VAL(loopcOp);
4172 U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize);
4173 fp->fExtra[stackLoc] = fp->fInputIdx;
4174 fp->fInputIdx = ix;
4175
4176 // Save State to the URX_LOOP_C op that follows this one,
4177 // so that match failures in the following code will return to there.
4178 // Then bump the pattern idx so the LOOP_C is skipped on the way out of here.
4179 fp = StateSave(fp, fp->fPatIdx, status);
4180 fp->fPatIdx++;
4181 }
4182 break;
4183
4184
4185 case URX_LOOP_DOT_I:
4186 // Loop Initialization for the optimized implementation of .*
4187 // This op scans through all remaining input.
4188 // The following LOOP_C op emulates stack unwinding if the following pattern fails.
4189 {
4190 // Loop through input until the input is exhausted (we reach an end-of-line)
4191 // In DOTALL mode, we can just go straight to the end of the input.
4192 int64_t ix;
4193 if ((opValue & 1) == 1) {
4194 // Dot-matches-All mode. Jump straight to the end of the string.
4195 ix = fActiveLimit;
4196 fHitEnd = TRUE;
4197 } else {
4198 // NOT DOT ALL mode. Line endings do not match '.'
4199 // Scan forward until a line ending or end of input.
4200 ix = fp->fInputIdx;
4201 UTEXT_SETNATIVEINDEX(fInputText, ix);
4202 for (;;) {
4203 if (ix >= fActiveLimit) {
4204 fHitEnd = TRUE;
4205 break;
4206 }
4207 UChar32 c = UTEXT_NEXT32(fInputText);
4208 if ((c & 0x7f) <= 0x29) { // Fast filter of non-new-line-s
4209 if ((c == 0x0a) || // 0x0a is newline in both modes.
4210 (((opValue & 2) == 0) && // IF not UNIX_LINES mode
4211 isLineTerminator(c))) {
4212 // char is a line ending. Exit the scanning loop.
4213 break;
4214 }
4215 }
4216 ix = UTEXT_GETNATIVEINDEX(fInputText);
4217 }
4218 }
4219
4220 // If there were no matching characters, skip over the loop altogether.
4221 // The loop doesn't run at all, a * op always succeeds.
4222 if (ix == fp->fInputIdx) {
4223 fp->fPatIdx++; // skip the URX_LOOP_C op.
4224 break;
4225 }
4226
4227 // Peek ahead in the compiled pattern, to the URX_LOOP_C that
4228 // must follow. It's operand is the stack location
4229 // that holds the starting input index for the match of this .*
4230 int32_t loopcOp = (int32_t)pat[fp->fPatIdx];
4231 U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C);
4232 int32_t stackLoc = URX_VAL(loopcOp);
4233 U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize);
4234 fp->fExtra[stackLoc] = fp->fInputIdx;
4235 fp->fInputIdx = ix;
4236
4237 // Save State to the URX_LOOP_C op that follows this one,
4238 // so that match failures in the following code will return to there.
4239 // Then bump the pattern idx so the LOOP_C is skipped on the way out of here.
4240 fp = StateSave(fp, fp->fPatIdx, status);
4241 fp->fPatIdx++;
4242 }
4243 break;
4244
4245
4246 case URX_LOOP_C:
4247 {
4248 U_ASSERT(opValue>=0 && opValue<fFrameSize);
4249 backSearchIndex = fp->fExtra[opValue];
4250 U_ASSERT(backSearchIndex <= fp->fInputIdx);
4251 if (backSearchIndex == fp->fInputIdx) {
4252 // We've backed up the input idx to the point that the loop started.
4253 // The loop is done. Leave here without saving state.
4254 // Subsequent failures won't come back here.
4255 break;
4256 }
4257 // Set up for the next iteration of the loop, with input index
4258 // backed up by one from the last time through,
4259 // and a state save to this instruction in case the following code fails again.
4260 // (We're going backwards because this loop emulates stack unwinding, not
4261 // the initial scan forward.)
4262 U_ASSERT(fp->fInputIdx > 0);
4263 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
4264 UChar32 prevC = UTEXT_PREVIOUS32(fInputText);
4265 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
4266
4267 UChar32 twoPrevC = UTEXT_PREVIOUS32(fInputText);
4268 if (prevC == 0x0a &&
4269 fp->fInputIdx > backSearchIndex &&
4270 twoPrevC == 0x0d) {
4271 int32_t prevOp = (int32_t)pat[fp->fPatIdx-2];
4272 if (URX_TYPE(prevOp) == URX_LOOP_DOT_I) {
4273 // .*, stepping back over CRLF pair.
4274 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
4275 }
4276 }
4277
4278
4279 fp = StateSave(fp, fp->fPatIdx-1, status);
4280 }
4281 break;
4282
4283
4284
4285 default:
4286 // Trouble. The compiled pattern contains an entry with an
4287 // unrecognized type tag.
4288 UPRV_UNREACHABLE;
4289 }
4290
4291 if (U_FAILURE(status)) {
4292 isMatch = FALSE;
4293 break;
4294 }
4295 }
4296
4297breakFromLoop:
4298 fMatch = isMatch;
4299 if (isMatch) {
4300 fLastMatchEnd = fMatchEnd;
4301 fMatchStart = startIdx;
4302 fMatchEnd = fp->fInputIdx;
4303 }
4304
4305#ifdef REGEX_RUN_DEBUG
4306 if (fTraceDebug) {
4307 if (isMatch) {
4308 printf("Match. start=%ld end=%ld\n\n", fMatchStart, fMatchEnd);
4309 } else {
4310 printf("No match\n\n");
4311 }
4312 }
4313#endif
4314
4315 fFrame = fp; // The active stack frame when the engine stopped.
4316 // Contains the capture group results that we need to
4317 // access later.
4318 return;
4319}
4320
4321
4322//--------------------------------------------------------------------------------
4323//
4324// MatchChunkAt This is the actual matching engine. Like MatchAt, but with the
4325// assumption that the entire string is available in the UText's
4326// chunk buffer. For now, that means we can use int32_t indexes,
4327// except for anything that needs to be saved (like group starts
4328// and ends).
4329//
4330// startIdx: begin matching a this index.
4331// toEnd: if true, match must extend to end of the input region
4332//
4333//--------------------------------------------------------------------------------
4334void RegexMatcher::MatchChunkAt(int32_t startIdx, UBool toEnd, UErrorCode &status) {
4335 UBool isMatch = FALSE; // True if the we have a match.
4336
4337 int32_t backSearchIndex = INT32_MAX; // used after greedy single-character matches for searching backwards
4338
4339 int32_t op; // Operation from the compiled pattern, split into
4340 int32_t opType; // the opcode
4341 int32_t opValue; // and the operand value.
4342
4343#ifdef REGEX_RUN_DEBUG
4344 if (fTraceDebug) {
4345 printf("MatchAt(startIdx=%d)\n", startIdx);
4346 printf("Original Pattern: \"%s\"\n", CStr(StringFromUText(fPattern->fPattern))());
4347 printf("Input String: \"%s\"\n\n", CStr(StringFromUText(fInputText))());
4348 }
4349#endif
4350
4351 if (U_FAILURE(status)) {
4352 return;
4353 }
4354
4355 // Cache frequently referenced items from the compiled pattern
4356 //
4357 int64_t *pat = fPattern->fCompiledPat->getBuffer();
4358
4359 const UChar *litText = fPattern->fLiteralText.getBuffer();
4360 UVector *fSets = fPattern->fSets;
4361
4362 const UChar *inputBuf = fInputText->chunkContents;
4363
4364 fFrameSize = fPattern->fFrameSize;
4365 REStackFrame *fp = resetStack();
4366 if (U_FAILURE(fDeferredStatus)) {
4367 status = fDeferredStatus;
4368 return;
4369 }
4370
4371 fp->fPatIdx = 0;
4372 fp->fInputIdx = startIdx;
4373
4374 // Zero out the pattern's static data
4375 int32_t i;
4376 for (i = 0; i<fPattern->fDataSize; i++) {
4377 fData[i] = 0;
4378 }
4379
4380 //
4381 // Main loop for interpreting the compiled pattern.
