]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | ***************************************************************************** | |
3 | * Copyright (C) 1996-2014, International Business Machines Corporation and | |
4 | * others. All Rights Reserved. | |
5 | ***************************************************************************** | |
6 | */ | |
7 | ||
8 | #include "unicode/utypes.h" | |
9 | ||
10 | #if !UCONFIG_NO_NORMALIZATION | |
11 | ||
12 | #include "unicode/caniter.h" | |
13 | #include "unicode/normalizer2.h" | |
14 | #include "unicode/uchar.h" | |
15 | #include "unicode/uniset.h" | |
16 | #include "unicode/usetiter.h" | |
17 | #include "unicode/ustring.h" | |
18 | #include "unicode/utf16.h" | |
19 | #include "cmemory.h" | |
20 | #include "hash.h" | |
21 | #include "normalizer2impl.h" | |
22 | ||
23 | /** | |
24 | * This class allows one to iterate through all the strings that are canonically equivalent to a given | |
25 | * string. For example, here are some sample results: | |
26 | Results for: {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} | |
27 | 1: \u0041\u030A\u0064\u0307\u0327 | |
28 | = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} | |
29 | 2: \u0041\u030A\u0064\u0327\u0307 | |
30 | = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE} | |
31 | 3: \u0041\u030A\u1E0B\u0327 | |
32 | = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA} | |
33 | 4: \u0041\u030A\u1E11\u0307 | |
34 | = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE} | |
35 | 5: \u00C5\u0064\u0307\u0327 | |
36 | = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} | |
37 | 6: \u00C5\u0064\u0327\u0307 | |
38 | = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE} | |
39 | 7: \u00C5\u1E0B\u0327 | |
40 | = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA} | |
41 | 8: \u00C5\u1E11\u0307 | |
42 | = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE} | |
43 | 9: \u212B\u0064\u0307\u0327 | |
44 | = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} | |
45 | 10: \u212B\u0064\u0327\u0307 | |
46 | = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE} | |
47 | 11: \u212B\u1E0B\u0327 | |
48 | = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA} | |
49 | 12: \u212B\u1E11\u0307 | |
50 | = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE} | |
51 | *<br>Note: the code is intended for use with small strings, and is not suitable for larger ones, | |
52 | * since it has not been optimized for that situation. | |
53 | *@author M. Davis | |
54 | *@draft | |
55 | */ | |
56 | ||
57 | // public | |
58 | ||
59 | U_NAMESPACE_BEGIN | |
60 | ||
61 | // TODO: add boilerplate methods. | |
62 | ||
63 | UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator) | |
64 | ||
65 | /** | |
66 | *@param source string to get results for | |
67 | */ | |
68 | CanonicalIterator::CanonicalIterator(const UnicodeString &sourceStr, UErrorCode &status) : | |
69 | pieces(NULL), | |
70 | pieces_length(0), | |
71 | pieces_lengths(NULL), | |
72 | current(NULL), | |
73 | current_length(0), | |
74 | nfd(*Normalizer2::getNFDInstance(status)), | |
75 | nfcImpl(*Normalizer2Factory::getNFCImpl(status)) | |
76 | { | |
77 | if(U_SUCCESS(status) && nfcImpl.ensureCanonIterData(status)) { | |
78 | setSource(sourceStr, status); | |
79 | } | |
80 | } | |
81 | ||
82 | CanonicalIterator::~CanonicalIterator() { | |
83 | cleanPieces(); | |
84 | } | |
85 | ||
86 | void CanonicalIterator::cleanPieces() { | |
87 | int32_t i = 0; | |
88 | if(pieces != NULL) { | |
89 | for(i = 0; i < pieces_length; i++) { | |
90 | if(pieces[i] != NULL) { | |
91 | delete[] pieces[i]; | |
92 | } | |
93 | } | |
94 | uprv_free(pieces); | |
95 | pieces = NULL; | |
96 | pieces_length = 0; | |
97 | } | |
98 | if(pieces_lengths != NULL) { | |
99 | uprv_free(pieces_lengths); | |
100 | pieces_lengths = NULL; | |
101 | } | |
102 | if(current != NULL) { | |
103 | uprv_free(current); | |
104 | current = NULL; | |
105 | current_length = 0; | |
106 | } | |
107 | } | |
108 | ||
109 | /** | |
110 | *@return gets the source: NOTE: it is the NFD form of source | |
111 | */ | |
112 | UnicodeString CanonicalIterator::getSource() { | |
113 | return source; | |
114 | } | |
115 | ||
116 | /** | |
117 | * Resets the iterator so that one can start again from the beginning. | |
118 | */ | |
119 | void CanonicalIterator::reset() { | |
120 | done = FALSE; | |
121 | for (int i = 0; i < current_length; ++i) { | |
122 | current[i] = 0; | |
123 | } | |
124 | } | |
125 | ||
126 | /** | |
127 | *@return the next string that is canonically equivalent. The value null is returned when | |
128 | * the iteration is done. | |
129 | */ | |
130 | UnicodeString CanonicalIterator::next() { | |
131 | int32_t i = 0; | |
132 | ||
133 | if (done) { | |
134 | buffer.setToBogus(); | |
135 | return buffer; | |
136 | } | |
137 | ||
138 | // delete old contents | |
139 | buffer.remove(); | |
140 | ||
141 | // construct return value | |
142 | ||
143 | for (i = 0; i < pieces_length; ++i) { | |
144 | buffer.append(pieces[i][current[i]]); | |
145 | } | |
146 | //String result = buffer.toString(); // not needed | |
147 | ||
148 | // find next value for next time | |
149 | ||
150 | for (i = current_length - 1; ; --i) { | |
151 | if (i < 0) { | |
152 | done = TRUE; | |
153 | break; | |
154 | } | |
155 | current[i]++; | |
156 | if (current[i] < pieces_lengths[i]) break; // got sequence | |
157 | current[i] = 0; | |
158 | } | |
159 | return buffer; | |
160 | } | |
161 | ||
162 | /** | |
163 | *@param set the source string to iterate against. This allows the same iterator to be used | |
164 | * while changing the source string, saving object creation. | |
165 | */ | |
166 | void CanonicalIterator::setSource(const UnicodeString &newSource, UErrorCode &status) { | |
167 | int32_t list_length = 0; | |
168 | UChar32 cp = 0; | |
169 | int32_t start = 0; | |
170 | int32_t i = 0; | |
171 | UnicodeString *list = NULL; | |
172 | ||
173 | nfd.normalize(newSource, source, status); | |
174 | if(U_FAILURE(status)) { | |
175 | return; | |
176 | } | |
177 | done = FALSE; | |
178 | ||
179 | cleanPieces(); | |
180 | ||
181 | // catch degenerate case | |
182 | if (newSource.length() == 0) { | |
183 | pieces = (UnicodeString **)uprv_malloc(sizeof(UnicodeString *)); | |
184 | pieces_lengths = (int32_t*)uprv_malloc(1 * sizeof(int32_t)); | |
185 | pieces_length = 1; | |
186 | current = (int32_t*)uprv_malloc(1 * sizeof(int32_t)); | |
187 | current_length = 1; | |
188 | if (pieces == NULL || pieces_lengths == NULL || current == NULL) { | |
189 | status = U_MEMORY_ALLOCATION_ERROR; | |
190 | goto CleanPartialInitialization; | |
191 | } | |
192 | current[0] = 0; | |
193 | pieces[0] = new UnicodeString[1]; | |
194 | pieces_lengths[0] = 1; | |
195 | if (pieces[0] == 0) { | |
196 | status = U_MEMORY_ALLOCATION_ERROR; | |
197 | goto CleanPartialInitialization; | |
198 | } | |
199 | return; | |
200 | } | |
201 | ||
202 | ||
203 | list = new UnicodeString[source.length()]; | |
204 | if (list == 0) { | |
205 | status = U_MEMORY_ALLOCATION_ERROR; | |
206 | goto CleanPartialInitialization; | |
207 | } | |
208 | ||
209 | // i should initialy be the number of code units at the | |