4382 // One iteration of the loop per pattern operation performed.
4383 //
4384 for (;;) {
4385 op = (int32_t)pat[fp->fPatIdx];
4386 opType = URX_TYPE(op);
4387 opValue = URX_VAL(op);
4388#ifdef REGEX_RUN_DEBUG
4389 if (fTraceDebug) {
4390 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
4391 printf("inputIdx=%ld inputChar=%x sp=%3ld activeLimit=%ld ", fp->fInputIdx,
4392 UTEXT_CURRENT32(fInputText), (int64_t *)fp-fStack->getBuffer(), fActiveLimit);
4393 fPattern->dumpOp(fp->fPatIdx);
4394 }
4395#endif
4396 fp->fPatIdx++;
4397
4398 switch (opType) {
4399
4400
4401 case URX_NOP:
4402 break;
4403
4404
4405 case URX_BACKTRACK:
4406 // Force a backtrack. In some circumstances, the pattern compiler
4407 // will notice that the pattern can't possibly match anything, and will
4408 // emit one of these at that point.
4409 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4410 break;
4411
4412
4413 case URX_ONECHAR:
4414 if (fp->fInputIdx < fActiveLimit) {
4415 UChar32 c;
4416 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
4417 if (c == opValue) {
4418 break;
4419 }
4420 } else {
4421 fHitEnd = TRUE;
4422 }
4423 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4424 break;
4425
4426
4427 case URX_STRING:
4428 {
4429 // Test input against a literal string.
4430 // Strings require two slots in the compiled pattern, one for the
4431 // offset to the string text, and one for the length.
4432 int32_t stringStartIdx = opValue;
4433 int32_t stringLen;
4434
4435 op = (int32_t)pat[fp->fPatIdx]; // Fetch the second operand
4436 fp->fPatIdx++;
4437 opType = URX_TYPE(op);
4438 stringLen = URX_VAL(op);
4439 U_ASSERT(opType == URX_STRING_LEN);
4440 U_ASSERT(stringLen >= 2);
4441
4442 const UChar * pInp = inputBuf + fp->fInputIdx;
4443 const UChar * pInpLimit = inputBuf + fActiveLimit;
4444 const UChar * pPat = litText+stringStartIdx;
4445 const UChar * pEnd = pInp + stringLen;
4446 UBool success = TRUE;
4447 while (pInp < pEnd) {
4448 if (pInp >= pInpLimit) {
4449 fHitEnd = TRUE;
4450 success = FALSE;
4451 break;
4452 }
4453 if (*pInp++ != *pPat++) {
4454 success = FALSE;
4455 break;
4456 }
4457 }
4458
4459 if (success) {
4460 fp->fInputIdx += stringLen;
4461 } else {
4462 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4463 }
4464 }
4465 break;
4466
4467
4468 case URX_STATE_SAVE:
4469 fp = StateSave(fp, opValue, status);
4470 break;
4471
4472
4473 case URX_END:
4474 // The match loop will exit via this path on a successful match,
4475 // when we reach the end of the pattern.
4476 if (toEnd && fp->fInputIdx != fActiveLimit) {
4477 // The pattern matched, but not to the end of input. Try some more.
4478 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4479 break;
4480 }
4481 isMatch = TRUE;
4482 goto breakFromLoop;
4483
4484 // Start and End Capture stack frame variables are laid out out like this:
4485 // fp->fExtra[opValue] - The start of a completed capture group
4486 // opValue+1 - The end of a completed capture group
4487 // opValue+2 - the start of a capture group whose end
4488 // has not yet been reached (and might not ever be).
4489 case URX_START_CAPTURE:
4490 U_ASSERT(opValue >= 0 && opValue < fFrameSize-3);
4491 fp->fExtra[opValue+2] = fp->fInputIdx;
4492 break;
4493
4494
4495 case URX_END_CAPTURE:
4496 U_ASSERT(opValue >= 0 && opValue < fFrameSize-3);
4497 U_ASSERT(fp->fExtra[opValue+2] >= 0); // Start pos for this group must be set.
4498 fp->fExtra[opValue] = fp->fExtra[opValue+2]; // Tentative start becomes real.
4499 fp->fExtra[opValue+1] = fp->fInputIdx; // End position
4500 U_ASSERT(fp->fExtra[opValue] <= fp->fExtra[opValue+1]);
4501 break;
4502
4503
4504 case URX_DOLLAR: // $, test for End of line
4505 // or for position before new line at end of input
4506 if (fp->fInputIdx < fAnchorLimit-2) {
4507 // We are no where near the end of input. Fail.
4508 // This is the common case. Keep it first.
4509 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4510 break;
4511 }
4512 if (fp->fInputIdx >= fAnchorLimit) {
4513 // We really are at the end of input. Success.
4514 fHitEnd = TRUE;
4515 fRequireEnd = TRUE;
4516 break;
4517 }
4518
4519 // If we are positioned just before a new-line that is located at the
4520 // end of input, succeed.
4521 if (fp->fInputIdx == fAnchorLimit-1) {
4522 UChar32 c;
4523 U16_GET(inputBuf, fAnchorStart, fp->fInputIdx, fAnchorLimit, c);
4524
4525 if (isLineTerminator(c)) {
4526 if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && inputBuf[fp->fInputIdx-1]==0x0d)) {
4527 // At new-line at end of input. Success
4528 fHitEnd = TRUE;
4529 fRequireEnd = TRUE;
4530 break;
4531 }
4532 }
4533 } else if (fp->fInputIdx == fAnchorLimit-2 &&
4534 inputBuf[fp->fInputIdx]==0x0d && inputBuf[fp->fInputIdx+1]==0x0a) {
4535 fHitEnd = TRUE;
4536 fRequireEnd = TRUE;
4537 break; // At CR/LF at end of input. Success
4538 }
4539
4540 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4541
4542 break;
4543
4544
4545 case URX_DOLLAR_D: // $, test for End of Line, in UNIX_LINES mode.
4546 if (fp->fInputIdx >= fAnchorLimit-1) {
4547 // Either at the last character of input, or off the end.
4548 if (fp->fInputIdx == fAnchorLimit-1) {
4549 // At last char of input. Success if it's a new line.
4550 if (inputBuf[fp->fInputIdx] == 0x0a) {
4551 fHitEnd = TRUE;
4552 fRequireEnd = TRUE;
4553 break;
4554 }
4555 } else {
4556 // Off the end of input. Success.
4557 fHitEnd = TRUE;
4558 fRequireEnd = TRUE;
4559 break;
4560 }
4561 }
4562
4563 // Not at end of input. Back-track out.
4564 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4565 break;
4566
4567
4568 case URX_DOLLAR_M: // $, test for End of line in multi-line mode
4569 {
4570 if (fp->fInputIdx >= fAnchorLimit) {
4571 // We really are at the end of input. Success.
4572 fHitEnd = TRUE;
4573 fRequireEnd = TRUE;
4574 break;
4575 }
4576 // If we are positioned just before a new-line, succeed.
4577 // It makes no difference where the new-line is within the input.
4578 UChar32 c = inputBuf[fp->fInputIdx];
4579 if (isLineTerminator(c)) {
4580 // At a line end, except for the odd chance of being in the middle of a CR/LF sequence
4581 // In multi-line mode, hitting a new-line just before the end of input does not
4582 // set the hitEnd or requireEnd flags
4583 if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && inputBuf[fp->fInputIdx-1]==0x0d)) {
4584 break;
4585 }
4586 }
4587 // not at a new line. Fail.
4588 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4589 }
4590 break;
4591
4592
4593 case URX_DOLLAR_MD: // $, test for End of line in multi-line and UNIX_LINES mode
4594 {
4595 if (fp->fInputIdx >= fAnchorLimit) {
4596 // We really are at the end of input. Success.
4597 fHitEnd = TRUE;
4598 fRequireEnd = TRUE; // Java set requireEnd in this case, even though
4599 break; // adding a new-line would not lose the match.
4600 }
4601 // If we are not positioned just before a new-line, the test fails; backtrack out.
4602 // It makes no difference where the new-line is within the input.
4603 if (inputBuf[fp->fInputIdx] != 0x0a) {
4604 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4605 }
4606 }
4607 break;
4608
4609
4610 case URX_CARET: // ^, test for start of line
4611 if (fp->fInputIdx != fAnchorStart) {
4612 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4613 }
4614 break;
4615
4616
4617 case URX_CARET_M: // ^, test for start of line in mulit-line mode
4618 {
4619 if (fp->fInputIdx == fAnchorStart) {
4620 // We are at the start input. Success.
4621 break;
4622 }
4623 // Check whether character just before the current pos is a new-line
4624 // unless we are at the end of input
4625 UChar c = inputBuf[fp->fInputIdx - 1];
4626 if ((fp->fInputIdx < fAnchorLimit) &&
4627 isLineTerminator(c)) {
4628 // It's a new-line. ^ is true. Success.
4629 // TODO: what should be done with positions between a CR and LF?
4630 break;
4631 }
4632 // Not at the start of a line. Fail.
4633 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4634 }
4635 break;
4636
4637
4638 case URX_CARET_M_UNIX: // ^, test for start of line in mulit-line + Unix-line mode
4639 {
4640 U_ASSERT(fp->fInputIdx >= fAnchorStart);
4641 if (fp->fInputIdx <= fAnchorStart) {
4642 // We are at the start input. Success.
4643 break;
4644 }
4645 // Check whether character just before the current pos is a new-line
4646 U_ASSERT(fp->fInputIdx <= fAnchorLimit);
4647 UChar c = inputBuf[fp->fInputIdx - 1];
4648 if (c != 0x0a) {
4649 // Not at the start of a line. Back-track out.
4650 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4651 }
4652 }
4653 break;
4654
4655 case URX_BACKSLASH_B: // Test for word boundaries
4656 {
4657 UBool success = isChunkWordBoundary((int32_t)fp->fInputIdx);
4658 success ^= (UBool)(opValue != 0); // flip sense for \B
4659 if (!success) {
4660 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4661 }
4662 }
4663 break;
4664
4665
4666 case URX_BACKSLASH_BU: // Test for word boundaries, Unicode-style
4667 {
4668 UBool success = isUWordBoundary(fp->fInputIdx);
4669 success ^= (UBool)(opValue != 0); // flip sense for \B
4670 if (!success) {
4671 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4672 }
4673 }
4674 break;
4675
4676
4677 case URX_BACKSLASH_D: // Test for decimal digit
4678 {
4679 if (fp->fInputIdx >= fActiveLimit) {
4680 fHitEnd = TRUE;
4681 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4682 break;
4683 }
4684
4685 UChar32 c;
4686 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
4687 int8_t ctype = u_charType(c); // TODO: make a unicode set for this. Will be faster.
4688 UBool success = (ctype == U_DECIMAL_DIGIT_NUMBER);
4689 success ^= (UBool)(opValue != 0); // flip sense for \D
4690 if (!success) {
4691 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4692 }
4693 }
4694 break;
4695
4696
4697 case URX_BACKSLASH_G: // Test for position at end of previous match
4698 if (!((fMatch && fp->fInputIdx==fMatchEnd) || (fMatch==FALSE && fp->fInputIdx==fActiveStart))) {
4699 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4700 }
4701 break;
4702
4703
4704 case URX_BACKSLASH_H: // Test for \h, horizontal white space.
4705 {
4706 if (fp->fInputIdx >= fActiveLimit) {
4707 fHitEnd = TRUE;
4708 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4709 break;
4710 }
4711 UChar32 c;
4712 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
4713 int8_t ctype = u_charType(c);
4714 UBool success = (ctype == U_SPACE_SEPARATOR || c == 9); // SPACE_SEPARATOR || TAB
4715 success ^= (UBool)(opValue != 0); // flip sense for \H
4716 if (!success) {
4717 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4718 }
4719 }
4720 break;
4721
4722
4723 case URX_BACKSLASH_R: // Test for \R, any line break sequence.
4724 {
4725 if (fp->fInputIdx >= fActiveLimit) {
4726 fHitEnd = TRUE;
4727 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4728 break;
4729 }
4730 UChar32 c;
4731 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
4732 if (isLineTerminator(c)) {
4733 if (c == 0x0d && fp->fInputIdx < fActiveLimit) {
4734 // Check for CR/LF sequence. Consume both together when found.
4735 UChar c2;
4736 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c2);
4737 if (c2 != 0x0a) {
4738 U16_PREV(inputBuf, 0, fp->fInputIdx, c2);
4739 }
4740 }
4741 } else {
4742 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4743 }
4744 }
4745 break;
4746
4747
4748 case URX_BACKSLASH_V: // Any single code point line ending.
4749 {
4750 if (fp->fInputIdx >= fActiveLimit) {
4751 fHitEnd = TRUE;
4752 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4753 break;
4754 }
4755 UChar32 c;
4756 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
4757 UBool success = isLineTerminator(c);
4758 success ^= (UBool)(opValue != 0); // flip sense for \V
4759 if (!success) {
4760 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4761 }
4762 }
4763 break;
4764
4765
4766
4767 case URX_BACKSLASH_X:
4768 // Match a Grapheme, as defined by Unicode TR 29.
4769 // Differs slightly from Perl, which consumes combining marks independently
4770 // of context.
4771 {
4772
4773 // Fail if at end of input
4774 if (fp->fInputIdx >= fActiveLimit) {
4775 fHitEnd = TRUE;
4776 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4777 break;
4778 }
4779
4780 // Examine (and consume) the current char.
4781 // Dispatch into a little state machine, based on the char.