210 | // start of the string | |
211 | i = U16_LENGTH(source.char32At(0)); | |
212 | //int32_t i = 1; | |
213 | // find the segments | |
214 | // This code iterates through the source string and | |
215 | // extracts segments that end up on a codepoint that | |
216 | // doesn't start any decompositions. (Analysis is done | |
217 | // on the NFD form - see above). | |
218 | for (; i < source.length(); i += U16_LENGTH(cp)) { | |
219 | cp = source.char32At(i); | |
220 | if (nfcImpl.isCanonSegmentStarter(cp)) { | |
221 | source.extract(start, i-start, list[list_length++]); // add up to i | |
222 | start = i; | |
223 | } | |
224 | } | |
225 | source.extract(start, i-start, list[list_length++]); // add last one | |
226 | ||
227 | ||
228 | // allocate the arrays, and find the strings that are CE to each segment | |
229 | pieces = (UnicodeString **)uprv_malloc(list_length * sizeof(UnicodeString *)); | |
230 | pieces_length = list_length; | |
231 | pieces_lengths = (int32_t*)uprv_malloc(list_length * sizeof(int32_t)); | |
232 | current = (int32_t*)uprv_malloc(list_length * sizeof(int32_t)); | |
233 | current_length = list_length; | |
234 | if (pieces == NULL || pieces_lengths == NULL || current == NULL) { | |
235 | status = U_MEMORY_ALLOCATION_ERROR; | |
236 | goto CleanPartialInitialization; | |
237 | } | |
238 | ||
239 | for (i = 0; i < current_length; i++) { | |
240 | current[i] = 0; | |
241 | } | |
242 | // for each segment, get all the combinations that can produce | |
243 | // it after NFD normalization | |
244 | for (i = 0; i < pieces_length; ++i) { | |
245 | //if (PROGRESS) printf("SEGMENT\n"); | |
246 | pieces[i] = getEquivalents(list[i], pieces_lengths[i], status); | |
247 | } | |
248 | ||
249 | delete[] list; | |
250 | return; | |
251 | // Common section to cleanup all local variables and reset object variables. | |
252 | CleanPartialInitialization: | |
253 | if (list != NULL) { | |
254 | delete[] list; | |
255 | } | |
256 | cleanPieces(); | |
257 | } | |
258 | ||
259 | /** | |
260 | * Dumb recursive implementation of permutation. | |
261 | * TODO: optimize | |
262 | * @param source the string to find permutations for | |
263 | * @return the results in a set. | |
264 | */ | |
265 | void U_EXPORT2 CanonicalIterator::permute(UnicodeString &source, UBool skipZeros, Hashtable *result, UErrorCode &status) { | |
266 | if(U_FAILURE(status)) { | |
267 | return; | |
268 | } | |
269 | //if (PROGRESS) printf("Permute: %s\n", UToS(Tr(source))); | |
270 | int32_t i = 0; | |
271 | ||
272 | // optimization: | |
273 | // if zero or one character, just return a set with it | |
274 | // we check for length < 2 to keep from counting code points all the time | |
275 | if (source.length() <= 2 && source.countChar32() <= 1) { | |
276 | UnicodeString *toPut = new UnicodeString(source); | |
277 | /* test for NULL */ | |
278 | if (toPut == 0) { | |
279 | status = U_MEMORY_ALLOCATION_ERROR; | |
280 | return; | |
281 | } | |
282 | result->put(source, toPut, status); | |
283 | return; | |
284 | } | |
285 | ||
286 | // otherwise iterate through the string, and recursively permute all the other characters | |
287 | UChar32 cp; | |
288 | Hashtable subpermute(status); | |
289 | if(U_FAILURE(status)) { | |
290 | return; | |
291 | } | |
292 | subpermute.setValueDeleter(uprv_deleteUObject); | |
293 | ||
294 | for (i = 0; i < source.length(); i += U16_LENGTH(cp)) { | |
295 | cp = source.char32At(i); | |
296 | const UHashElement *ne = NULL; | |
297 | int32_t el = UHASH_FIRST; | |
298 | UnicodeString subPermuteString = source; | |
299 | ||
300 | // optimization: | |