4782 UChar32 c;
4783 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
4784 UnicodeSet **sets = fPattern->fStaticSets;
4785 if (sets[URX_GC_NORMAL]->contains(c)) goto GC_Extend;
4786 if (sets[URX_GC_CONTROL]->contains(c)) goto GC_Control;
4787 if (sets[URX_GC_L]->contains(c)) goto GC_L;
4788 if (sets[URX_GC_LV]->contains(c)) goto GC_V;
4789 if (sets[URX_GC_LVT]->contains(c)) goto GC_T;
4790 if (sets[URX_GC_V]->contains(c)) goto GC_V;
4791 if (sets[URX_GC_T]->contains(c)) goto GC_T;
4792 goto GC_Extend;
4793
4794
4795
4796GC_L:
4797 if (fp->fInputIdx >= fActiveLimit) goto GC_Done;
4798 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
4799 if (sets[URX_GC_L]->contains(c)) goto GC_L;
4800 if (sets[URX_GC_LV]->contains(c)) goto GC_V;
4801 if (sets[URX_GC_LVT]->contains(c)) goto GC_T;
4802 if (sets[URX_GC_V]->contains(c)) goto GC_V;
4803 U16_PREV(inputBuf, 0, fp->fInputIdx, c);
4804 goto GC_Extend;
4805
4806GC_V:
4807 if (fp->fInputIdx >= fActiveLimit) goto GC_Done;
4808 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
4809 if (sets[URX_GC_V]->contains(c)) goto GC_V;
4810 if (sets[URX_GC_T]->contains(c)) goto GC_T;
4811 U16_PREV(inputBuf, 0, fp->fInputIdx, c);
4812 goto GC_Extend;
4813
4814GC_T:
4815 if (fp->fInputIdx >= fActiveLimit) goto GC_Done;
4816 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
4817 if (sets[URX_GC_T]->contains(c)) goto GC_T;
4818 U16_PREV(inputBuf, 0, fp->fInputIdx, c);
4819 goto GC_Extend;
4820
4821GC_Extend:
4822 // Combining characters are consumed here
4823 for (;;) {
4824 if (fp->fInputIdx >= fActiveLimit) {
4825 break;
4826 }
4827 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
4828 if (sets[URX_GC_EXTEND]->contains(c) == FALSE) {
4829 U16_BACK_1(inputBuf, 0, fp->fInputIdx);
4830 break;
4831 }
4832 }
4833 goto GC_Done;
4834
4835GC_Control:
4836 // Most control chars stand alone (don't combine with combining chars),
4837 // except for that CR/LF sequence is a single grapheme cluster.
4838 if (c == 0x0d && fp->fInputIdx < fActiveLimit && inputBuf[fp->fInputIdx] == 0x0a) {
4839 fp->fInputIdx++;
4840 }
4841
4842GC_Done:
4843 if (fp->fInputIdx >= fActiveLimit) {
4844 fHitEnd = TRUE;
4845 }
4846 break;
4847 }
4848
4849
4850
4851
4852 case URX_BACKSLASH_Z: // Test for end of Input
4853 if (fp->fInputIdx < fAnchorLimit) {
4854 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4855 } else {
4856 fHitEnd = TRUE;
4857 fRequireEnd = TRUE;
4858 }
4859 break;
4860
4861
4862
4863 case URX_STATIC_SETREF:
4864 {
4865 // Test input character against one of the predefined sets
4866 // (Word Characters, for example)
4867 // The high bit of the op value is a flag for the match polarity.
4868 // 0: success if input char is in set.
4869 // 1: success if input char is not in set.
4870 if (fp->fInputIdx >= fActiveLimit) {
4871 fHitEnd = TRUE;
4872 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4873 break;
4874 }
4875
4876 UBool success = ((opValue & URX_NEG_SET) == URX_NEG_SET);
4877 opValue &= ~URX_NEG_SET;
4878 U_ASSERT(opValue > 0 && opValue < URX_LAST_SET);
4879
4880 UChar32 c;
4881 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
4882 if (c < 256) {
4883 Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue];
4884 if (s8->contains(c)) {
4885 success = !success;
4886 }
4887 } else {
4888 const UnicodeSet *s = fPattern->fStaticSets[opValue];
4889 if (s->contains(c)) {
4890 success = !success;
4891 }
4892 }
4893 if (!success) {
4894 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4895 }
4896 }
4897 break;
4898
4899
4900 case URX_STAT_SETREF_N:
4901 {
4902 // Test input character for NOT being a member of one of
4903 // the predefined sets (Word Characters, for example)
4904 if (fp->fInputIdx >= fActiveLimit) {
4905 fHitEnd = TRUE;
4906 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4907 break;
4908 }
4909
4910 U_ASSERT(opValue > 0 && opValue < URX_LAST_SET);
4911
4912 UChar32 c;
4913 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
4914 if (c < 256) {
4915 Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue];
4916 if (s8->contains(c) == FALSE) {
4917 break;
4918 }
4919 } else {
4920 const UnicodeSet *s = fPattern->fStaticSets[opValue];
4921 if (s->contains(c) == FALSE) {
4922 break;
4923 }
4924 }
4925 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4926 }
4927 break;
4928
4929
4930 case URX_SETREF:
4931 {
4932 if (fp->fInputIdx >= fActiveLimit) {
4933 fHitEnd = TRUE;
4934 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4935 break;
4936 }
4937
4938 U_ASSERT(opValue > 0 && opValue < fSets->size());
4939
4940 // There is input left. Pick up one char and test it for set membership.
4941 UChar32 c;
4942 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
4943 if (c<256) {
4944 Regex8BitSet *s8 = &fPattern->fSets8[opValue];
4945 if (s8->contains(c)) {
4946 // The character is in the set. A Match.
4947 break;
4948 }
4949 } else {
4950 UnicodeSet *s = (UnicodeSet *)fSets->elementAt(opValue);
4951 if (s->contains(c)) {
4952 // The character is in the set. A Match.
4953 break;
4954 }
4955 }
4956
4957 // the character wasn't in the set.
4958 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4959 }
4960 break;
4961
4962
4963 case URX_DOTANY:
4964 {
4965 // . matches anything, but stops at end-of-line.
4966 if (fp->fInputIdx >= fActiveLimit) {
4967 // At end of input. Match failed. Backtrack out.
4968 fHitEnd = TRUE;
4969 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4970 break;
4971 }
4972
4973 // There is input left. Advance over one char, unless we've hit end-of-line
4974 UChar32 c;
4975 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
4976 if (isLineTerminator(c)) {
4977 // End of line in normal mode. . does not match.
4978 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4979 break;
4980 }
4981 }
4982 break;
4983
4984
4985 case URX_DOTANY_ALL:
4986 {
4987 // . in dot-matches-all (including new lines) mode
4988 if (fp->fInputIdx >= fActiveLimit) {
4989 // At end of input. Match failed. Backtrack out.
4990 fHitEnd = TRUE;
4991 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
4992 break;
4993 }
4994
4995 // There is input left. Advance over one char, except if we are
4996 // at a cr/lf, advance over both of them.
4997 UChar32 c;
4998 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
4999 if (c==0x0d && fp->fInputIdx < fActiveLimit) {
5000 // In the case of a CR/LF, we need to advance over both.
5001 if (inputBuf[fp->fInputIdx] == 0x0a) {
5002 U16_FWD_1(inputBuf, fp->fInputIdx, fActiveLimit);
5003 }
5004 }
5005 }
5006 break;
5007
5008
5009 case URX_DOTANY_UNIX:
5010 {
5011 // '.' operator, matches all, but stops at end-of-line.
5012 // UNIX_LINES mode, so 0x0a is the only recognized line ending.
5013 if (fp->fInputIdx >= fActiveLimit) {
5014 // At end of input. Match failed. Backtrack out.
5015 fHitEnd = TRUE;
5016 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
5017 break;
5018 }
5019
5020 // There is input left. Advance over one char, unless we've hit end-of-line
5021 UChar32 c;
5022 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
5023 if (c == 0x0a) {
5024 // End of line in normal mode. '.' does not match the \n
5025 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
5026 }
5027 }
5028 break;
5029
5030
5031 case URX_JMP:
5032 fp->fPatIdx = opValue;
5033 break;
5034
5035 case URX_FAIL:
5036 isMatch = FALSE;
5037 goto breakFromLoop;
5038
5039 case URX_JMP_SAV:
5040 U_ASSERT(opValue < fPattern->fCompiledPat->size());
5041 fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current
5042 fp->fPatIdx = opValue; // Then JMP.
5043 break;
5044
5045 case URX_JMP_SAV_X:
5046 // This opcode is used with (x)+, when x can match a zero length string.
5047 // Same as JMP_SAV, except conditional on the match having made forward progress.
5048 // Destination of the JMP must be a URX_STO_INP_LOC, from which we get the
5049 // data address of the input position at the start of the loop.
5050 {
5051 U_ASSERT(opValue > 0 && opValue < fPattern->fCompiledPat->size());
5052 int32_t stoOp = (int32_t)pat[opValue-1];
5053 U_ASSERT(URX_TYPE(stoOp) == URX_STO_INP_LOC);
5054 int32_t frameLoc = URX_VAL(stoOp);
5055 U_ASSERT(frameLoc >= 0 && frameLoc < fFrameSize);
5056 int32_t prevInputIdx = (int32_t)fp->fExtra[frameLoc];
5057 U_ASSERT(prevInputIdx <= fp->fInputIdx);
5058 if (prevInputIdx < fp->fInputIdx) {
5059 // The match did make progress. Repeat the loop.
5060 fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current
5061 fp->fPatIdx = opValue;
5062 fp->fExtra[frameLoc] = fp->fInputIdx;
5063 }
5064 // If the input position did not advance, we do nothing here,
5065 // execution will fall out of the loop.
5066 }
5067 break;
5068
5069 case URX_CTR_INIT:
5070 {
5071 U_ASSERT(opValue >= 0 && opValue < fFrameSize-2);
5072 fp->fExtra[opValue] = 0; // Set the loop counter variable to zero
5073
5074 // Pick up the three extra operands that CTR_INIT has, and
5075 // skip the pattern location counter past
5076 int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
5077 fp->fPatIdx += 3;
5078 int32_t loopLoc = URX_VAL(pat[instrOperandLoc]);
5079 int32_t minCount = (int32_t)pat[instrOperandLoc+1];
5080 int32_t maxCount = (int32_t)pat[instrOperandLoc+2];
5081 U_ASSERT(minCount>=0);
5082 U_ASSERT(maxCount>=minCount || maxCount==-1);
5083 U_ASSERT(loopLoc>=fp->fPatIdx);
5084
5085 if (minCount == 0) {
5086 fp = StateSave(fp, loopLoc+1, status);
5087 }
5088 if (maxCount == -1) {
5089 fp->fExtra[opValue+1] = fp->fInputIdx; // For loop breaking.
5090 } else if (maxCount == 0) {
5091 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
5092 }
5093 }
5094 break;
5095
5096 case URX_CTR_LOOP:
5097 {
5098 U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2);
5099 int32_t initOp = (int32_t)pat[opValue];
5100 U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT);
5101 int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
5102 int32_t minCount = (int32_t)pat[opValue+2];
5103 int32_t maxCount = (int32_t)pat[opValue+3];
5104 (*pCounter)++;
5105 if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) {
5106 U_ASSERT(*pCounter == maxCount);
5107 break;
5108 }
5109 if (*pCounter >= minCount) {
5110 if (maxCount == -1) {
5111 // Loop has no hard upper bound.
5112 // Check that it is progressing through the input, break if it is not.
5113 int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp) + 1];
5114 if (fp->fInputIdx == *pLastInputIdx) {
5115 break;
5116 } else {
5117 *pLastInputIdx = fp->fInputIdx;
5118 }
5119 }
5120 fp = StateSave(fp, fp->fPatIdx, status);
5121 } else {
5122 // Increment time-out counter. (StateSave() does it if count >= minCount)
5123 fTickCounter--;
5124 if (fTickCounter <= 0) {
5125 IncrementTime(status); // Re-initializes fTickCounter
5126 }
5127 }
5128 fp->fPatIdx = opValue + 4; // Loop back.
5129 }
5130 break;
5131
5132 case URX_CTR_INIT_NG:
5133 {
5134 // Initialize a non-greedy loop
5135 U_ASSERT(opValue >= 0 && opValue < fFrameSize-2);
5136 fp->fExtra[opValue] = 0; // Set the loop counter variable to zero
5137
5138 // Pick up the three extra operands that CTR_INIT_NG has, and
5139 // skip the pattern location counter past
5140 int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
5141 fp->fPatIdx += 3;
5142 int32_t loopLoc = URX_VAL(pat[instrOperandLoc]);
5143 int32_t minCount = (int32_t)pat[instrOperandLoc+1];
5144 int32_t maxCount = (int32_t)pat[instrOperandLoc+2];
5145 U_ASSERT(minCount>=0);
5146 U_ASSERT(maxCount>=minCount || maxCount==-1);
5147 U_ASSERT(loopLoc>fp->fPatIdx);
5148 if (maxCount == -1) {
5149 fp->fExtra[opValue+1] = fp->fInputIdx; // Save initial input index for loop breaking.
5150 }
5151
5152 if (minCount == 0) {
5153 if (maxCount != 0) {
5154 fp = StateSave(fp, fp->fPatIdx, status);
5155 }
5156 fp->fPatIdx = loopLoc+1; // Continue with stuff after repeated block
5157 }
5158 }
5159 break;
5160
5161 case URX_CTR_LOOP_NG:
5162 {
5163 // Non-greedy {min, max} loops
5164 U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2);
5165 int32_t initOp = (int32_t)pat[opValue];
5166 U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT_NG);
5167 int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
5168 int32_t minCount = (int32_t)pat[opValue+2];
5169 int32_t maxCount = (int32_t)pat[opValue+3];
5170
5171 (*pCounter)++;
5172 if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) {
5173 // The loop has matched the maximum permitted number of times.
5174 // Break out of here with no action. Matching will
5175 // continue with the following pattern.
5176 U_ASSERT(*pCounter == maxCount);
5177 break;
5178 }
5179
5180 if (*pCounter < minCount) {
5181 // We haven't met the minimum number of matches yet.
5182 // Loop back for another one.
5183 fp->fPatIdx = opValue + 4; // Loop back.
5184 fTickCounter--;
5185 if (fTickCounter <= 0) {
5186 IncrementTime(status); // Re-initializes fTickCounter
5187 }
5188 } else {
5189 // We do have the minimum number of matches.
5190
5191 // If there is no upper bound on the loop iterations, check that the input index
5192 // is progressing, and stop the loop if it is not.
5193 if (maxCount == -1) {
5194 int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp) + 1];
5195 if (fp->fInputIdx == *pLastInputIdx) {
5196 break;
5197 }
5198 *pLastInputIdx = fp->fInputIdx;
5199 }
5200
5201 // Loop Continuation: we will fall into the pattern following the loop
5202 // (non-greedy, don't execute loop body first), but first do
5203 // a state save to the top of the loop, so that a match failure
5204 // in the following pattern will try another iteration of the loop.
5205 fp = StateSave(fp, opValue + 4, status);
5206 }
5207 }
5208 break;
5209
5210 case URX_STO_SP:
5211 U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize);
5212 fData[opValue] = fStack->size();
5213 break;
5214
5215 case URX_LD_SP:
5216 {
5217 U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize);
5218 int32_t newStackSize = (int32_t)fData[opValue];
5219 U_ASSERT(newStackSize <= fStack->size());
5220 int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize;
5221 if (newFP == (int64_t *)fp) {
5222 break;
5223 }
5224 int32_t j;
5225 for (j=0; j<fFrameSize; j++) {
5226 newFP[j] = ((int64_t *)fp)[j];
5227 }
5228 fp = (REStackFrame *)newFP;
5229 fStack->setSize(newStackSize);
5230 }
5231 break;
5232
5233 case URX_BACKREF:
5234 {
5235 U_ASSERT(opValue < fFrameSize);
5236 int64_t groupStartIdx = fp->fExtra[opValue];
5237 int64_t groupEndIdx = fp->fExtra[opValue+1];
5238 U_ASSERT(groupStartIdx <= groupEndIdx);
5239 int64_t inputIndex = fp->fInputIdx;
5240 if (groupStartIdx < 0) {
5241 // This capture group has not participated in the match thus far,
5242 fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match.