301 | // if the character is canonical combining class zero, | |
302 | // don't permute it | |
303 | if (skipZeros && i != 0 && u_getCombiningClass(cp) == 0) { | |
304 | //System.out.println("Skipping " + Utility.hex(UTF16.valueOf(source, i))); | |
305 | continue; | |
306 | } | |
307 | ||
308 | subpermute.removeAll(); | |
309 | ||
310 | // see what the permutations of the characters before and after this one are | |
311 | //Hashtable *subpermute = permute(source.substring(0,i) + source.substring(i + UTF16.getCharCount(cp))); | |
312 | permute(subPermuteString.replace(i, U16_LENGTH(cp), NULL, 0), skipZeros, &subpermute, status); | |
313 | /* Test for buffer overflows */ | |
314 | if(U_FAILURE(status)) { | |
315 | return; | |
316 | } | |
317 | // The upper replace is destructive. The question is do we have to make a copy, or we don't care about the contents | |
318 | // of source at this point. | |
319 | ||
320 | // prefix this character to all of them | |
321 | ne = subpermute.nextElement(el); | |
322 | while (ne != NULL) { | |
323 | UnicodeString *permRes = (UnicodeString *)(ne->value.pointer); | |
324 | UnicodeString *chStr = new UnicodeString(cp); | |
325 | //test for NULL | |
326 | if (chStr == NULL) { | |
327 | status = U_MEMORY_ALLOCATION_ERROR; | |
328 | return; | |
329 | } | |
330 | chStr->append(*permRes); //*((UnicodeString *)(ne->value.pointer)); | |
331 | //if (PROGRESS) printf(" Piece: %s\n", UToS(*chStr)); | |
332 | result->put(*chStr, chStr, status); | |
333 | ne = subpermute.nextElement(el); | |
334 | } | |
335 | } | |
336 | //return result; | |
337 | } | |
338 | ||
339 | // privates | |
340 | ||
341 | // we have a segment, in NFD. Find all the strings that are canonically equivalent to it. | |
342 | UnicodeString* CanonicalIterator::getEquivalents(const UnicodeString &segment, int32_t &result_len, UErrorCode &status) { | |
343 | Hashtable result(status); | |
344 | Hashtable permutations(status); | |
345 | Hashtable basic(status); | |
346 | if (U_FAILURE(status)) { | |
347 | return 0; | |
348 | } | |
349 | result.setValueDeleter(uprv_deleteUObject); | |
350 | permutations.setValueDeleter(uprv_deleteUObject); | |
351 | basic.setValueDeleter(uprv_deleteUObject); | |
352 | ||
353 | UChar USeg[256]; | |
354 | int32_t segLen = segment.extract(USeg, 256, status); | |
355 | getEquivalents2(&basic, USeg, segLen, status); | |
356 | ||
357 | // now get all the permutations | |
358 | // add only the ones that are canonically equivalent | |
359 | // TODO: optimize by not permuting any class zero. | |
360 | ||
361 | const UHashElement *ne = NULL; | |
362 | int32_t el = UHASH_FIRST; | |
363 | //Iterator it = basic.iterator(); | |
364 | ne = basic.nextElement(el); | |
365 | //while (it.hasNext()) | |
366 | while (ne != NULL) { | |
367 | //String item = (String) it.next(); | |
368 | UnicodeString item = *((UnicodeString *)(ne->value.pointer)); | |
369 | ||
370 | permutations.removeAll(); | |
371 | permute(item, CANITER_SKIP_ZEROES, &permutations, status); | |
372 | const UHashElement *ne2 = NULL; | |
373 | int32_t el2 = UHASH_FIRST; | |
374 | //Iterator it2 = permutations.iterator(); | |
375 | ne2 = permutations.nextElement(el2); | |
376 | //while (it2.hasNext()) | |
377 | while (ne2 != NULL) { | |
378 | //String possible = (String) it2.next(); | |
379 | //UnicodeString *possible = new UnicodeString(*((UnicodeString *)(ne2->value.pointer))); | |
380 | UnicodeString possible(*((UnicodeString *)(ne2->value.pointer))); | |
381 | UnicodeString attempt; | |
382 | nfd.normalize(possible, attempt, status); | |
383 | ||
384 | // TODO: check if operator == is semanticaly the same as attempt.equals(segment) | |
385 | if (attempt==segment) { | |
386 | //if (PROGRESS) printf("Adding Permutation: %s\n", UToS(Tr(*possible))); | |
387 | // TODO: use the hashtable just to catch duplicates - store strings directly (somehow). | |
388 | result.put(possible, new UnicodeString(possible), status); //add(possible); | |
389 | } else { | |
390 | //if (PROGRESS) printf("-Skipping Permutation: %s\n", UToS(Tr(*possible))); | |
391 | } | |
392 | ||
393 | ne2 = permutations.nextElement(el2); | |
394 | } | |
395 | ne = basic.nextElement(el); | |
396 | } | |
397 | ||
398 | /* Test for buffer overflows */ | |
399 | if(U_FAILURE(status)) { | |
400 | return 0; | |
401 | } | |
402 | // convert into a String[] to clean up storage | |
403 | //String[] finalResult = new String[result.size()]; | |
404 | UnicodeString *finalResult = NULL; | |
405 | int32_t resultCount; | |
406 | if((resultCount = result.count())) { | |
407 | finalResult = new UnicodeString[resultCount]; | |
408 | if (finalResult == 0) { | |
409 | status = U_MEMORY_ALLOCATION_ERROR; | |
410 | return NULL; | |
411 | } | |
412 | } | |
413 | else { | |
414 | status = U_ILLEGAL_ARGUMENT_ERROR; | |
415 | return NULL; | |
416 | } | |
417 | //result.toArray(finalResult); | |
418 | result_len = 0; | |
419 | el = UHASH_FIRST; | |
420 | ne = result.nextElement(el); | |
421 | while(ne != NULL) { | |
422 | finalResult[result_len++] = *((UnicodeString *)(ne->value.pointer)); | |
423 | ne = result.nextElement(el); | |
424 | } | |
425 | ||
426 | ||
427 | return finalResult; | |
428 | } | |
429 | ||
430 | Hashtable *CanonicalIterator::getEquivalents2(Hashtable *fillinResult, const UChar *segment, int32_t segLen, UErrorCode &status) { | |
431 | ||
432 | if (U_FAILURE(status)) { | |
433 | return NULL; | |
434 | } | |
435 | ||
436 | //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(segment))); | |
437 | ||
438 | UnicodeString toPut(segment, segLen); | |
439 | ||
440 | fillinResult->put(toPut, new UnicodeString(toPut), status); | |
441 | ||
442 | UnicodeSet starts; | |
443 | ||
444 | // cycle through all the characters | |
445 | UChar32 cp; | |
446 | for (int32_t i = 0; i < segLen; i += U16_LENGTH(cp)) { | |
447 | // see if any character is at the start of some decomposition | |
448 | U16_GET(segment, 0, i, segLen, cp); | |
449 | if (!nfcImpl.getCanonStartSet(cp, starts)) { | |
450 | continue; | |
451 | } | |
452 | // if so, see which decompositions match | |
453 | UnicodeSetIterator iter(starts); | |
454 | while (iter.next()) { | |
455 | UChar32 cp2 = iter.getCodepoint(); | |
456 | Hashtable remainder(status); | |
457 | remainder.setValueDeleter(uprv_deleteUObject); | |
458 | if (extract(&remainder, cp2, segment, segLen, i, status) == NULL) { | |
459 | continue; | |
460 | } | |
461 | ||
462 | // there were some matches, so add all the possibilities to the set. | |
463 | UnicodeString prefix(segment, i); | |
464 | prefix += cp2; | |
465 | ||
466 | int32_t el = UHASH_FIRST; | |
467 | const UHashElement *ne = remainder.nextElement(el); | |
468 | while (ne != NULL) { | |
469 | UnicodeString item = *((UnicodeString *)(ne->value.pointer)); | |
470 | UnicodeString *toAdd = new UnicodeString(prefix); | |
471 | /* test for NULL */ | |
472 | if (toAdd == 0) { | |
473 | status = U_MEMORY_ALLOCATION_ERROR; | |
474 | return NULL; | |
475 | } | |
476 | *toAdd += item; | |
477 | fillinResult->put(*toAdd, toAdd, status); | |
478 | ||
479 | //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(*toAdd))); | |
480 | ||
481 | ne = remainder.nextElement(el); | |