5243 break;
5244 }
5245 UBool success = TRUE;
5246 for (int64_t groupIndex = groupStartIdx; groupIndex < groupEndIdx; ++groupIndex,++inputIndex) {
5247 if (inputIndex >= fActiveLimit) {
5248 success = FALSE;
5249 fHitEnd = TRUE;
5250 break;
5251 }
5252 if (inputBuf[groupIndex] != inputBuf[inputIndex]) {
5253 success = FALSE;
5254 break;
5255 }
5256 }
5257 if (success && groupStartIdx < groupEndIdx && U16_IS_LEAD(inputBuf[groupEndIdx-1]) &&
5258 inputIndex < fActiveLimit && U16_IS_TRAIL(inputBuf[inputIndex])) {
5259 // Capture group ended with an unpaired lead surrogate.
5260 // Back reference is not permitted to match lead only of a surrogatge pair.
5261 success = FALSE;
5262 }
5263 if (success) {
5264 fp->fInputIdx = inputIndex;
5265 } else {
5266 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
5267 }
5268 }
5269 break;
5270
5271 case URX_BACKREF_I:
5272 {
5273 U_ASSERT(opValue < fFrameSize);
5274 int64_t groupStartIdx = fp->fExtra[opValue];
5275 int64_t groupEndIdx = fp->fExtra[opValue+1];
5276 U_ASSERT(groupStartIdx <= groupEndIdx);
5277 if (groupStartIdx < 0) {
5278 // This capture group has not participated in the match thus far,
5279 fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match.
5280 break;
5281 }
5282 CaseFoldingUCharIterator captureGroupItr(inputBuf, groupStartIdx, groupEndIdx);
5283 CaseFoldingUCharIterator inputItr(inputBuf, fp->fInputIdx, fActiveLimit);
5284
5285 // Note: if the capture group match was of an empty string the backref
5286 // match succeeds. Verified by testing: Perl matches succeed
5287 // in this case, so we do too.
5288
5289 UBool success = TRUE;
5290 for (;;) {
5291 UChar32 captureGroupChar = captureGroupItr.next();
5292 if (captureGroupChar == U_SENTINEL) {
5293 success = TRUE;
5294 break;
5295 }
5296 UChar32 inputChar = inputItr.next();
5297 if (inputChar == U_SENTINEL) {
5298 success = FALSE;
5299 fHitEnd = TRUE;
5300 break;
5301 }
5302 if (inputChar != captureGroupChar) {
5303 success = FALSE;
5304 break;
5305 }
5306 }
5307
5308 if (success && inputItr.inExpansion()) {
5309 // We otained a match by consuming part of a string obtained from
5310 // case-folding a single code point of the input text.
5311 // This does not count as an overall match.
5312 success = FALSE;
5313 }
5314
5315 if (success) {
5316 fp->fInputIdx = inputItr.getIndex();
5317 } else {
5318 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
5319 }
5320 }
5321 break;
5322
5323 case URX_STO_INP_LOC:
5324 {
5325 U_ASSERT(opValue >= 0 && opValue < fFrameSize);
5326 fp->fExtra[opValue] = fp->fInputIdx;
5327 }
5328 break;
5329
5330 case URX_JMPX:
5331 {
5332 int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
5333 fp->fPatIdx += 1;
5334 int32_t dataLoc = URX_VAL(pat[instrOperandLoc]);
5335 U_ASSERT(dataLoc >= 0 && dataLoc < fFrameSize);
5336 int32_t savedInputIdx = (int32_t)fp->fExtra[dataLoc];
5337 U_ASSERT(savedInputIdx <= fp->fInputIdx);
5338 if (savedInputIdx < fp->fInputIdx) {
5339 fp->fPatIdx = opValue; // JMP
5340 } else {
5341 fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no progress in loop.
5342 }
5343 }
5344 break;
5345
5346 case URX_LA_START:
5347 {
5348 // Entering a lookahead block.
5349 // Save Stack Ptr, Input Pos.
5350 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
5351 fData[opValue] = fStack->size();
5352 fData[opValue+1] = fp->fInputIdx;
5353 fActiveStart = fLookStart; // Set the match region change for
5354 fActiveLimit = fLookLimit; // transparent bounds.
5355 }
5356 break;
5357
5358 case URX_LA_END:
5359 {
5360 // Leaving a look-ahead block.
5361 // restore Stack Ptr, Input Pos to positions they had on entry to block.
5362 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
5363 int32_t stackSize = fStack->size();
5364 int32_t newStackSize = (int32_t)fData[opValue];
5365 U_ASSERT(stackSize >= newStackSize);
5366 if (stackSize > newStackSize) {
5367 // Copy the current top frame back to the new (cut back) top frame.
5368 // This makes the capture groups from within the look-ahead
5369 // expression available.
5370 int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize;
5371 int32_t j;
5372 for (j=0; j<fFrameSize; j++) {
5373 newFP[j] = ((int64_t *)fp)[j];
5374 }
5375 fp = (REStackFrame *)newFP;
5376 fStack->setSize(newStackSize);
5377 }
5378 fp->fInputIdx = fData[opValue+1];
5379
5380 // Restore the active region bounds in the input string; they may have
5381 // been changed because of transparent bounds on a Region.
5382 fActiveStart = fRegionStart;
5383 fActiveLimit = fRegionLimit;
5384 }
5385 break;
5386
5387 case URX_ONECHAR_I:
5388 if (fp->fInputIdx < fActiveLimit) {
5389 UChar32 c;
5390 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
5391 if (u_foldCase(c, U_FOLD_CASE_DEFAULT) == opValue) {
5392 break;
5393 }
5394 } else {
5395 fHitEnd = TRUE;
5396 }
5397 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
5398 break;
5399
5400 case URX_STRING_I:
5401 // Case-insensitive test input against a literal string.
5402 // Strings require two slots in the compiled pattern, one for the
5403 // offset to the string text, and one for the length.
5404 // The compiled string has already been case folded.
5405 {
5406 const UChar *patternString = litText + opValue;
5407
5408 op = (int32_t)pat[fp->fPatIdx];
5409 fp->fPatIdx++;
5410 opType = URX_TYPE(op);
5411 opValue = URX_VAL(op);
5412 U_ASSERT(opType == URX_STRING_LEN);
5413 int32_t patternStringLen = opValue; // Length of the string from the pattern.
5414
5415 UChar32 cText;
5416 UChar32 cPattern;
5417 UBool success = TRUE;
5418 int32_t patternStringIdx = 0;
5419 CaseFoldingUCharIterator inputIterator(inputBuf, fp->fInputIdx, fActiveLimit);
5420 while (patternStringIdx < patternStringLen) {
5421 U16_NEXT(patternString, patternStringIdx, patternStringLen, cPattern);
5422 cText = inputIterator.next();
5423 if (cText != cPattern) {
5424 success = FALSE;
5425 if (cText == U_SENTINEL) {
5426 fHitEnd = TRUE;
5427 }
5428 break;
5429 }
5430 }
5431 if (inputIterator.inExpansion()) {
5432 success = FALSE;
5433 }
5434
5435 if (success) {
5436 fp->fInputIdx = inputIterator.getIndex();
5437 } else {
5438 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
5439 }
5440 }
5441 break;
5442
5443 case URX_LB_START:
5444 {
5445 // Entering a look-behind block.
5446 // Save Stack Ptr, Input Pos.
5447 // TODO: implement transparent bounds. Ticket #6067
5448 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
5449 fData[opValue] = fStack->size();
5450 fData[opValue+1] = fp->fInputIdx;
5451 // Init the variable containing the start index for attempted matches.
5452 fData[opValue+2] = -1;
5453 // Save input string length, then reset to pin any matches to end at
5454 // the current position.
5455 fData[opValue+3] = fActiveLimit;
5456 fActiveLimit = fp->fInputIdx;
5457 }
5458 break;
5459
5460
5461 case URX_LB_CONT:
5462 {
5463 // Positive Look-Behind, at top of loop checking for matches of LB expression
5464 // at all possible input starting positions.
5465
5466 // Fetch the min and max possible match lengths. They are the operands
5467 // of this op in the pattern.
5468 int32_t minML = (int32_t)pat[fp->fPatIdx++];
5469 int32_t maxML = (int32_t)pat[fp->fPatIdx++];
5470 U_ASSERT(minML <= maxML);
5471 U_ASSERT(minML >= 0);
5472
5473 // Fetch (from data) the last input index where a match was attempted.
5474 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
5475 int64_t &lbStartIdx = fData[opValue+2];
5476 if (lbStartIdx < 0) {
5477 // First time through loop.
5478 lbStartIdx = fp->fInputIdx - minML;
5479 if (lbStartIdx > 0 && lbStartIdx < fInputLength) {
5480 U16_SET_CP_START(inputBuf, 0, lbStartIdx);
5481 }
5482 } else {
5483 // 2nd through nth time through the loop.
5484 // Back up start position for match by one.
5485 if (lbStartIdx == 0) {
5486 lbStartIdx--;
5487 } else {
5488 U16_BACK_1(inputBuf, 0, lbStartIdx);
5489 }
5490 }
5491
5492 if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) {
5493 // We have tried all potential match starting points without
5494 // getting a match. Backtrack out, and out of the
5495 // Look Behind altogether.
5496 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
5497 int64_t restoreInputLen = fData[opValue+3];
5498 U_ASSERT(restoreInputLen >= fActiveLimit);
5499 U_ASSERT(restoreInputLen <= fInputLength);
5500 fActiveLimit = restoreInputLen;
5501 break;
5502 }
5503
5504 // Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
5505 // (successful match will fall off the end of the loop.)
5506 fp = StateSave(fp, fp->fPatIdx-3, status);
5507 fp->fInputIdx = lbStartIdx;
5508 }
5509 break;
5510
5511 case URX_LB_END:
5512 // End of a look-behind block, after a successful match.
5513 {
5514 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
5515 if (fp->fInputIdx != fActiveLimit) {
5516 // The look-behind expression matched, but the match did not
5517 // extend all the way to the point that we are looking behind from.
5518 // FAIL out of here, which will take us back to the LB_CONT, which
5519 // will retry the match starting at another position or fail
5520 // the look-behind altogether, whichever is appropriate.
5521 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
5522 break;
5523 }
5524
5525 // Look-behind match is good. Restore the orignal input string length,
5526 // which had been truncated to pin the end of the lookbehind match to the
5527 // position being looked-behind.
5528 int64_t originalInputLen = fData[opValue+3];
5529 U_ASSERT(originalInputLen >= fActiveLimit);
5530 U_ASSERT(originalInputLen <= fInputLength);
5531 fActiveLimit = originalInputLen;
5532 }
5533 break;
5534
5535
5536 case URX_LBN_CONT:
5537 {
5538 // Negative Look-Behind, at top of loop checking for matches of LB expression
5539 // at all possible input starting positions.
5540
5541 // Fetch the extra parameters of this op.
5542 int32_t minML = (int32_t)pat[fp->fPatIdx++];
5543 int32_t maxML = (int32_t)pat[fp->fPatIdx++];
5544 int32_t continueLoc = (int32_t)pat[fp->fPatIdx++];
5545 continueLoc = URX_VAL(continueLoc);
5546 U_ASSERT(minML <= maxML);
5547 U_ASSERT(minML >= 0);
5548 U_ASSERT(continueLoc > fp->fPatIdx);
5549
5550 // Fetch (from data) the last input index where a match was attempted.
5551 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
5552 int64_t &lbStartIdx = fData[opValue+2];
5553 if (lbStartIdx < 0) {
5554 // First time through loop.
5555 lbStartIdx = fp->fInputIdx - minML;
5556 if (lbStartIdx > 0 && lbStartIdx < fInputLength) {
5557 U16_SET_CP_START(inputBuf, 0, lbStartIdx);
5558 }
5559 } else {
5560 // 2nd through nth time through the loop.
5561 // Back up start position for match by one.
5562 if (lbStartIdx == 0) {
5563 lbStartIdx--; // Because U16_BACK is unsafe starting at 0.
5564 } else {
5565 U16_BACK_1(inputBuf, 0, lbStartIdx);
5566 }
5567 }
5568
5569 if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) {
5570 // We have tried all potential match starting points without
5571 // getting a match, which means that the negative lookbehind as
5572 // a whole has succeeded. Jump forward to the continue location
5573 int64_t restoreInputLen = fData[opValue+3];
5574 U_ASSERT(restoreInputLen >= fActiveLimit);
5575 U_ASSERT(restoreInputLen <= fInputLength);
5576 fActiveLimit = restoreInputLen;
5577 fp->fPatIdx = continueLoc;
5578 break;
5579 }
5580
5581 // Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
5582 // (successful match will cause a FAIL out of the loop altogether.)
5583 fp = StateSave(fp, fp->fPatIdx-4, status);
5584 fp->fInputIdx = lbStartIdx;
5585 }
5586 break;
5587
5588 case URX_LBN_END:
5589 // End of a negative look-behind block, after a successful match.
5590 {
5591 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
5592 if (fp->fInputIdx != fActiveLimit) {
5593 // The look-behind expression matched, but the match did not
5594 // extend all the way to the point that we are looking behind from.
5595 // FAIL out of here, which will take us back to the LB_CONT, which
5596 // will retry the match starting at another position or succeed
5597 // the look-behind altogether, whichever is appropriate.
5598 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
5599 break;
5600 }
5601
5602 // Look-behind expression matched, which means look-behind test as
5603 // a whole Fails
5604
5605 // Restore the orignal input string length, which had been truncated
5606 // inorder to pin the end of the lookbehind match
5607 // to the position being looked-behind.
5608 int64_t originalInputLen = fData[opValue+3];
5609 U_ASSERT(originalInputLen >= fActiveLimit);
5610 U_ASSERT(originalInputLen <= fInputLength);
5611 fActiveLimit = originalInputLen;
5612
5613 // Restore original stack position, discarding any state saved
5614 // by the successful pattern match.
5615 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
5616 int32_t newStackSize = (int32_t)fData[opValue];
5617 U_ASSERT(fStack->size() > newStackSize);
5618 fStack->setSize(newStackSize);
5619
5620 // FAIL, which will take control back to someplace
5621 // prior to entering the look-behind test.
5622 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
5623 }
5624 break;
5625
5626
5627 case URX_LOOP_SR_I:
5628 // Loop Initialization for the optimized implementation of
5629 // [some character set]*
5630 // This op scans through all matching input.
5631 // The following LOOP_C op emulates stack unwinding if the following pattern fails.