482 | } | |
483 | } | |
484 | } | |
485 | ||
486 | /* Test for buffer overflows */ | |
487 | if(U_FAILURE(status)) { | |
488 | return NULL; | |
489 | } | |
490 | return fillinResult; | |
491 | } | |
492 | ||
493 | /** | |
494 | * See if the decomposition of cp2 is at segment starting at segmentPos | |
495 | * (with canonical rearrangment!) | |
496 | * If so, take the remainder, and return the equivalents | |
497 | */ | |
498 | Hashtable *CanonicalIterator::extract(Hashtable *fillinResult, UChar32 comp, const UChar *segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) { | |
499 | //Hashtable *CanonicalIterator::extract(UChar32 comp, const UnicodeString &segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) { | |
500 | //if (PROGRESS) printf(" extract: %s, ", UToS(Tr(UnicodeString(comp)))); | |
501 | //if (PROGRESS) printf("%s, %i\n", UToS(Tr(segment)), segmentPos); | |
502 | ||
503 | if (U_FAILURE(status)) { | |
504 | return NULL; | |
505 | } | |
506 | ||
507 | UnicodeString temp(comp); | |
508 | int32_t inputLen=temp.length(); | |
509 | UnicodeString decompString; | |
510 | nfd.normalize(temp, decompString, status); | |
511 | const UChar *decomp=decompString.getBuffer(); | |
512 | int32_t decompLen=decompString.length(); | |
513 | ||
514 | // See if it matches the start of segment (at segmentPos) | |
515 | UBool ok = FALSE; | |
516 | UChar32 cp; | |
517 | int32_t decompPos = 0; | |
518 | UChar32 decompCp; | |
519 | U16_NEXT(decomp, decompPos, decompLen, decompCp); | |
520 | ||
521 | int32_t i = segmentPos; | |
522 | while(i < segLen) { | |
523 | U16_NEXT(segment, i, segLen, cp); | |
524 | ||
525 | if (cp == decompCp) { // if equal, eat another cp from decomp | |
526 | ||
527 | //if (PROGRESS) printf(" matches: %s\n", UToS(Tr(UnicodeString(cp)))); | |
528 | ||
529 | if (decompPos == decompLen) { // done, have all decomp characters! | |
530 | temp.append(segment+i, segLen-i); | |
531 | ok = TRUE; | |
532 | break; | |
533 | } | |
534 | U16_NEXT(decomp, decompPos, decompLen, decompCp); | |
535 | } else { | |
536 | //if (PROGRESS) printf(" buffer: %s\n", UToS(Tr(UnicodeString(cp)))); | |
537 | ||
538 | // brute force approach | |
539 | temp.append(cp); | |
540 | ||
541 | /* TODO: optimize | |
542 | // since we know that the classes are monotonically increasing, after zero | |
543 | // e.g. 0 5 7 9 0 3 | |
544 | // we can do an optimization | |
545 | // there are only a few cases that work: zero, less, same, greater | |
546 | // if both classes are the same, we fail | |
547 | // if the decomp class < the segment class, we fail | |
548 | ||
549 | segClass = getClass(cp); | |
550 | if (decompClass <= segClass) return null; | |
551 | */ | |
552 | } | |
553 | } | |
554 | if (!ok) | |
555 | return NULL; // we failed, characters left over | |
556 | ||
557 | //if (PROGRESS) printf("Matches\n"); | |
558 | ||
559 | if (inputLen == temp.length()) { | |
560 | fillinResult->put(UnicodeString(), new UnicodeString(), status); | |
561 | return fillinResult; // succeed, but no remainder | |
562 | } | |
563 | ||
564 | // brute force approach | |
565 | // check to make sure result is canonically equivalent | |
566 | UnicodeString trial; | |
567 | nfd.normalize(temp, trial, status); | |
568 | if(U_FAILURE(status) || trial.compare(segment+segmentPos, segLen - segmentPos) != 0) { | |
569 | return NULL; | |
570 | } | |
571 | ||
572 | return getEquivalents2(fillinResult, temp.getBuffer()+inputLen, temp.length()-inputLen, status); | |
573 | } | |
574 | ||
575 | U_NAMESPACE_END | |
576 | ||
577 | #endif /* #if !UCONFIG_NO_NORMALIZATION */ |