5632 {
5633 U_ASSERT(opValue > 0 && opValue < fSets->size());
5634 Regex8BitSet *s8 = &fPattern->fSets8[opValue];
5635 UnicodeSet *s = (UnicodeSet *)fSets->elementAt(opValue);
5636
5637 // Loop through input, until either the input is exhausted or
5638 // we reach a character that is not a member of the set.
5639 int32_t ix = (int32_t)fp->fInputIdx;
5640 for (;;) {
5641 if (ix >= fActiveLimit) {
5642 fHitEnd = TRUE;
5643 break;
5644 }
5645 UChar32 c;
5646 U16_NEXT(inputBuf, ix, fActiveLimit, c);
5647 if (c<256) {
5648 if (s8->contains(c) == FALSE) {
5649 U16_BACK_1(inputBuf, 0, ix);
5650 break;
5651 }
5652 } else {
5653 if (s->contains(c) == FALSE) {
5654 U16_BACK_1(inputBuf, 0, ix);
5655 break;
5656 }
5657 }
5658 }
5659
5660 // If there were no matching characters, skip over the loop altogether.
5661 // The loop doesn't run at all, a * op always succeeds.
5662 if (ix == fp->fInputIdx) {
5663 fp->fPatIdx++; // skip the URX_LOOP_C op.
5664 break;
5665 }
5666
5667 // Peek ahead in the compiled pattern, to the URX_LOOP_C that
5668 // must follow. It's operand is the stack location
5669 // that holds the starting input index for the match of this [set]*
5670 int32_t loopcOp = (int32_t)pat[fp->fPatIdx];
5671 U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C);
5672 int32_t stackLoc = URX_VAL(loopcOp);
5673 U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize);
5674 fp->fExtra[stackLoc] = fp->fInputIdx;
5675 fp->fInputIdx = ix;
5676
5677 // Save State to the URX_LOOP_C op that follows this one,
5678 // so that match failures in the following code will return to there.
5679 // Then bump the pattern idx so the LOOP_C is skipped on the way out of here.
5680 fp = StateSave(fp, fp->fPatIdx, status);
5681 fp->fPatIdx++;
5682 }
5683 break;
5684
5685
5686 case URX_LOOP_DOT_I:
5687 // Loop Initialization for the optimized implementation of .*
5688 // This op scans through all remaining input.
5689 // The following LOOP_C op emulates stack unwinding if the following pattern fails.
5690 {
5691 // Loop through input until the input is exhausted (we reach an end-of-line)
5692 // In DOTALL mode, we can just go straight to the end of the input.
5693 int32_t ix;
5694 if ((opValue & 1) == 1) {
5695 // Dot-matches-All mode. Jump straight to the end of the string.
5696 ix = (int32_t)fActiveLimit;
5697 fHitEnd = TRUE;
5698 } else {
5699 // NOT DOT ALL mode. Line endings do not match '.'
5700 // Scan forward until a line ending or end of input.
5701 ix = (int32_t)fp->fInputIdx;
5702 for (;;) {
5703 if (ix >= fActiveLimit) {
5704 fHitEnd = TRUE;
5705 break;
5706 }
5707 UChar32 c;
5708 U16_NEXT(inputBuf, ix, fActiveLimit, c); // c = inputBuf[ix++]
5709 if ((c & 0x7f) <= 0x29) { // Fast filter of non-new-line-s
5710 if ((c == 0x0a) || // 0x0a is newline in both modes.
5711 (((opValue & 2) == 0) && // IF not UNIX_LINES mode
5712 isLineTerminator(c))) {
5713 // char is a line ending. Put the input pos back to the
5714 // line ending char, and exit the scanning loop.
5715 U16_BACK_1(inputBuf, 0, ix);
5716 break;
5717 }
5718 }
5719 }
5720 }
5721
5722 // If there were no matching characters, skip over the loop altogether.
5723 // The loop doesn't run at all, a * op always succeeds.
5724 if (ix == fp->fInputIdx) {
5725 fp->fPatIdx++; // skip the URX_LOOP_C op.
5726 break;
5727 }
5728
5729 // Peek ahead in the compiled pattern, to the URX_LOOP_C that
5730 // must follow. It's operand is the stack location
5731 // that holds the starting input index for the match of this .*
5732 int32_t loopcOp = (int32_t)pat[fp->fPatIdx];
5733 U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C);
5734 int32_t stackLoc = URX_VAL(loopcOp);
5735 U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize);
5736 fp->fExtra[stackLoc] = fp->fInputIdx;
5737 fp->fInputIdx = ix;
5738
5739 // Save State to the URX_LOOP_C op that follows this one,
5740 // so that match failures in the following code will return to there.
5741 // Then bump the pattern idx so the LOOP_C is skipped on the way out of here.
5742 fp = StateSave(fp, fp->fPatIdx, status);
5743 fp->fPatIdx++;
5744 }
5745 break;
5746
5747
5748 case URX_LOOP_C:
5749 {
5750 U_ASSERT(opValue>=0 && opValue<fFrameSize);
5751 backSearchIndex = (int32_t)fp->fExtra[opValue];
5752 U_ASSERT(backSearchIndex <= fp->fInputIdx);
5753 if (backSearchIndex == fp->fInputIdx) {
5754 // We've backed up the input idx to the point that the loop started.
5755 // The loop is done. Leave here without saving state.
5756 // Subsequent failures won't come back here.
5757 break;
5758 }
5759 // Set up for the next iteration of the loop, with input index
5760 // backed up by one from the last time through,
5761 // and a state save to this instruction in case the following code fails again.
5762 // (We're going backwards because this loop emulates stack unwinding, not
5763 // the initial scan forward.)
5764 U_ASSERT(fp->fInputIdx > 0);
5765 UChar32 prevC;
5766 U16_PREV(inputBuf, 0, fp->fInputIdx, prevC); // !!!: should this 0 be one of f*Limit?
5767
5768 if (prevC == 0x0a &&
5769 fp->fInputIdx > backSearchIndex &&
5770 inputBuf[fp->fInputIdx-1] == 0x0d) {
5771 int32_t prevOp = (int32_t)pat[fp->fPatIdx-2];
5772 if (URX_TYPE(prevOp) == URX_LOOP_DOT_I) {
5773 // .*, stepping back over CRLF pair.
5774 U16_BACK_1(inputBuf, 0, fp->fInputIdx);
5775 }
5776 }
5777
5778
5779 fp = StateSave(fp, fp->fPatIdx-1, status);
5780 }
5781 break;
5782
5783
5784
5785 default:
5786 // Trouble. The compiled pattern contains an entry with an
5787 // unrecognized type tag.
5788 UPRV_UNREACHABLE;
5789 }
5790
5791 if (U_FAILURE(status)) {
5792 isMatch = FALSE;
5793 break;
5794 }
5795 }
5796
5797breakFromLoop:
5798 fMatch = isMatch;
5799 if (isMatch) {
5800 fLastMatchEnd = fMatchEnd;
5801 fMatchStart = startIdx;
5802 fMatchEnd = fp->fInputIdx;
5803 }
5804
5805#ifdef REGEX_RUN_DEBUG
5806 if (fTraceDebug) {
5807 if (isMatch) {
5808 printf("Match. start=%ld end=%ld\n\n", fMatchStart, fMatchEnd);
5809 } else {
5810 printf("No match\n\n");
5811 }
5812 }
5813#endif
5814
5815 fFrame = fp; // The active stack frame when the engine stopped.
5816 // Contains the capture group results that we need to
5817 // access later.
5818
5819 return;
5820}
5821
5822
5823UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RegexMatcher)
5824
5825U_NAMESPACE_END
5826
5827#endif // !UCONFIG_NO_REGULAR_EXPRESSIONS
5828